生存分析SPSS过程
医学统计学SPSS生存分析实例

将生存时间按从小到大顺序排列如下:
表1 BCG治疗组生存情况
*死亡=1;删失=0
表2 药物和BCG结合治疗组生存情况
*死亡=1;删失=0
按上述二表将数据输入SPSS软件,其中数据编号为i,列(1)即时间为t,列(3)即生存结局为status,表1为group1,表2为group2。
选择Analyze中的Survival里的Kaplan-Meier分析,将Time,Status,Factor依次选定,option和Compare Factor依次设定完成后,得到输出结果,结果分析如下:
Survival Table中:
1为BCG治疗组患者生存率(Estimate)及其标准误(Std. Error)的计算结果。
2为药物与BCG结合治疗组患者生存率(Estimate)及其标准误(Std. Error)的计算结果。
Overall Comparisons
Test of equality of survival distributions for the different levels of group.
两组生存率的log-rank检验
H0:两种疗法患者生存率相同
H1:两种疗法患者的生存率不同
α=0.05
采用SPSS软件对两组生存率进行检验,得到上面Overall Comparisons表,其中第一行为LogRank检验结果。
即X2=0.057,P=0.811。
按α=0.05水准,不拒绝H0,还不能认为用BCG疗法和用药物与BCG结合疗法治疗黑色素瘤患者的生存率有差别。
生存曲线如上图所示,其中生存时间为横轴,生存率为纵轴。
SPSS生存分析

SPSS生存分析生存分析(Survival Analysis)是一种统计方法,用于研究时间到达一些特定事件的概率。
该方法适用于各种学科领域,包括医学、社会科学、工程等,可以分析个体在不同时间点发生一些事件的风险。
生存分析的基本概念是生存函数和生存时间。
生存函数描述了在给定时间点之前没有发生事件的个体比例。
生存时间是指个体从起始时间点到达特定事件的时间。
生存分析的目标是估计生存函数,并比较不同因素对生存时间的影响。
SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它提供了进行生存分析的功能。
以下将以SPSS进行生存分析为例,介绍生存分析的具体步骤。
首先,需要准备数据。
数据应包括个体的起始时间点和观察时间(或终止时间),以及是否发生特定事件的信息。
数据应按照个体的起始时间点排序。
在SPSS中,选择"Analyze"菜单下的"Survival"子菜单,然后选择"Kaplan-Meier"。
在弹出的窗口中,将起始时间点和观察时间字段分别拖放到"Time"和"Censored Time"框中,将事件发生与否的字段拖放到"Censoring Variable"框中。
点击"OK"按钮运行分析。
SPSS将输出生存函数曲线图和表格。
生存函数曲线图显示了在不同时间点的生存概率,曲线下降表示生存概率下降,即事件发生的风险增加。
生存函数表格列出了不同时间点的生存概率和标准误差。
通过观察曲线和表格,可以初步了解生存情况和影响生存的因素。
如果需要进一步比较不同因素对生存时间的影响,可以使用SPSS的"Analyze"菜单下的"Survival"子菜单中的其他功能,比如"Log-rank"检验、Cox回归模型等。
生存分析SPSS过程(SPSSofSurvivalAnalysis)

生存分析SPSS过程(SPSS of Survival Analysis)Company name生存分析SPSS过程(SPSS of Survival Analysis)邹莉玲预防医学教研室Company Logo1. 何为生存分析?生存分析(survival analysis)是将事件的结果(终点事件)和出现结果经历的时间结合起来分析的一种统计分析方法。
2. 生存分析的目的:描述生存过程:估计不同时间的总体生存率,计算中位生存期,绘制生存函数曲线。
统计方法包括Kaplan-Meier(K-M)法、寿命表法。
比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的生存率,以了解哪种治疗方案较优。
统计方法log-rank检验等。
影响因素分析:研究某个或某些因素对生存率或生存时间的影响作用。
如为改善脑瘤病人的预后,应了解影响病人预后的主要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。
