南京信息工程的大学《动力气象学》复习重点(上)
动力气象学问题讲解汇编

“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。
主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。
本讲稿的章节与公式编号与此参考书一致(除第五章外)。
第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。
它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。
由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。
这些方程基本上都是偏微分方程。
问题 2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。
表达某一固定地点某一物理量变化称为局地变化,其数学符号为t∂∂,也称为偏导数。
表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V 。
例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。
可以证明它们之间有如下的关系 zT w T V dt dT t T ∂∂-∇⋅-=∂∂ (2.4) 式中V 为水平风矢量,W 为垂直速度。
(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。
问题 2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。
而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。
南京信息工程大学动力气象-复习题

一、名词解释1. 位温:气压为p ,温度为T 的干气块,干绝热膨胀或压缩到1000hPa 时所具有的温度。
θ=T (1000/p )R/Cp ,如果干绝热,位温守恒(∂θ/∂t=0)。
2. 尺度分析法:依据表征某类大气运动系统各变量的特征值来估计大气运动方程中各项量级的大小,判别各个因子的相对重要性,然后舍去次要因子而保留主要因子,使得物理特征突出,从而达到简化方程的一种方法。
3. 梯度风:水平科氏力、惯性离心力和水平气压梯度力三力达到平衡,此时空气微团运动称为梯度风,4. 地转风:对于中纬度天气尺度的扰动,水平科氏力与水平气压梯度力接近平衡,这时空气微团作直线1V k =-。
地转风:在自由大气中,因气压场是平直的,空气仅受水平气压梯度力和水平地转偏向力的作用,当二力相等的空气运动称之为地转风。
5. 惯性风:当气压水平分布均匀时,科氏力、惯性离心力相平衡时的空气流动。
表达式为:iTV f R =-。
6. 斜压大气:大气密度的空间分布依赖于气压(p )和温度(T )的大气,即:ρ=ρ (p , T )。
实际大气都是斜压大气,和正压大气不同,斜压大气中等压面、等比容面(或等密度面)和等温面是彼此相交的。
7. 环流:流体中任取一闭合曲线L ,曲线上每一点的速度大小和方向是不一样的,如果对各点的流体速度在曲线L 方向上的分量作线积分,则此积分定义为速度环流,简称环流。
8. 埃克曼螺线:行星边界层内的风场是水平气压梯度力、科氏力和粘性摩擦力三着之间的平衡结果。
若以u 为横坐标,v 为纵坐标,给出各个高度上风矢量,并投影在同一个平面内,则风矢量的端点迹线为一螺旋。
称为埃克曼螺线。
9. 梯度风高度:当z H =π/γ,γ=(2k /f )1/2时,行星边界层风向第一次与地转风重合,但是风速比地转风稍大,在此高度之上风速在地转风速率附近摆动,则此高度可视为行星边界层顶,也表示埃克曼厚度。
()12K fDe ππ≡=梯度风高度:当z H =π/γ 时,边界层的风与地转风平行,但比地转风稍大,通常把这一高度视为行星边界层的顶部,也称为埃克曼厚度。
《高等动力气象学》复习总结

《高等动力气象学》复习总结首先,复习《高等动力气象学》需要掌握的基础知识包括大气热力学、大气辐射、大气湍流等内容。
这些基础知识是对大气运动和演化的理解的基础。
在复习过程中,要重点回顾这些基础知识,理解其概念和运用方法。
可以通过做题、看教材、参考相关资料等途径进行复习。
其次,复习《高等动力气象学》的核心内容是对大气运动的理解和描述。
包括大气的水平运动和垂直运动,还有大气中的波动和涡流等。
