概率论与数理统计第2讲

合集下载

概率论与数理统计第二章 随机变量及其分布

概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)

i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~

概率论与数理统计(茆诗松)第二章讲义(PDF)

概率论与数理统计(茆诗松)第二章讲义(PDF)

第二章 随机变量及其分布上一章研究内容: 事件(集合A )→ 概率(数).本章将用函数研究概率,函数是数与数的关系,即需要用数反映事件——随机变量.事件(数)→ 概率(数).§2.1 随机变量及其分布2.1.1.随机变量的概念随机试验的样本点有些是定量的:如掷骰子掷出的点数,电子元件使用寿命的小时数.有些是定性的:如掷硬币正面或反面,检查产品合格或不合格.对于定性的结果也可以规定其数量性质:如掷硬币,正面记为1,反面记为0;检查产品,合格记为1,不合格记为0.随机试验中,可将每一个样本点ω 都对应于一个实数X (ω),称为随机变量(Random Variable ),常用大写英文字母X , Y , Z 等表示随机变量,而随机变量的具体取值通常记为小写英文字母x , y , z .对于随机变量首先应掌握它的全部可能取值:如掷硬币,⎩⎨⎧=反面正面,0,1X ,X 的全部可能取值为0, 1;掷两枚骰子,X 表示掷出的点数之和,X 的全部可能取值为2, 3, 4, … , 12 ;观察某商店一小时内的进店人数X ,X 的全部可能取值为0, 1, 2, … ;电子元件使用寿命,用X 表示使用的小时数,X 的全部可能取值为 ),0[∞+; 一场足球比赛(90分钟),用X 表示首次进球时间(分钟),若为0:0,记X = 100,X 的全部可能取值为 (0, 90 )∪{100};注意:1. 每个样本点都必须对应于一个实数,2.不同样本点可以对应于同一个实数,3.随机变量的每一取值或取值范围都表示一个事件.应掌握将随机变量的取值或取值范围描述为事件,又能将事件用随机变量表达的方法. 例 掷一枚骰子,用X 表示出现的点数,则 X = 1表示出现1点;X > 4表示点数大于4,即出现5点或6点;X ≤ 0为不可能事件.又出现奇数点,即X = 1, 3, 5;点数不超过3,即X ≤ 3. 例 X 表示商店一天中某商品的销售件数(顾客的需求件数), 则 X = 0表示没有销售;X ≤ 10表示销售不超过10件.又销售5件以上(不含5件)即X > 5;若该商店准备了a 件该商品,事件“能满足顾客需要”,即X ≤ a . 例 X 表示一只电子元件的使用寿命(小时), 则 X = 1000表示该元件恰好使用了1000小时,X ≥ 800表示该元件使用寿命在800小时以上. 例 90分钟足球比赛,X 表示首次进球时间(分钟),且0:0时,记X = 100, 则 X = 10表示上半场第10分钟首次进球.又上半场不进球即X > 45;开场1分钟内进球即X ≤ 1.如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.(注:可列个即可以排成一列,一个一个往下数,如非负整数0, 1, 2, 3, … )离散型随机变量的全部可能取值是实数轴上一些离散的点,而连续型随机变量的全部可能取值是实数轴上一个区间或多个区间的并,如电子元件使用寿命X (小时),全部可能取值是),0[∞+.下面按离散型和连续型分别进行讨论.2.1.2. 离散随机变量的概率分布列对于随机变量还应该掌握它的每一取值或取值范围表示事件的概率.定义 如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.设离散型随机变量X 的全部可能取值为x 1, x 2, …, x k , …,则X 取值x k 的概率p k = p (x k ) = P {X = x k }, k = 1, 2, …… 称为离散型随机变量的概率分布函数(Probability Distribution Function ,PDF ),简称概率分布或概率函数.直观上,又写为L LLL)()()(2121k kx p x p x p Px x x X 或 ⎟⎟⎠⎞⎜⎜⎝⎛L L L L)()()(~2121k k x p x p x p x x x X , 称为X 的概率分布列.如掷一枚骰子,X 表示出现的点数,X 的分布列为616161616161654321PX . 概率函数基本性质:(1)非负性 p (x k ) ≥ 0 , k = 1, 2, ……; (2)正则性1)(1=∑∞=k kxp .这是因为事件X = x 1 , X = x 2 , … , X = x k , … 是一个完备事件组, 故P {X = x 1} + P {X = x 2} + … + P {X = x k } + … = P (Ω) = 1,即p (x 1) + p (x 2) + … + p (x k ) + … = 1. 例 设盒中有2个红球3个白球,从中任取3球,以X 表示取得的红球数.求X 的分布列. 