统计方法cox比例风险回归模型等。
预测:建立cox回归预测模型。
生存分析的理论复习Company Logo生存分析(Survival Analysis)菜单Company Logo寿命表(Life Tables)过程Life tables 过程用于(小样本和大样本资料):估计某生存时间的生存率,以及中位生存时间。
绘制各种曲线:如生存函数、风险函数曲线等。
对某一研究因素不同水平的生存时间分布的比较。
控制另一个因素后对研究因素不同水平的生存时间分布的比较。
对多组生存时间分布进行两两比较。
(比较总体生存时间分布采用wilcoxon检验)Company LogoCompany Logo实例分析例1:为了比较不同手术方法治疗肾上腺肿瘤的疗效,某研究者随机将43例病人分成两组,甲组23例、乙组20例的生存时间(月)如下所示:其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
(1)计算甲、乙两法术后10月的生存率和标准误。
SPSS生存分析过程

SPSS Survival(生存分析)菜单SPSS Survival菜单包括Life Tables过程、Kaplan-Meier过程、Cox Regression过程、Cox w/Time-Dep Cov过程。
这里只介绍Life Tables过程和Kaplan-Meier过程。
Life Tables过程Life Tables过程用于:1、估计某生存时间的生存率。
2、绘制各种曲线如生存函数、风险函数曲线等。
3、对某一研究因素不同水平的生存时间分布进行比较,控制另一因素后对研究因素不同水平的生存时间分布进行比较,包括从总体上比较和不同水平之间进行两两比较。
一、建立数据文件定义两个列变量:时间变量:取名“time”,label标上“survival time(week)”。
生存状态变量:取名“status”,并赋值:0=“删失”,1=“死亡”。
二、操作过程从菜单选择1、Analyze==>Survival ==>Life Tables2、Time框:选入time3、Display Time Intervals框:在by前面的框内填入生存时间上限,本例填入20(此区间必须包括生存时间的最大值);在by后面的框内填入生存时间的组距,本例填入5,以保证结果列出“15-”的组段。
4、Status框:选入status;击define events钮,在single value框右边的空格中输入15、单击Option按钮,弹出对话框:●Life Table(s) 输出寿命表,系统默认● Plots: 选Survival(累积生存函数曲线)击Continue6、单击OK钮附:界面说明图1 寿命表主对话框【Time】框选入生存时间变量。
【Display Time Intervals】框欲输出生存时间范围及组距。
在by前面的框内填入生存时间上限,本例填入200(此区间必须包括生存时间的最大值);在by后面的框内填入生存时间的组距,本例填入20,以保证结果列出“100-”的组段。
SPSS生存分析过程

SPSS生存分析过程SPSS(Statistical Package for the Social Sciences)是一款常用的统计分析软件,它提供了许多功能强大的数据分析方法,其中包括生存分析(Survival Analysis)。
生存分析适用于研究时间至关重要的事件或结果的数据,例如疾病的存活时间、机械故障的发生时间等。
下面将介绍SPSS生存分析的具体过程。
一、数据准备在进行生存分析之前,首先需要准备好相关的数据。
常见的生存分析数据包括个体的生存时间(或称为观察时间)、生存状态(生存/死亡)、以及一些影响因素(如性别、年龄、治疗方式等)。
在SPSS中,可以将这些数据保存在一个数据集中,每一行代表一个个体,每一列代表一个变量。
二、加载数据集打开SPSS软件,选择“文件”-“打开”-“数据”,然后选择相应的数据文件进行加载。
三、生存曲线估计1.选择“分析”-“生存”-“生存曲线”菜单,打开生存曲线分析对话框。
2.将生存时间变量拖放到“时间”框中,将生存状态变量拖放到“事件”框中。
3. 选择评估生存函数类型,默认为“Kaplan-Meier”方法。
4.设置显著性水平,默认为0.055.点击“确定”按钮,即可生成生存曲线图。
生存曲线图显示了不同时间点上个体存活的比例。
根据生存曲线图,可以观察到存活时间的变化趋势,比较不同组别(如性别、年龄组别等)之间的存活差异。