在复习过程中,要注意区分这些不同类型的运动,理解其产生的机制和特点。
同时,要学会使用相关的数学方法和物理规律,进行运动的分析和计算。
在复习过程中,可以通过分析和解决实际问题的案例,来加深对运动的理解。
可以通过模拟实验、数据分析等方法,将课堂学到的知识与实际相结合,加深对知识的理解和记忆。
同时,要学会总结和归纳,将复杂的问题简化为基本的规律和模型,便于记忆和应用。
最后,复习《高等动力气象学》还需要关注大气环流和气象风险的研究。
要理解大尺度环流的形成和演化过程,以及与气象灾害的关系。
要掌握常用的气象风险评估和预报方法,以及相应的预警和应对措施。
这是将大气动力学理论与实践相结合的重要内容。
总之,复习《高等动力气象学》需要掌握基础知识,理解大气运动和演化过程中的各种机制和规律,学会应用相关的数学方法和物理规律进行分析和计算。
同时,要关注动力过程中的不稳定性和风险评估,以及大气环流和气象灾害的关系。
通过系统的复习和总结,可以加深对这门课程的理解和记忆,为今后的学习和研究打下坚实的基础。
动力气象总复习

动力气象总复习————————————————————————————————作者: ————————————————————————————————日期:总复习一,方程组1, 物理定律:控制大气运动的动力、热力过程是什么?运动学方程:牛顿第二定律;连续性方程:质量守恒;热力学方程、状态方程、能量方程:2, 各项意义:影响大气运动的因子加热不均匀→T 分布不均匀→P 不均匀→趋动大气运动。
3, z-坐标系。
二,尺度分析:1, 方法2, 特征量:s m s f f s m H m L s m U /10~W ,10~~~,10~,10~,10~,/10~-214546--τ 3,无量纲数:Ro 数:定义、应用。
4,大尺度大气运动的特点:什么是地转、准地转?5,正压大气、斜压大气、热成风:1) 定义2) 上下配置不同,热成风不等于03) 天气学意义作业:1、(1)何为Ro 数?大尺度大气运动的Ro 数为多大?大尺度大气运动的主要特征是什么?(2)何为Ro数?请利用Ros sby 数,分别判断中高纬度大尺度大气运动、中小尺度和热带大尺度大气运动为何种性质的运动?2、正压大气和斜压大气概念3、地转风概念4、下面地面系统,高层有哪几种可能配置?D G5、何为斜压大气?请说明在天气图上如何分别根据温度场和风场结构判断斜压大气性的强弱?6、何为热成风?请详细说明热成风是由于大气的斜压性所引起,并由此说明大气大尺度动力系统与热力系统在天气图上的主要表现特征,并举出实例。
三,涡度方程:1,涡度是什么?kζζ= 涡度方程:各项意义(引起涡度、天气系统变化的因子)这些因子是什么,产生机制是什么,对天气系统的影响,何时重要、何时次要。
★了解天气系统的发生发展机制。
2,位涡方程;什么是位涡⇒由热力学和动力学过程组合而成的量;位涡守恒——绝热无摩擦。
应用:过山(大尺度)气流:没有热力过程,没有体现位涡特点。
0)(=+hf dt d ζ 引起⎩⎨⎧⇒-效应~散度项大气厚度βζh3,什么是β-平面近似?作业:1、正压大气中涡度方程0)(0=⇒=⋅∇+a a a dtd V dt d σζζζ 物理意义是什么?解释说明系统有辐合、辐散运动和整体做南北运动时涡度的变化。
动力气象学总复习概要

动力气象学总复习第一章绪论掌握动力气象学的性质,研究对象,研究内容以及基本假定动力气象学(性质)是由流体力学中分离出来(分支),是大气科学中一个独立的分支学科。
动力气象学定义:是应用物理学定律研究大气运动的动力过程、热力过程,以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气运动过程学科。
动力气象学研究对象:发生在旋转地球上并且密度随高度递减的空气流体运动的特殊规律。
动力气象学研究内容:根据地球大气的特点研究地球大气中各种运动的基本原理以及主要热力学和动力学过程。
主要研究内容有大气运动的基本方程、风场、气压坐标、环流与涡度、风与气压场的关系、大气中的波动、大气边界层、大气不稳定等等。
一、基本假设:大气视为“连续流体”,表征大气运动状态和热力状态的各种物理量(U, V, P, T, et al.) 看成是随时间和空间变化的连续函数;大气宏观运动时,可视为“理想气体”,气压、密度和温度之间满足理想其他的状态方程,大气是可“压缩流体”,动力过程和热力过程相互影响和相互制约;二、地球大气的动力学和热力学特性大气是“旋转流体”:90%的大气质量集中在10km以下的对流层;水平U, V远大于w(满足静力平衡);Ω =7.29⨯10-5rad/s,中纬度大尺度满足地转平衡(科氏力与水平气压梯度力相当)。
