抽样技术7不等概率抽样

合集下载

(硕)《抽样技术》第三讲 等概率与不等概率抽样比较研究

(硕)《抽样技术》第三讲  等概率与不等概率抽样比较研究

三、严格的πPS抽样
n是固定的;一阶包含概率与单 是固定的; 位规模大小严格成比例, 位规模大小严格成比例,即
πi = nZi
1.当 n = 2 的情况下 1.当 布鲁尔估计法: 布鲁尔估计法: 要求: 要求:总体中最大的单位必须小 于全部单位大小总和的 1 2
记第一个被抽取的单位为i 记第一个被抽取的单位为i,第一个单位 成比例的概率抽取。 按与 Z i (1 − Z i ) 成比例的概率抽取。
设从总体中不放回地抽去 n 个 单位, 单位, 令 π i 为第 i 个单位入样的概率 (一阶包含概率). 一阶包含概率). π ij 为第 i 和第 j 个单位同时入 样的概率(二阶包含概率). 样的概率(二阶包含概率).
1. 霍维茨 汤普森估计量 霍维茨-汤普森 汤普森估计量
总体总值的估计量 X ˆ 估计量的方差为
2
( )
ˆ xi XHH M = ∑ m − M n ( n −1) i=1 i 0
第三节 不重复的 不等概率抽样
一、基本概念 1. πPS 抽样:不放回的与单元规模 抽样:
大小成比例的概率抽样称为严格的
πPS 抽样。 抽样。
2. 在不重复的不等概率抽样中,总 在不重复的不等概率抽样中, 体中的每个单位每次被抽中的概率 为 Zi 。
两个单位同时入样概率称为 二阶包含概率。 二阶包含概率。
包含概率的性质: 包含概率的性质:
(1)
∑π
i =1 N
N
i
=n = ( n − 1) π i
(2)
∑π
i≠ j N
ij
1 ∑∑i π ij = 2 n ( n − 1) (3) i =1 j >
N

抽样技术第七章整群抽样ppt课件

抽样技术第七章整群抽样ppt课件

11
三、群内相关系数与设计效应
群内相关系数
c

E(Yij Y E(Yij
)(Yik Y Y )2
)
上式中的分子为
NM
(Yij Y )(Yik Y )
i1 jk
NM (M 1) 2
12
上式中的分母为
NM
i1
(Yij Y )2
j 1

NM
1S2
1N
1N
Y

M0
i1
Yij
j 1

M0
Yi
i1

M0
M iYi
i1
21
二、按简单随机抽样抽群
1.简单估计 2.比估计 3.总体比例的估计
22
1.简单估计
在大多数情形,群大小Mi是不相等的。此时,若Mi 相差不多,则仍可按§7.2中的方法处理,用平均群
大 则小这种M方法N1精iN1度M较i 差代。替M。反之,若Mi相差较多,
n
1 n
n 1 i1
yi y 2
1 f nM
sb2
其中f=n/N为抽样比。可见,sb2 是Sb2的无偏估计。
8
当n足够大时,总体均值Y 的置信度为1−α的置信区 间为:
y u 2s y
例7.1 在一次某城市居民小区居民食品消费量调查 中,以每个楼层(相当于居民小组)为群进行整群抽 样。每个楼层都有M=8个住户。用简单随机抽样在 全部N=510个楼层中抽取n=12个楼层。全部96个 样本户人均月食品消费额yij及按楼层的平均数yi 与 标准差si ,如下表所示。试估计该居民小区人均食 品消费额的户平均值 ,并给出其0.95的置信区间。

不等概率抽样

不等概率抽样
最简单的不放回不等概率抽样方式自然会想到逐一抽样 这在第一次抽样时不会发生问题,但在抽第二个样本时面临 的情况与有放回时大不相同,余下的 ( N-1 ) 个单元以什 么样的概率参与第二次抽样就是个问题;再在抽第三个样本 时又面临新问题,如此下去,一是抽样实施的复杂,二是估 计量及其方差计算的复杂,因此,在本节仅讨论 n固定,尤 其是n=2时的情形。同时,我们只对使总体中每个单元的入
二、不等概率抽样的优点和局限性
(一)优点:能够大大提高抽样精度,减少抽样误差。
(二)局限性:必须具有能够说明单元规模大小的辅助变 量来确定各个单元的入样概率或包含概率。
三、不等概率的适用场合:总体单元之间的差异较大。
四、不等概率抽样分类:
我们最关心也是最重要的情形是抽样容量 n固定时, 单元入样的概率(不放回抽样)或每次抽样的概率(有放回 抽样)与单元的大小严格成比例。这种情况下的有放回抽样
( i
j


ij
)

