统计与概率
概率与统计的基本概念及计算方法

概率与统计的基本概念及计算方法概率与统计是数学中的两个重要分支,它们在各个领域中都有着广泛的应用。
概率与统计的基本概念及计算方法是我们理解和运用这两个概念的基础。
本文将从概率与统计的基本概念入手,深入探讨其计算方法,并结合实际案例进行说明。
一、概率的基本概念概率是研究随机现象的可能性的数学工具。
它描述了某一事件发生的可能性大小。
概率的基本概念包括样本空间、事件和概率的定义。
样本空间是指一个随机试验所有可能结果的集合。
例如,掷一枚骰子的样本空间为{1, 2, 3, 4, 5, 6}。
事件是样本空间的一个子集,它表示我们感兴趣的结果。
例如,掷一枚骰子得到奇数的事件可以表示为{1, 3, 5}。
概率的定义是指一个事件发生的可能性大小,它的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
计算概率的方法有频率法和古典概型法。
频率法是通过实验的频率来估计概率。
例如,我们可以通过多次掷骰子的实验,统计出掷出奇数的频率,从而估计出掷出奇数的概率。
古典概型法是指在样本空间中,每个结果发生的可能性相等。
例如,掷一枚均匀的骰子,每个数字出现的可能性相等,所以每个数字的概率为1/6。
二、统计的基本概念统计是研究数据的收集、分析和解释的一门学科。
它通过对一定数量的数据进行分析,推断出总体的特征。
统计的基本概念包括总体和样本、参数和统计量、抽样和抽样误差。
总体是指研究对象的全体,它包含了我们感兴趣的所有个体。
例如,我们想研究全国人口的平均身高,那么全国所有人口就是我们的总体。
样本是从总体中选取的一部分个体,它是总体的一个子集。
参数是用来描述总体特征的数值,例如总体的平均值、方差等。
统计量是用来描述样本特征的数值,例如样本的平均值、方差等。
抽样是从总体中选取样本的过程。
为了保证抽样的公正性和代表性,我们通常采用随机抽样的方法。
抽样误差是指样本统计量与总体参数之间的差异。
由于样本是从总体中选取的一部分,所以样本统计量与总体参数之间存在一定的误差。
概率与统计知识点

概率与统计知识点在我们的日常生活和许多学科领域中,概率与统计扮演着十分重要的角色。
从预测天气变化到评估投资风险,从医学研究到市场调研,概率与统计的应用无处不在。
接下来,让我们一起深入了解一些关键的概率与统计知识点。
一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的数值。
它的取值范围在 0 到 1 之间。
如果一个事件完全不可能发生,其概率为 0;如果必然会发生,概率则为 1。
例如,投掷一枚均匀的硬币,正面朝上的概率是 05,因为硬币只有正反两面,且出现正面和反面的可能性是相等的。
概率的计算方法有多种。
对于等可能事件,我们可以通过事件所包含的基本结果数除以总的基本结果数来计算概率。
二、随机事件与样本空间随机事件是指在一定条件下,可能出现也可能不出现的事件。
而样本空间则是指某个随机试验中所有可能结果的集合。
比如,掷骰子这个随机试验,样本空间就是{1, 2, 3, 4, 5, 6},而掷出奇数点这个事件就是一个随机事件。
三、条件概率条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
举个例子,假设一个班级中,男生占 60%,女生占 40%。
男生中数学成绩优秀的比例为 70%,女生中数学成绩优秀的比例为 50%。
现在随机抽取一个学生,已知这个学生是男生,那么他数学成绩优秀的概率就是条件概率。
四、统计的基本概念统计主要是对数据进行收集、整理、分析和解释的过程。
数据可以分为分类数据(如性别、职业等)、顺序数据(如成绩的等级)和数值数据(如身高、体重等)。
五、数据的收集方法常见的数据收集方法有普查和抽样调查。
普查是对研究对象的全体进行调查,能得到全面准确的信息,但往往耗费大量的人力、物力和时间。
抽样调查则是从总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。
抽样时要保证样本的随机性和代表性,以提高推断的准确性。
六、数据的整理与图表展示收集到数据后,需要对其进行整理。
常用的图表有柱状图、折线图、饼图等。
概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
高中数学统计与概率

高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。
4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。
概率与统计