大气是“层结流体”:大气密度随高度变化,阿基米德净力使不稳定层结大气中积云对流发展;阿基米德净力使稳定层结大气中产生重力内波。
大气中含有水份:水份的相变过程使大气得到(失去)热量。
大气下垫面的不均匀性:海陆分布和大地形的影响。
大气运动的多尺度性:(见尺度分析)第二章大气运动方程组控制大气运动的基本规律有质量守恒、动量守恒、能量守恒等等。
支配其运动状态和热力学状态的基本定律有:牛顿第二定律、质量守恒定律、热力学第一定律和状态方程等等。
本章要点:旋转坐标系;惯性离心力和科氏力;全导数和局地导数;预报和诊断方程;运动方程、连续方程;状态方程、热力学方程及其讨论;局地直角坐标系。
《动力气象学》问题讲解汇编

“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。
主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。
本讲稿的章节与公式编号与此参考书一致(除第五章外)。
第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。
它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。
由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。
这些方程基本上都是偏微分方程。
问题2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。
表达某一固定地点某一物理量变化称为局地变化,其数学符号为t ∂∂,也称为偏导数。
表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V ρ。
例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。
可以证明它们之间有如下的关系z T w T V dt dT t T ∂∂-∇⋅-=∂∂ρ (2.4) 式中V ρ为水平风矢量,W 为垂直速度。
(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。
问题2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。
而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。
南京信息工程大学《动力气象学》复习重点(上)

南京信息工程大学《动力气象学》复习重点(上)《动力气象学》复习重点Char1 大气运动的基本方程组1、旋转参考系(1)运动方程 p dt V d ++?-?-=21ρ(2)连续方程 0=??+V dtd ρ ▽·V 为速度散度,代表气团体积的相对膨胀率。
体积增大时,(▽·V>0),密度减小;体积减小时,(▽·V<0),密度增大。
0=??+dtd ρρ ▽·(ρV ) 为质量散度,代表单位时间单位体积内流体质量的流入流出量。
流入时▽·(ρV ) <0,密度增大;流出时▽·(ρV ) >0,密度减小。
(3)热力学能量方程 Q dtd p dt d c v =+ 内能变化率+压缩功率=加热率 Q dtd dt d c p =-α α=1/ρ2、局地直角坐标系(z 坐标系)中的基本方程组111()0ln ,,x y z v p du p fv F dt x dv p fu F dt y dw p g F dt z d u v w dt x y z p RT dT d dT dP d c p Q c a Q Q dt dt dt dt dtρρρρρραθ??=-++=--+=--++++=?????=??+=-==?? 运动方程、连续方程、能量方程是预报方程,状态方程是诊断方程。
3、p 坐标系中的基本方程组-=?Φ?=-??+??+??=??+??+??-?Φ?-=+?Φ?-=p RT pc Q S y T v x T u tT py u x u fu y dtdv fv x dtdu p p ωω04、p 坐标系的优缺点优点:p 坐标系中的运动方程组不再出现密度ρ;连续方程形式简单,与不可压缩流体的连续方程形式相当;由于日常工作采用等压面分析法,用p 坐标系方程组可以方便的进行诊断分析。