Yi
i
Yj
j
2
(7.13)
3、几种严格的不放回 ps 抽样方法
前面已经指出,所谓“严格不放回 ps ”是指样本容量
n 固定,严格不放回、 i nZi 的抽样。仅介绍n=2的情形。
(1)Brewer(布鲁尔)方法(1963)
假设对所有 i,均有Zi
响,只有 Mi m时它才入样,因此第 i 个单元入样的概率与
Mi的大小成正比,此时 Zi Mi M0
2、Hansen-Hurwitz (汉森—赫维茨)估计量
若 y1 , y2 , , yn 是按 Zi为入样概率的多项抽样而得的样 本数据,它们相应的 Zi值自然记为 z1, z2 , , zn ,则对总

抽样技术7不等概率抽样

抽样技术7不等概率抽样

抽样技术:7不等概率抽样1. 引言在进行数据分析和统计研究时,抽样是一种常用的技术。

抽样技术允许我们从总体中选择一个样本,以便推断总体的性质。

在抽样技术中,不等概率抽样是一种常见的方法,它允许我们以非均匀的概率抽取样本。

本文将介绍关于7种不等概率抽样方法的详细信息。

2. 简单随机抽样简单随机抽样是最根本的抽样方法之一,它要求每个个体被选中的概率相等且任意组合都是可能的。

然而,在某些情况下,简单随机抽样可能并不适用,例如当总体分布不均匀时,或者我们希望在样本中增加一定的多样性。

这时,我们可以考虑使用不等概率抽样方法。

3. 整群抽样整群抽样是一种不等概率抽样方法,它将总体划分为假设干个互不重叠的群组〔或称为簇〕,然后从每个群组中抽取样本。

整群抽样可以有效地减少抽样过程中的复杂性,并提高样本的效率。

整群抽样常用于调查社会群体或大型组织等场景。

4. 分层抽样分层抽样是一种根据总体特点进行划分的抽样方法,它将总体划分为假设干个层级或相似的子群〔层〕,然后从每个层中抽取样本。

通过分层抽样,我们可以保证样本在各层中的分布情况与总体相似,从而更为准确地推断总体的特征。

5. 系统抽样系统抽样是一种按照固定间隔选择样本的抽样方法。

它类似于简单随机抽样,但是通过定义一个间隔,我们可以按照一定的规律抽取样本。

例如,我们可以在总体中选取每隔一定数量的个体作为样本。

系统抽样在样本大小较大时表现出较高的效率。

6. 按比例分层抽样按比例分层抽样是一种常用的不等概率抽样方法,它根据总体各层的比例确定各层的样本容量。

比例分层抽样可以使得样本在各层中的分布与总体的比例相对应。

这种抽样方法适用于总体中的各个层存在不同比例的情况。

7. 两阶段抽样两阶段抽样是一种复杂的不等概率抽样方法,它将抽样过程分为两个阶段。

在第一阶段,我们从总体中选择一局部群组〔或称为簇〕,在第二阶段,我们从每个群组中抽取一定数量的样本。

两阶段抽样适用于总体较大或分布复杂的情况下,可以提高抽样的效率。

不等概率抽样的概念和特点

不等概率抽样的概念和特点
通常的做法:牺牲“简单”来提高抽样效率。
(1)将总体单元按规模分层,对较大单元的层抽样比高一些,特大层的 抽样比甚至可以100%,而较小单元的层抽样比低一些。
(2)采用不等概抽样来减少抽样方差,即赋予每个单元与其规模成比例 的入样概率,然后在估计中采用不同的权数来进行弥补。
分层抽样:抽样选择概率小的单位会有较 高的权数。
n
N
Wi yi n
yi
又如,对于霍维茨——汤普森估计量
YˆHT
yi
i
在入选概率与规模成比例条件下,
的性质为
i
i
nZi