四、生存分析模型除了生存曲线图,我们还可以进行更深入的生存分析,包括拟合生存分析模型和进行相关统计检验。
1. 选择“分析”-“生存”-“Cox 比例风险”菜单,打开Cox比例风险模型对话框。
2.将生存时间变量拖放到“时间”框中,将生存状态变量拖放到“事件”框中。
3.选择将影响因素拖放到“因素”框中,可以同时拖放多个因素进行分析。
选中的因素将出现在“选择项”列表中。
4.点击“方法”按钮,选择要使用的估计方法,如“法向向似然估计”。
5. 点击“确定”按钮,即可生成Cox比例风险模型的结果报告。
第17章spss21教程完整版

•
17.2.2 实例分析
1.参数设置 选择菜单“分析→生存函数→寿命表”,则弹出如图17-6所示对话框,此对话框用 于生命表分析过程中的参数设置。 如图17-6所示,选入变量Months with service到“时间”变量框中,其下的“显示 时间间隔”选项栏中,设置到为60,步长为3。选中变量Churn within last month到“状 态”变量框中。选中变量custcat到“因子”变量框。
17.3 Kaplan-Meier分析
17.3.1 Kaplan-Meier分析的步骤 选择菜单“分析→生存函数→Kaplan-Meier。 1.时间选项 此选项用于选中生效时间变量。 2.状态选项 此选项用于选入生存状态变量。选入变量后,系统会自动激活“定义事 件”按钮,单击此按钮,则会弹出图17-14所示对话框。 • 单值:当生存状态为二元变量时,选中此项,并在后面的输入框中指定状 态变量的代表事件发生的取值即可。
(2)因子水平的线性趋势选项 此栏用于指定分组因素各水平之间的线性趋势检验。 (3)图17-15最后的一组单选框用来指定进行总体比较还是两两比较,以及分层变量的 处理方式,各选项含义如下所述。 • • • • 在层上比较所有因子水平:对各因素变量取值水平下的生存曲线作整体比较,此为 默认选项。 对于每层:按照分层变量的不同取值,对每一层分别进行因素变量各取值水平间的 整体比较,如果没有指定分层变量,则不会输出。 在层上成对比较因子水平:作因素变量各水平之间的两两比较。对线性趋势检验无 效。 为每层成对比较因子水平:按照分层变量的不同取值,对每一层分别进行因素变量 各取值水平间的两两比较。对线性趋势检验无效。
① 协变量栏:用于存放选入的所有分类协变量。 ② 分类协变量栏:用于选入指定为分类变量的协变量,变量名后的括号里显示的是正 在使用的对照方法。 ③ 更改对比栏:此栏用于设置对指定协变量的对照方式,修改后,可以单击“要改” 按钮以确认。Contrast下拉菜单有7种对照方式,具体如下所示。 • 指示符:用于指示是否属于某一个分类; • 简单:用于预测变量的每个分类都与参考分类进行比较; • 差值:除了第一类外,预测变量的每个分类都与前面所有分类的平均效应进行比较; • Helmert比较:除了最后一类外,预测变量的每个分类都与其后面的所有分类的平均 效应进行比较; • 重复比较:除了第一类外,预测变量的每个分类都与前面所有分类进行比较; • 多项式:此方法假设各类别间距相等,仅适用于数值型变量; • 偏差:预测变量的每个分类都与总体效应进行比较。 ④ 参考类别:此栏用于指定参考分类。如果选择了指示符、简单、偏差方法,则需要 指定一个参考类别,可以选择:First(第一类)和Last(最后一类),系统默认为 Last。
生存分析SPSS

生存分析SPSS生存分析是一种用于研究事件发生时间的统计方法,主要应用于医学研究领域,如生存时间、康复时间、心脏事件等的研究。
SPSS是一种常用的统计分析软件,可以用于进行生存分析。
生存分析的核心概念是生存函数和风险函数。
生存函数描述了一些时刻前存活的个体比例,而风险函数描述了在一些时刻内发生事件的个体比例。
通过生存函数和风险函数,可以得到不同因素对事件发生的影响程度。
生存分析常用的方法包括Kaplan-Meier法、Cox比例风险模型等。
使用SPSS进行生存分析的步骤如下:1.导入数据:在SPSS中,将数据导入到工作区,确保数据格式正确。
2.创建生存时间变量:根据研究需求,将事件发生的时间变量(如存活时间)输入到SPSS中。
3.创建事件变量:根据事件发生的情况,创建对应的事件变量(如生存状态),通常用1表示事件发生,0表示事件未发生。
4.进行生存函数分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“生存函数”,将生存时间变量和事件变量输入到对应的框中,选择相应的统计量。