平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角 度和适用的范围又不尽相同。
三.变量间的相关关系及回归分析
1.相关关系:
当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的 关系叫做相关关系。与函数关系不同,相关关系是一种不确定关系。
2.散点图
3.回归分析:
对具有相关关系的两个变量进行统计分析的方法叫做回归分析。
ˆx a <1>回归直线方程: y ˆ b
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为 样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这 种抽样方法叫做简单随机抽样。(抽签法,随机数表法)
3.系统抽样
当总体中的个体比较多时,首先把总体分成均衡的若干部分,然后按照 事先确定的规则,从每一部分中抽取一个个体,得到所需要的样本,这种抽 样方法叫做系统抽样。
(2)特点:
①无限性:试验中所有可能出现的结果(基本事件)有无限多个; ②等可能性:试验结果在每一个区域内均匀分布。
构成事件A的区域长度(面积或体 积) (3)计算公式: P( A) 试验的全部结果所构成 的区域长度(面积或体 积)
7.条件概率 (1)定义:
对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率 叫做条件概率,用符号P(B|A)来表示。
概率与统计的关系及应用

概率与统计的关系及应用概率与统计是数学中两个重要的分支,它们在日常生活和各个领域都有广泛的应用。
本文将从概率和统计的基本概念入手,探讨它们之间的关系以及具体的应用。
一、概率与统计的基本概念概率是研究随机现象的可能性的数学分支,它通过对可能结果的量化,来描述事件发生的概率大小。
在概率论中,我们用事件的概率来表示事件发生的可能性,概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
统计学是研究数据收集、分析和解释的学科,它通过对已有数据的处理和分析,来对总体的特征进行推断和预测。
统计学有两个分支:描述统计和推断统计。
描述统计是通过图表、平均数、方差等方法对数据进行总结和描述;推断统计则是通过对样本数据的分析来推断总体的特征。
概率与统计相辅相成,概率提供了统计学的理论基础,而统计学则通过概率的方法对数据进行分析和处理。
二、概率与统计的关系概率与统计有着密切的关系,概率提供了统计学所需的数学工具和理论基础。
1. 概率与随机变量随机变量是概率论和统计学中的重要概念,它是某个随机现象的结果,一般用大写字母表示(如X)。
概率论研究的是随机变量的概率分布,而统计学则通过对随机变量的观测和实验,来对其概率分布进行推断和研究。
2. 概率与统计的推断统计学的核心任务是对总体进行推断,而概率论提供了统计学中的推断方法。
通过对样本数据的分析,统计学可以得出关于总体的推断和结论,这一过程中涉及到概率的计算和推断。
3. 概率在统计学中的应用概率在统计学中有着广泛的应用。
例如,在假设检验中,研究者根据样本数据和一定的概率模型,来对研究假设进行验证和推断。
此外,概率还应用于统计模型的建立和参数的估计。
三、概率与统计的应用概率与统计在各个领域都有着广泛的应用,下面以几个具体的应用领域为例进行介绍。
1. 金融与风险管理概率与统计在金融领域和风险管理中扮演着重要角色。
金融市场的波动性和风险可以通过概率模型和统计方法进行建模和评估。
统计与概率的概念

统计与概率的概念统计与概率是数学中重要的概念与工具,用以描述和分析随机现象。
统计学和概率论是彼此紧密相关的,两者相辅相成,共同构成现代数学的重要分支。
本文将介绍统计与概率的概念及其应用。
一、统计的概念统计是指通过收集、整理和分析数据来研究和描述事物的数量特征和规律。
统计的主要目标是从样本中推断总体的特征,并对未知事物作出科学的预测。
统计方法广泛应用于社会科学、自然科学、医学、经济学等领域。
统计学中的重要概念包括数据的收集和整理,描述统计和推断统计。
数据的收集和整理是统计学的基础,通过收集样本数据来进行分析和推断。
描述统计是对数据的整体特征进行描述和总结,包括均值、中位数、方差等量化指标。
推断统计是从样本数据推断总体特征,并给出估计值和可信区间。
二、概率的概念概率是描述随机事件发生可能性的数学工具。
概率论研究的对象是随机现象的规律性和不确定性,通过建立数学模型来描述和分析随机事件,并给出事件发生的可能性。
概率的基本概念包括随机事件、样本空间、事件的概率等。
随机事件是在一次试验中可能发生或不发生的事件,例如掷硬币的结果为正面或反面。
样本空间是指所有可能结果组成的集合,例如掷硬币的样本空间为{正, 反}。
事件的概率是描述事件发生可能性的数值,介于0到1之间,事件发生的概率越大,其可能性越高。
三、统计与概率的关系统计学和概率论是两个密切相关的学科,它们在理论和应用上互相依赖。
统计学可以利用概率模型来进行推断和预测,而概率论则是建立在统计学的基础上,研究随机现象的规律性。
统计学中的推断统计依赖于概率模型,通过概率分布来描述样本数据的变异性和误差。
基于概率模型,可以通过统计推断方法对总体的特征进行估计和预测,从而提供科学依据。
概率论的应用广泛涉及到统计学中的推断统计,例如用概率分布来描述随机误差、计算置信区间和假设检验等。
概率论还与风险分析、金融工程、信息论等领域有着重要的联系。
总之,统计与概率是描述和分析随机现象的重要工具,它们密切相关且相互依赖。
统计与概率的关系