YˆHT
n
yi nZ i
1 n
n
yi Zi
YˆHH
πPS抽样的实施
n=2条件下严格的πPS抽样
布鲁尔方法 德宾方法
n >2条件下严格的πPS抽样
inijninn???1?????ininiihtywyy??????iiw?1?n固定条件下的包含概率第i单位入样概率第ij单位都入样概率21kin1in1inikkikiik2iiiyyy1?kkininikiikkihtyyyv???????????????????????????????????????sskkkii2is2iiyy2y1?iikikkiihtyv?????????kkiiik2sksk?kkiiiiikikkihtyyyv??????????????2?jjiinijijjinhtyyy????????????hty?是y的无偏估计i1ji?hty?是?htyv的无偏估计hhy?ppshty?ps其他公式在某种程度上可用这两个公式表现
2拉希里方法
不需要累计,两次随机数决定抽中的单位。 第一次:1-N之间的随机数i 第二次: 1-maxM之间的随机数m 如果Mi> m,第i个单位被抽中

抽样调查:不等概率抽样

抽样调查:不等概率抽样
——Sampling with Probability Proportional to Size
总体单元 Yi 规模测度 Mi 0. 在抽取样本单元时,各单元被抽取的概率正比于Mi .
有放回PPS 抽样是常见的一种不等概率抽样方案。每次抽取,第i
单 元Yi 被 抽 中 的 概 率p i



M
响,只有 Mi m时它才入样,因此第 i 个单元入样的概率与
Mi的大小成正比,此时 Zi Mi M0
二、估 值 法
PPS抽样法的估值法的理论依据
定理3.1.1 在有放回PPS抽样下,
是总体总数Y
N
Yi
Yˆ PPS
的无偏估计.
பைடு நூலகம்
1 n
n
i 1
yi pi
i 1
( pi为第i个样本单元yi时的抽取概率,而不是总体中第i单元对应的抽取概率.)
i j ij
j
) yi
yj
,
v2 ( YˆHT
)
Nn
( i
j
ij
i1 ji
ij
) (
yi
i
yj
j
)2 .
注:两估计量均有可能取负值,通过模拟比较,v2较稳定且
较少取负值。
§3.3 Rao-Hartley-Cochran随机分群抽样
拉奥-哈特利-科克伦(1962)
设总体个体单元总数N nM k( 0 k n ) 1. 将总体随机分成n个群 其中k个群有M 1个个体单元,n k个群有M个个体单元; 2. 在每一个群中,以正比于规模测度的概率抽取一个单元 作为样本单元。
估计的均方偏差为:
V(Yˆ PPS
)

《抽样技术》第三讲 等概率与不等概率抽样比较研究[学习课堂]

《抽样技术》第三讲  等概率与不等概率抽样比较研究[学习课堂]

ij
n 1 N 1
N N
n 2
Zi*
Z
* j
n N
2 n
课件类别
27
2)布鲁尔法
样本单位是逐个抽取的.令
Zi
1 n
设第一个单位按与 例的概率抽取。
Zi 1 Zi
1 nZi
成比
剩下的n-1个单位按与 成比例的概率抽取
Zi 1 Zi 1 n r 1
Zi
,
因为 i nZi ,
r 2,3,L , n
B.按单位规模的大小决定入样的概 率,使规模大的单位入样概率大, 规模小的单位入样概率小。
课件类别
3
2)群大小不等的整群抽样 3)初级单位大小不同的阶段
抽样
4)等距抽样中的应用
课件类别
4
3. 优点与不足
1)优点:
比较有效地解决调查的总体单位 与抽样的总体单位不一致、调查 单位在总体中所占的比重不一致 的问题。
?布鲁尔方法的包含概率为??112iiizzz??1jizz?2iiz????????1411212112ijijijniijiizzzzzzzz????????????????23课件类别令?可以写成??1112niiiizzdz?????ij?????1212111212ijijijijijijzzzzdzdzzzdzz?????????????????24课件类别总值估计?方差估计耶茨格伦迪森121212121?2bxxxxxzz??????????????21212121212?ygsbxxvx???????????????25课件类别2
第一个单位按 Zi 的概率抽取;
Zj
第二个单位按 1 Zi 的概率在余
下的N-1个单位中抽取;