6.进行风险函数分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“风险函数”,将生存时间变量和事件变量输入到对应的框中,选择相应的统计量。
7. 进行Cox比例风险模型分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“Cox回归”,将生存时间变量和事件变量以及其他影响因素输入到对应的框中,进行模型拟合和参数估计。
8. 结果解读:分析结果会给出生存函数曲线、风险函数曲线以及Cox模型的参数估计和显著性检验结果。
根据研究问题进行合理解读,并绘制相应的图表和报告。
需要注意的是,进行生存分析时要选择适当的方法和模型,并考虑各种假设的合理性。
此外,对数据的质量和可靠性也要进行充分的检查和验证。
总结起来,SPSS是一种功能强大的统计分析软件,可以用于进行生存分析。
在使用SPSS进行生存分析时,需要导入数据、创建变量、选择适当的分析方法和模型,并对结果进行合理解读和报告。
SPSS(7)生存分析

第十四章生存分析在临床诊疗工作的评价中,慢性疾病的预后一般不适合用治愈率、病死率等指标来考核,因为其无法在短时间内明确判断预后情况,为此,只能对患者进行长期随访,统计一定时期后的生存或死亡情况以判断诊疗效果。
这就是生存分析。
第一节Life Tables过程14.1.1 主要功能调用此过程时,系统将采用即寿命表分析法,完成对病例随访资料在任意指定时点的生存状况评价。
14.1.2 实例操作[例14-1]用中药+化疗(中药组,16例)和单纯化疗(对照组,10例)两种疗法治疗白血病患者后,随访记录存活情况如下所示,试比较两组的生存率。
中药组对照组随访月数是否死亡随访月数是否死亡10 21213 18 6 19 26 9 8 6 43 9 4 31 24 否是是否否是是否是是是是否否21371161113177是否是是否否否否否14.1.2.1 数据准备激活数据管理窗口,定义变量名:随访月数的变量名为TIME,是否死亡的变量名为DEATH,分组(即中药组与对照组)的变量名为GROUP。
输入原始数据:随访月数按原数值;是否死亡的,是为1,否为0;分组的,中药组为1,对照组为2。
14.1.2.2 统计分析激活Statistics菜单选Survival中的Life Tables...项,弹出Life Tables对话框(图14.1)。
从对话框左侧的变量列表中选time,点击 钮使之进入time框;在Display Time Intervals栏中定义需要显示生存率的时点,本例要求从0个月显示至48个月,间隔为2个月,故在0 through框中输入48,在by框中输入2。
选death,点击 钮使之进入Status框,点击Define Event...钮弹出Life Tables:Define Event for Status Variable对话框,在Single value栏中输入1,表明death = 1为发生死亡事件者;点击Continue钮返回Life Tables对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、操作过程
主菜单:分析Analyze生存Survival寿命表Life tables
对话框参数设置: 1. 时间time框:选入 “t”。 2. 显示时间间隔Display time intervals框:步长by前面填入最大生存时
间的上限(必须包括生存时间最大值),步长by后面填入生存时 间的组距。本例上限填“60”,组距填“1”。 3. 状态status框:选入“status”,击define events 钮,在single value 框填入“1” 4. 因子factor框:选入“group”,定义最小值“1”,最大值“2”。 5. 单击选项option按钮,弹出对话框:
Company Logo
资料仅供参考,不当之处,请联系改正。
4. 两组生存时间分布的比较:
Company Logo
Kaplan-Meier 过程 资料仅供参考,不当之处,请联系改正。
Kaplan-Meier过程用于(尤其小样本资料): 1. 估计各生存时间的生存率以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 比较某研究因素不同水平的生存时间有无差异。 4. 控制某个分层因素后对研究因素不同水平的生存时间
生存分析的理论复习 资料仅供参考,不当之处,请联系改正。
1. 何为生存分析?