统计与概率的关系统计与概率是数学中两个重要的概念,它们有着紧密的关系。
统计是通过对已有的数据进行收集、整理和分析,从中得出结论或推断的一门学科。
而概率则是用来描述事件发生的可能性的一种数学工具。
在实际生活和科学研究中,统计与概率常常相互依存,相互补充,共同帮助我们理解和解决问题。
统计与概率之间的关系体现在统计学中的概率论部分。
概率论是研究随机现象的数学理论,它是统计学的理论基础之一。
通过概率论,我们可以计算事件发生的可能性,从而对未知的事物进行预测和推断。
例如,我们可以通过概率论来计算掷骰子时每个点数出现的概率,或者计算在一批产品中出现次品的概率。
这些概率计算是统计学中常用的方法,可以帮助我们做出合理的决策。
统计与概率之间的关系还体现在统计推断中。
统计推断是通过对样本数据进行分析和推断,来对总体特征进行估计的方法。
在进行统计推断时,我们需要根据样本数据的分布情况,结合概率论的知识,对总体参数进行估计。
例如,在进行调查时,我们可以通过对一部分人的调查结果进行统计推断,来估计整个人群的特征。
这其中就涉及到了概率论中的概率分布和抽样分布等知识。
统计与概率的关系还可以从实际问题的解决中得到体现。
在现实生活中,我们经常需要通过统计和概率来解决问题。
例如,在医学研究中,我们可以通过统计方法来分析一种药物的疗效,或者预测某种疾病的发生概率。
在金融领域,我们可以通过统计方法来分析股票的涨跌概率,或者估计某种投资产品的风险。
在工程领域,我们可以通过统计方法来分析产品的可靠性,或者预测设备的寿命。
这些实际问题的解决都离不开统计与概率的知识和方法。
统计与概率是数学中两个紧密相关的学科,它们相互依存,相互补充,共同帮助我们理解和解决问题。
统计通过对已有数据的收集和分析,可以得出结论和推断;概率则是描述事件发生可能性的数学工具。
统计与概率在统计学中的概率论部分以及统计推断中起着重要的作用,并在实际问题的解决中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延学-1 统计和概率复习导学案编制刘建军审校:初三数学组2月10日
第一部分:在A本上完成知识点整理(只写答案),最好整理成知识网络。
并用红笔标出关键字词。
最简单的是列举,示例如下:七上数据的收集与整理第一节数据的收集
1、常用的统计图是、、.
2、获取数据常用的方式有: .
3、从事统计活动大致要经历数据的、数据的数据的和.
第二节普查和抽样调查
1.数据的收集方法有.
2.所要考察对象的称为总体,而组成总体的为个体. 叫做总体的一个样本.
3.普查的优点是,不足之处在于.
4.抽样调查的优点是,但其调查结果往往不如普查得到的结果准确,为了获得较为准确的结果,抽样时要注意样本的和.
第三节数据的表示
1.在扇形统计图中,每部分占总体的百分比计算方法:a%=
2.在扇形统计图中,扇形圆心角的度数等于.
3.制作扇形统计图的一般步骤是:(1)计算各部分数量占的百分比;(2)计算各部分数量对应的扇形的度数;(3)画出扇形统计图,在每个扇形上注明相应的.
4.频数直方图是一种特殊的,它将统计对象的数据进行了分组,画在横轴上,纵轴表示.
5.绘制频数直方图的一般步骤:(1)计算最大值和最小值的差,确定统计图的范围;(2)决定和;(3)确定分点;(4)列频数分布表,画频数直方图.
第四节统计图的选择
1.常用的统计图是:①②③
2.①的优点②的优点③的优点
七下第六章概率初步
(请你列一下各节的知识点,简单概念可以只列出名词,如果实在不会找知识点,请参照课本156页回顾与思考逐个回答问题也可以)
第一节感受可能性
第二节频率的稳定性
第三节等可能事件的概率
八上第六章数据分析
涉及到的基本概念:平均数,算术平均数、加权平均数,中位数、众数、方差、标准差
九上第三章概率的进一步认识
第一节用树状图或者表格求概率
第二节用频率估计概率
第二部分:请根据自己情况,独立再做一遍课本或者互动上当时的重点或者做错过的题目。
做在B本上,写清课本章节、页码和题号。
第三部分:课下作业:如果有打印机,请打印出下列题目,最后统一装订上交;如果没有请在B本上写清导学案编号和标题,题号和答案,不用抄题。
如果有几何图形,需要画出。
完成后,请注意核对答案并改错。
请将改错后的作业传班级任课老师。
作业本注意保留,参加班级和年级优秀作业评选。
延学-1 统计和概率练习
1.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图的一部分,
类别A B C D E F
类型足球羽毛球乒乓球篮球排球其它
人数10462
根据以上信息,解答下列问题:
(1)被调查学生的总人数为人.
(2)最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%.