解:X 的全部可能取值0, 1, 2 ,样本点总数为1035=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X = 0表示“取到3个白球”,所含样本点个数为1330=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有1.0101)0(==p , X = 1表示“取到1个红球2个白球”,所含样本点个数为612231=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106)1(==p , X = 2表示“取到2个红球1个白球”,所含样本点个数为322132=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103)2(==p . 故X 的分布列为3.06.01.0210P X.求离散型随机变量X 的概率分布步骤: (1)找出X 的全部可能取值,(2)将X 的每一取值表示为事件, (3)求出X 的每一取值的概率.例 现有10件产品,其中有3件不合格.若不放回抽取,每次取一件,直到取得合格品为止.用X 表示抽取次数,求X 的概率分布. 解:X 的全部可能取值1, 2, 3, 4 ,X = 1表示“第1次就取得合格品”,有107)1(=p , X = 2表示“第2次取得合格品且第1次是不合格品”,有30797103)2(=⋅=p , X = 3表示“第3次取得合格品且前两次是不合格品”,有12078792103)3(=⋅⋅=p , X = 4表示“第4次取得合格品且前三次是不合格品”,有1201778192103)4(=⋅⋅⋅=p , 故X 的分布列为120112073071074321PX . 例 上例若改为有放回地抽取,又如何? 解:X 的全部可能取值1 , 2 , … , n , … ,7.0107)1(==p ,21.0107103)2(=⋅=p ,7.03.0)3(2×=p ,…,7.03.0)(1×=−k k p ,…, 故X 的概率函数为L ,2,1,7.03.0)(1=×=−k k p k ;X 的分布列为LL L L 7.03.07.03.021.07.032112××−k PkX .例 若离散型随机变量的概率函数为kCk p =)(,k = 1, 2, 3, 4,且C 为常数. 求:(1)C 的值,(2)P {X = 3},(3)P {X < 3}.解:(1)由正则性知:1432)4()3()2()1(=+++=+++CC C C p p p p ,即11225=C ,故2512=C .(2)254)3(}3{===p X P , (3)25182562512)2()1(}3{=+=+=<p p X P . 2.1.3.随机变量的分布函数连续型随机变量在单个点取值概率为零,如电子元件使用寿命恰好为1000小时这个事件的概率就等于零,因此连续型随机变量不能考虑概率函数.为了用单独一个变量表示一个区间,特别地取区间 (−∞, x ].定义 随机变量X 与任意实数x ,称F (x ) = P {X ≤ x },−∞ < x < +∞为X 的累积分布函数(Cumulative Distribution Function ,CDF ),简称分布函数.P {a < X ≤ b } = P {X ≤ b } − P {X ≤ a } = F (b ) − F (a ),P {X > a } = 1 − P {X ≤ a } = 1 − F (a ),由概率的连续性知)0()(lim }{lim }{−==≤=<−−→→a F x F x X P a X P ax ax ,且P {X = a } = P {X ≤ a } − P {X < a } = F (a ) − F (a – 0),可见X 在任一区间上或任一点取值的概率都可用分布函数表示. 例 已知随机变量X 的分布列为3.05.02.0210PX ,求X 的分布函数.解:X 的全部可能取值为0, 1, 2,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0, 当0 ≤ x < 1时,F (x ) = P {X ≤ x } = p (0) = 0.2,当1 ≤ x < 2时,F (x ) = P {X ≤ x } = p (0) + p (1) = 0.7, 当x ≥ 2时,F (x ) = P {X ≤ x } = P (Ω ) = 1,故⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.2,1,21,7.0,10,2.0,0,0)(x x x x x F若离散型随机变量的全部可能取值为x 1, x 2, ……,概率函数p (x k ) = p k ,k = 1, 2, ……,则分布函数∑≤=≤=xx kk xp x X P x F )(}{)(.且离散型随机变量的分布函数F (x )是单调不减的阶梯形函数,X 的每一可能取值x k 是F (x )的跳跃点,跳跃高度是相应概率p (x k ).例 已知某离散型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤−−<=,5,1,52,6.0,20,4.0,01,3.01,0)(x x x x x x F 求X 的分布列. 解:X 的全部可能取值是F (x )的跳跃点,即 −1, 0, 2, 5,跳跃高度依次为:p (−1) = 0.3 − 0 = 0.3; p (0) = 0.4 − 0.3 = 0.1; p (2) = 0.6 − 0.4 = 0.2; p (5) = 1 − 0.6 = 0.4.