缺点:地形起伏的地区p 坐标系很难给出正确的边界条件;对于小尺度运动不满足静力平衡,不能用p 坐标系。
动力气象复习资料(名词解释和简答).doc

一、各章节重点内容第一章:地球大气的基本特征?第二章:描述大气运动的基本方程组包括哪些?根据P23 (2.52)推导位温公式。
根据球坐标运动方程组P28 (2.78),证明绝对角动量守恒P29 (2.82)式。
绝对坐标系、旋转坐标系、球坐标系和局地直角坐标系的区别,作图说明。
第三章:掌握尺度分析的方法,能对简单的方程进行尺度分析。
第四章:z坐标转化到p坐标所需要的数学物理条件,P坐标的优缺点?第五章:自由大气中根据力的平衡存在哪几种平衡?平衡的关系式是什么?正压大气与斜压大气的概念。
推导热成风方程(p94-p95),并利用热成风判断冷暖平流。
第六章:自然坐标系中,推导涡度的表达式,并分析各项的意义Plllo根据z坐标系中的水平动量方程推导涡度方程,并简要解释各项的意义。
根据位涡守恒原理解释形成过山槽的原因。
第七章:有效位能的概念。
内能、重力位能、动能、潜热能的表达式。
第八章:大气中行星边界层的主要特征,公式推导及解释埃克曼抽吸?公式推导及解释旋转衰减作用?第九章:利用微扰动法和标准波型法分析大气波动特征,如重力外波、重力惯性外波?或者,根据布西内斯克近似方程组分析,重力内波或惯性内波?第十章:描述地转演变过程?地转适应过程和演变过程在哪些方面体现了区分?第十一章:通过无量纲化方程组,利用摄动法推导第一类正压大气零级和一级方程组(P255-P257)。
利用P260 (11.45)推导位势倾向方程并说明位势倾向方程中各项物理意义,或推导3方程及解释各项物理意义。
第十二章:几个概念:惯性不稳定、正压不稳定、斜压不稳定、对称不稳定第十四章:CISK,热带大气动力学的基本特征名词解释(20分左右)简述题(20分左右)简单计算(10分左右)简单推导(10分左右)复杂推导、证明、解释等题(40分左右)(1)冷暖平(2)罗斯贝(3)梯度风,(4)地转风, (5) 0平面近似, (6) (7)旋转减(8 )惯性不(9)斜压不稳(10) CISK, (11)正压不稳(13) 尺(14)基别尔(15)里查森(16)热成(17)地转偏(18) 速度环(19)涡(20)有效位(21)摄动法,(22)惯性(23) 中尺度对称不稳定,条件不稳定,(25)气压梯度(26)重力, (27)平衡流(28) Q 矢量,(29)位势倾(30)质量守恒数学三、 理解物理过程要求1. 地转偏差及其作2. 有效位能及其性3. 尺度,尺度分析法,尺度分析法的不确4. 5. p 坐标建立的条件是什么? p 坐标的优缺点6. 简述大气长波的形成机7. 什么是微扰动8. 斜压不稳定波的结构有哪些9. 简述科里奥利力随纬度的变10. 11. 薄层近12. 局地直角坐标系?与一般直角坐标系的13. 热力学变量尺度及其特14. 什么是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《动力气象学》复习重点Char1 大气运动的基本方程组1、旋转参考系(1)运动方程 g F V p dt d ++⨯-∇-=21ρ(2)连续方程 0=•∇+V dtd ρ ▽·V 为速度散度,代表气团体积的相对膨胀率。
体积增大时,(▽·V>0),密度减小;体积减小时,(▽·V<0),密度增大。
0=•∇+V dtd ρ ▽·(ρV ) 为质量散度,代表单位时间单位体积内流体质量的流入流出量。
流入时▽·(ρV ) <0,密度增大;流出时▽·(ρV ) >0,密度减小。
(3)热力学能量方程 Q dtd p dt d c v =+ 内能变化率+压缩功率=加热率 Q dtp d dt T d c p =-α α=1/ρ2、局地直角坐标系(z 坐标系)中的基本方程组111()0ln ,,x y z v p du p fv F dt x dv p fu F dt y dw p g F dt z d u v w dt x y z p RT dT d dT dP d c p Q c a Q Q dtdt dt dt dt ρρρρρραθ∂⎧=-++⎪∂⎪∂⎪=--+⎪∂⎪∂⎪=--+⎪∂⎨⎪∂∂∂⎪+++=∂∂∂⎪⎪=⎪⎪+=-==⎪⎩&&& 运动方程、连续方程、能量方程是预报方程,状态方程是诊断方程。