抽样技术7不等概率抽样

抽样技术7不等概率抽样

M0
M2 0
例 某企业欲估计上季度每位职工的平均病假天数。该 企业共8个分厂,现用不等概整群抽样拟抽取3个分厂, 并以置信度95%计算其置信区间。
分厂编号
职工人数 Mi
累积区间
1
1200
1-1200
2
450
1201-1650
3
2100
1651-3750
4
860
3751-4610
5
2840
4611-7450
17 21
15.00 1045 22*
12.30 220 23
3.86 4600 24 15.80 2370 25
9.00 21.00
940 26 640 27
mi
yi
1.50
10
8.00
80
28.42 13672
9.01 3845
0.75
480
5.00 28.43
311 9284
9.97
842
5.20
放回不等概率抽样对总体特征的估计
三、Hansen-Hurwitz(汉森-郝维茨)估计量及其性质:
样本单元被抽中的概率z1, ,zn ,则对总体总量Y的估计是
YˆHH
1 n
n i 1
yi zi
(1)E(YˆHH ) Y
(2)V (YˆHH )
1 n
N i 1
Zi
(
Yi Zi
Y )2
(3)v(YˆHH )
其中第2、19号被抽中两次
解:根据题中所给资料,n=30,M0=9542, 利用汉森-郝维茨估计量,则有:
YHH
1 n
n 1
yi M 0 zi n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽样技术:7不等概率抽样
1. 引言
在进行数据分析和统计研究时,抽样是一种常用的技术。

抽样技术允许我们从总体中选择一个样本,以便推断总体的性质。

在抽样技术中,不等概率抽样是一种常见的方法,它允许我们以非均匀的概率抽取样本。

本文将介绍关于7种不等概率抽样方法的详细信息。

2. 简单随机抽样
简单随机抽样是最基本的抽样方法之一,它要求每个个体被选中的概率相等且任意组合都是可能的。

然而,在某些情况下,简单随机抽样可能并不适用,例如当总体分布不均匀时,或者我们希望在样本中增加一定的多样性。

这时,我们可以考虑使用不等概率抽样方法。

3. 整群抽样
整群抽样是一种不等概率抽样方法,它将总体划分为若干个互不重叠的群组(或称为簇),然后从每个群组中抽取样本。

整群抽样可以有效地减少抽样过程中的复杂性,并提高样本的效率。

整群抽样常用于调查社会群体或大型组织等场景。

4. 分层抽样
分层抽样是一种根据总体特点进行划分的抽样方法,它将总体划分为若干个层级或相似的子群(层),然后从每个层中抽取样本。

通过分层抽样,我们可以保证样本在各层中的分布情况与总体相似,从而更为准确地推断总体的特征。

5. 系统抽样
系统抽样是一种按照固定间隔选择样本的抽样方法。

它类似于简单随机抽样,但是通过定义一个间隔,我们可以按照一定的规律抽取样
本。

例如,我们可以在总体中选取每隔一定数量的个体作为样本。

系统抽样在样本大小较大时表现出较高的效率。

6. 按比例分层抽样
按比例分层抽样是一种常用的不等概率抽样方法,它根据总体各层的比例确定各层的样本容量。

比例分层抽样可以使得样本在各层中的分布与总体的比例相对应。

这种抽样方法适用于总体中的各个层存在不同比例的情况。

7. 两阶段抽样
两阶段抽样是一种复杂的不等概率抽样方法,它将抽样过程分为两个阶段。

在第一阶段,我们从总体中选择一部分群组(或称为簇),在第二阶段,我们从每个群组中抽取一定数量的样本。

两阶段抽样适用于总体较大或分布复杂的情况下,可以提高抽样的效率。

8. 结论
通过以上7种不等概率抽样方法的介绍,我们了解到不同抽样技术在不同情况下的适用性。

简单随机抽样适用于总体均匀分布的情况,整群抽样和分层抽样可以提高抽样效率,系统抽样适用于样本大小较大的情况。

按比例分层抽样可以保持样本与总体比例相对应,两阶段抽样适用于总体较大或分布复杂的情况下。

选择合适的抽样方法对于获得准确的统计结果非常重要,研究者在设计实验和调查时应根据具体情况选择合适的抽样技术。

参考资料: - Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons. - Kish, L. (1965). Survey Sampling. John Wiley & Sons.。

相关文档
最新文档