生存分析(survival analysis)是将事件的结果(终点事件)和 出现结果经历的时间结合起来分析的一种统计分析方法。
2. 生存分析的目的:
(1)描述生存过程:估计不同时间的总体生存率,计算中位生存期, 绘制生存函数曲线。统计方法包括Kaplan-Meier(K-M)法、 寿命表法。
1)√寿命表,系统默认。 2)图: √生存函数 3)比较第一个因子的水平: √整体比较
资料仅供参考,不当之处,请联系改正。
三、主要输出结果
1. 10月生存率的估计: 甲法 48%,标准误 0.1 乙法 30%,标准误 0.1
2. 两组的中位生存期估计:
资料仅供参考,不当之处,请联系改正。
3. 绘制生存曲线:
1)统计量: √生存分析表,系统默认。 √ 均值和中位生存时间,系统默认。
2)图: √生存函数 5. 单击比较因子Compare Factor按钮,弹出对话框:
1)检验统计量Test Statistics: 都用于检验时间分布是否相同。 √对数秩Log-rank:各时间点的权重一样。 Breslow:按各时间点的观察例数赋权。 Tarone-Ware:按各时间点观察例数的平方根赋权。
(4)预测:建立cox回归预测模型。
生存分析(Su资料r仅v供参i考v,不当a之处l,请联A系改正n。 alysis)菜单
寿命表(Life Tables)过程 资料仅供参考,不当之处,请联系改正。
Life tables 过程用于(小样本和大样本资料): 1. 估计某生存时间的生存率,以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 对某一研究因素不同水平的生存时间分布的比较。 4. 控制另一个因素后对研究因素不同水平的生存时间分
(2)比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的 生存率,以了解哪种治疗方案较优。统计方法log-rank检验等。
(3)影响因素分析:研究某个或某些因素对生存率或生存时间的影 响作用。如为改善脑瘤病人的预后,应了解影响病人预后的主 要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案 等。统计方法cox比例风险回归模型等。
(1)计算甲、乙两法术后10月的生存率和标准误。 (2)估计两组的中位生存期。 (3)绘制各组生存函数曲线。 (4)比较两组的总体生存时间分布有无差别。
Company Logo
资料仅供参考,不当之处,请联系改正。
一、建立数据文件(data-01.sav)
定义5个变量: 生存时间变量:t,值标签“生存时间(月)” 生存状态变量 :status,取值“1=死亡,0=删失或存活” 频数变量:freq,值标签“人数” 分组变量:group,取值“1=甲组,2=乙组” 生存时间序号变量(可无):i
分布进行比较。 5. 对多组生存时间分布进行两两比较。 (各总体分布比较采用Log-rank等非参数方法)
实例分析 资料仅供参考,不当之处,请联系改正。
例2:(数据同例1)为了比较不同手术方法治疗肾上腺 肿瘤的疗效,某研究者随机将43例病人分成两组,甲组 23例、乙组20例的生存时间(月)如下所示:
二、操作过程
主菜单:分析Analyze生存SurvivalKaplan-Meier
对话框参数设置:
1. 时间time框:选入 “t”。 2. 状态status框:选入“status”,击define events 钮,在single value
框填入“1”。 3. 因子factor框:选入“group”。 4. 单击选项option按钮,弹出对话框:
二、操作过程
2)
资料仅供参考,不当之处,请联系改正。
√
水平间的两两比较。
6. 单击Save按钮,弹出保存新变量Save new variables 对话框:
√ √
资料仅供参考,不当之处,请联系改正。
三、主要输出结果
1. 生存表: 略 2. 两组的中位生存期估计:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
(1)计算甲、乙两法各生存时间的生存率和标准误。 (2)估计两组的中位生存期。 (3)绘制各组生存函数曲线。 (4)比较两组的总体生存时间分布有无差别。
Company Logo
资料仅供参考,不当之处,请联系改正。
一、建立数据文件(同前)
布的比较。 5. 对多组生存时间分布进行两两比较。 (比较总体生存时间分布采用wilcoxon检验)
实例分析 资料仅供参考,不当之处,请联系改正。
例1:为了比较不同手术方法治疗肾上腺肿瘤的疗效, 某研究者随机将43例病人分成两组,甲组23例、乙组20 例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。