3、p 坐标系中的基本方程组⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧-=∂Φ∂=-∂∂+∂∂+∂∂=∂∂+∂∂+∂∂-∂Φ∂-=+∂Φ∂-=p RT pc Q S y T v x T u t T py u x u fu y dtdv fv x dt du p p ωω04、p 坐标系的优缺点优点:p 坐标系中的运动方程组不再出现密度ρ;连续方程形式简单,与不可压缩流体的连续方程形式相当;由于日常工作采用等压面分析法,用p 坐标系方程组可以方便的进行诊断分析。
缺点:地形起伏的地区p 坐标系很难给出正确的边界条件;对于小尺度运动不满足静力平衡,不能用p 坐标系。
5、冷暖平流 当0T s∂>∂,即沿着水平速度方向温度是升高的,风由冷区吹向暖区,这时0T V s ∂-<∂(即0T t∂<∂),会引起局地温度降低,有冷平流。
当0T s∂<∂,即沿着水平速度方向温度是降低的,风由暖区吹向冷区,这时0T V s∂->∂(即0T t ∂>∂),会引起局地温度升高,有暖平流。
Char2 尺度分析1、概念:依据表征某类运动系统的运动状态和热力状态的各物理量的特征值,估计大气 运动方程中各项量级大小的一种方法。
根据尺度分析的结果,结合物理上的考虑,略去小项,保留大项,以得到突出某类运动特征的简化方程。
2、运动方程的简化(1)零级简化 水平方向:1010p fv x p fu yρρ∂⎧=-+⎪∂⎪⎨∂⎪=-+⎪∂⎩ (地转近似) 地转运动:中纬度大尺度运动中水平气压梯度力与科氏力相平衡的运动。
风沿等压线吹;背风而立,低压在左,高压在右(南半球相反)。
准地转运动:瞬时风场与气压场满足地转关系的运动中纬度大尺度运动最基本的特征就是准地转运动。
垂直方向:10p g zρ∂=--∂ 垂直方向上气压梯度力与重力相平衡(静力平衡) (2)一级简化⎪⎪⎩⎪⎪⎨⎧∂∂-=+∂∂+∂∂+∂∂∂∂-=-∂∂+∂∂+∂∂y pfu y v v x v u tv x p fv y u v x u u t u ρρ113、连续方程的简化 零级:0=∂∂+∂∂yv x u 说明大气运动在是准水平无辐散的 一级:0)(=∂∂+∂∂+∂∂z w y v x u ρρ 说明上下层速度辐合、辐散相互补偿,整层大气是水平无辐散的。
这就是达因(Dines )补偿原理。
4、能量方程的简化(绝热)0)(=-+∂∂+∂∂+∂∂ωγγd yT v x T u t T 说明大尺度运动中温度局地变化由温度平流和铅直运动决定以上简化表明中纬度大尺度大气运动具有准定常、准水平、准地转、准静力平衡和准水平无辐散的特点。
5、罗斯贝数00U R f L= 水平惯性力与水平科氏力的尺度之比 R<<1,水平惯性力很小,加速度很小,可忽略——满足准地转;R>>1,科氏力相对水平惯性力可忽略不计——非地转。
6、基别尔数ε≡1/f 0τ 局地惯性力与水平科氏力的尺度之比其大小反映运动变化过程的快慢程度,ε<<1时,运动是慢过程;ε>>1时,运动是快过程。
7、β平面近似f =f 0+βy 利用0ϕ纬度处某点的切平面代替该点附近的地球球面(即取局地切平面近似),只考虑科氏参数f 随纬度的变化。
在低纬赤道地区,f 0≈0,y ay f Ω==2βChar3 自由大气中的平衡流场1、自然坐标系坐标原点固接于质点,坐标轴沿质点运动轨道的切向和法向的坐标系,叫做自然坐标系。
利用上式定性分析水平流场性质将是方便的,但因t 和n 随运动变化,因而对上式进行时间积分是困难的。
2、地转风、梯度风和惯性风地转风:在自由大气中,水平气压梯度力和科氏力相平衡的空气的水平运动。
梯度风:在自由大气中,水平气压梯度力、科氏力和惯性离心力相平衡的空气的水平运动。
地转风是水平等速直线运动,梯度风是水平等速曲线运动。
惯性风:当气压水平分布均匀时,科氏力、惯性离心力相平衡时的空气流动。
iT V f R =-地转偏差:g V V -='实际风与地转风之差,北半球指向水平加速度左侧3、正压大气和斜压大气正压大气:大气密度的空间分布仅依赖于气压p 的大气,即:ρ=ρ(p ),正压大气中地转风不随高度变化,没有热成风。
斜压大气:大气密度的空间分布依赖于气压p 和温度T 的大气,即:ρ=ρ(p, T )。
实际大气都是斜压大气,斜压大气中等压面、等比容面(或等密度面)和等温面是彼此相交的。
4、热成风 01()ln()T p p R V k T f p =⨯∇r r r 正压大气等压面与等温面重合,地转风不随高度变化。
热成风方向与等平均温度线(等厚度线)平行,在北半球,暖(冷)区在热成风方向的右(左)侧。