(3)该校共有1500名学生,根据调查结果,估计该校最喜欢排球的学生人数有多少?
2.为弘扬中华传统文化,某校组织八年级800名学生参加汉字听写大赛为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的模数分布表:分数段50.5﹣60.560.5﹣70.570.5﹣80.580.5﹣90.590.5﹣100.5
频数163050m24所占百分比8%15%25%40%n
请根据尚未完成的表格,解答下列问题:
(1)本次抽样调查的样本容量为,表中m=.n
(2)补全图中所示的频数分布直方图;
(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能
力优秀的约有多少人?
3.为了解某校七年级学生对A《极限挑战》、B《奔跑吧》、C《王牌对王牌》、D《向往的生活》四个电视节目的喜爱情况,某调査组从该校七年级学生中随机抽取了m位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2).根据以上信息,回答下列问题:
(1)m=,n=;
(2)在图1中,喜爱《奔跑吧》节目所对应的扇形的圆
心角的度数是;
(3)请根据以上信息补全图2的条形统计图;
(4)已知该校七年级共有540名学生,那么他们当中最
喜欢《王牌对王牌》这个节目的学生有多少人?
4.某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考核总成绩的计算说明:
笔试总成绩=(笔试总成绩+加分)÷2
考核总成绩=笔试总成绩+面试总成绩
现有甲、乙两名应聘者,他们的成绩情况如下:(1)甲、乙两人面试的平均成绩为;
(2)甲应聘者的考核总成绩为;
(3)根据上表的数据,若只应聘1人,则应录取.应聘者成绩
笔试成绩加分面试成绩甲117385.6
乙121085.1
5.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).
根据图表信息,回答问题:
(1)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些; (2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?
6.如图是某市连续5天的天气情况.
(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;
(2)根据如图提供的信息,请再写出两个不同类型的结论.
7.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A 级:非常满意;B 级:满意;C 级:基本满意;D 级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题: (1)本次抽样调查测试的建档立卡贫困户的总户数是 .
(2)图1中,∠á的度数是 ,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为a ,b ,c ,d ,e )中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e 的概率. 平均分 方差 中位数 众数 合格率 优秀率 一班 7.2 2.11 7 6 92.5% 20%
二班 6.85 4.28 8 8 85% 10%
8.为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
课程人数所占百分比
声乐14b%
舞蹈816%
书法1632%
摄影a24%
合计m100%
根据以上信息,解答下列问题:
(1)m=,b=.
(2)求出a的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.
9.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生
有人;
(4)在全校同学中随机选取一名学生参加演讲比赛,
用频率估计概率,则选出的恰好是爱好阅读的学生的
概率是.
10.某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.
请结合图中相关信息解答下列问题:
(1)扇形统计图中三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;
备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.
为便于集中上传,请将答案写在B本上,写清题号和小题号,红笔批改后上传。