热成风大小与平均温度梯度成正比,与纬度的正弦为反比。
地转风向随高度逆(顺)时针转动,与此相伴随的是冷(暖)平流。
力管项:-▽α×▽p (▽T )p =0时,力管项=0,大气具有正压流体的性质。
Char4 环流定理与涡度方程1、环流流场中某一有向闭合物质曲线上的速度切向分量沿该闭合物质曲线的线积分,定义为速 度环流,或简称为环流。
⎰++=wdz vdy udx C 逆时针方向就是曲线的正方向,环流大于零,称为气旋式环流;顺时针方向小于零,称为反气旋式环流。
2、绝对环流定理和相对环流定理 绝对环流定理:⎰-=L a a dp dtC d α 对于比容、密度仅是气压的函数,力管项等于零,正压大气中绝度环流守恒,即绝对环流的加速度等于L 回路所包围的力管。
可以用来解释海陆风和山谷风的形成。
相对环流定理:dtdA dp dt dC L '2Ω--=⎰α 相对环流的加速度等于力管项和惯性项之和。
由于力管项和惯性项只决定于气压、密度、速度的瞬时分布,这意味着由大气的瞬时热力状态和运动状态即可确定物质环线上环流随时间的变化率,因此相对环流定理具有预报意义。
力管:斜压大气中等压面和等比容面试相交的,间隔一个单位的等压面和等比容面相交割成的管子。
由于力管的存在,在环线上气压梯度力分布不均匀,相当于有一力矩作用于空气团,产生了环流。
促使密度较小的空气微团由高压流向低压,而密度较大的空气微团趋于由低压流向高压。
3、铅直涡度方程——速度的旋度)(1)())(()(2xp y y p x z u y w z v x w y v x u f dt f d ∂∂∂∂-∂∂∂∂+∂∂∂∂-∂∂∂∂-∂∂+∂∂+-=+ρρρζζ ①散度项 水平辐散时,绝对涡度减小;辐合,绝对涡度增加。
②涡管扭曲项 当有水平涡度存在时,若铅直速度水平不均匀,就会引起涡度铅直分 量变化。
③力管项 由大气的斜压性造成的,等于水平面上单位元面积内的力管数。
涡度方程的简化(大尺度):)()(y v x u f dt f d h ∂∂+∂∂-=+ζ 正压涡度方程:0)(=+dtf d h ζ 运动水平无辐散,绝对涡度守恒。
4、绝对角动量守恒(ζ+f )σ=Const ,所以气柱或者系统在运动过程中相对涡度的变化取决于f 和σ的变化。
①辐合、辐散:辐合,σ↓,ζ↑,产生气旋性力矩,气旋加强,反气旋减弱;辐散,σ↑,ζ↓,产生反气旋性力矩,反气旋加强,气旋减弱。
②系统南、北运动:向南v<0, f ↓,ζ↑,气旋性加强;向北v>0, f ↑,ζ↓,反气旋性加强。
5、位势涡度守恒0])([=∇•⨯∇=ρθa V dt d dt dq 在无摩擦干绝热运动中微团的位涡守恒。
Char5 行星边界层1、按“湍流粘性力”的重要性分层贴地层(2m 以内):这层中分子粘性很大,湍流粘性应力很小,风速V=0,无湍流。
近地面层(80~100m ):这层中湍流粘性力比分子粘性力重要,且湍流粘性应力基本上不随高度变化,风速随高度呈对数分布。
在近地面层中,湍流对动量、热量、水汽的铅直输送通量也都不随高度改变,所以又称为常值通量层。
埃克曼层(1~1.5km ):这层中湍流粘性应力和科里奥利力、水平气压梯度力几乎同等重要,而且这三力基本相平衡,运动具有准水平性。
自由大气(1.5km 以上):湍流摩擦力可忽略,水平气压梯度力和科氏力相平衡(准地转)。
2、风随高度的变化低压系统:边界层中穿越等压线指向低压——辐合上升,高层辐散(1)边界层气旋加强补偿湍流粘性耗散(2)自由大气产生辐散使得气旋减弱。
2、涡动通量密度和涡动应力A 的铅直涡动密度''A w Q z ρ=是脉动铅直运动在单位时间通过单位面积对属性A 在z 轴上的输送量,如''u w ρ代表单位时间通过垂直于z 轴的单位面积向上输送的x 方向的脉动动量的平均值。
涡动应力''u w T zx ρ-=表示单位时间内在单位水平面积上湍流向下输送的x 方向动量,可视为该水平面积以上的空气作用于单位面积上的力。
3、混合长理论①和分子一样,湍涡在运动的起始高度上具有该高度上的平均物理属性;②在湍流运动中存在一个混合长l ,湍流移动一个混合长后不与四周混合,在此以前其具有的物理属性保持不变(守恒)。
混合长l :湍涡在运动过程中失去其原有属性前所走过的最长距离。
涡动应力可改写为⎪⎪⎩⎪⎪⎨⎧∂∂=∂∂=zv K T z u K T zy zx ρρ K 为湍流系数 4、近地面层中风随高度的分布近地面层风向不随高度变化,因此把平均风方向取x 轴的方向。