故X 的分布列为4.02.01.03.05201PX −.分布函数的基本性质:(1)单调性,F (x ) 单调不减,即x 1 < x 2时,F (x 1) ≤ F (x 2); (2)正则性,F (−∞) = 0,F (+∞) = 1;(3)连续性,F (x ) 右连续,即)()(lim 00x F x F x x =+→. 证:(1)当x 1 < x 2时,{X ≤ x 1} ⊂ {X ≤ x 2},有F (x 1) ≤ F (x 2);(2)F (−∞) = P {X < −∞} = P (∅) = 0,F (+∞) = P {X < +∞} = P (Ω ) = 1;(3)任取单调下降且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n ≤=≤=≤∞=∞→I ,根据概率的连续性知}{}{}{lim 01x X P x X P x X P n n n n ≤=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→I ,即)()(lim 00x F x F x x =+→. 但F (x )不一定左连续,任取单调增加且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n <=≤=≤∞=∞→U ,得}{}{}{lim 01x X P x X P x X P n n n n <=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→U , 故}{)(}{)(lim 0000x X P x F x X P x F x x =−=<=−→.2.1.4. 连续随机变量的概率密度函数离散型随机变量的全部可能取值是有限或可列个点,连续型随机变量的全部可能取值是实数区间.但连续型随机变量在单独一个点取值的概率为0,其概率函数无实际意义,对于连续随机变量通常考虑其在某个区间上取值的概率,这就需要讨论分布函数.连续型随机变量的分布函数是连续函数. 注意:概率为0的事件不一定是不可能事件.定义 随机变量X 的分布函数F (x ),若存在函数p (x ),使 ∫∞−=xdu u p x F )()(,则称X 为连续型随机变量,p(x )为X 的概率密度函数(可以理解为:p (u )为概率密度,p (u )du 为X 在该小区间内取值的概率,∫∞−x 为从−∞ 到x 无限求和.几何意义:在平面上作出密度函数p (x )的图形,则阴影部分的面积即为F (x )的值.密度函数基本性质:(1)非负性 p (x ) ≥ 0;(2)正则性 1)(=∫∞+∞−dx x p .因)()(x F du u p x =∫∞−,有1)()(=+∞=∫∞+∞−F dx x p .连续型随机变量的性质:设连续型随机变量X 的概率密度函数为p (x ),分布函数为F (x ),则有 (1)∫=−=≤<21)()()(}{1221x x dx x p x F x F x X x P ;(2)当p (x ) 连续时,p (x ) = F ′(x ); 因∫∞−=x du u p x F )()(,当p (x ) 连续时,有)(])([)(x p du u p x F x=′=′∫∞−(3)X 在单独一个点取值的概率为0,其分布函数为连续函数;(4)P {x 1 < X ≤ x 2} = P {x 1 ≤ X ≤ x 2} = P {x 1 < X < x 2} = P {x 1 ≤ X < x 2},即连续型...随机变量在某区间内的概率与区间开闭无关,离散型则不成立;(5)只在有限个点上取值不相同的密度函数对应于同一个分布函数,一般,只在概率为0的数集上取值不相同的密度函数都对应于同一个分布函数.例 设F (x ) = A + B arctan x 为某连续型随机变量X 的分布函数. 求:(1)A , B ; (2)}31{≤≤−X P ; (3)密度函数p (x ). 解:(1)由正则性 F (−∞) = 0,F (+∞) = 1,得:02π)arctan (lim =−=+−∞→B A x B A x ,12π)arctan (lim =+=++∞→B A x B A x ,故21=A ,π1=B ;(2)x x F arctan π121)(+=,得1274ππ1213ππ121)1()3(}31{=⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅+−⎟⎠⎞⎜⎝⎛⋅+=−−=≤≤−F F X P . (3)密度函数)1π(1)()(2x x F x p +=′=.例 已知⎩⎨⎧<<−=,,0,10),()(32其它x x x C x p是某连续型随机变量X 的密度函数,求:(1)C , (2)}211{<<−X P , (3)分布函数F (x ).解:(1)由正则性:1)(=∫∞+∞−dx x p ,得1120)4131()43()(10431032==−−=−=−∫C C x x C dx x x C ,故C = 12;(2)165)641241(12)43(12)(12)(}211{2104321032211=−=−=−==<<−∫∫−x x dx x x dx x p X P ;(3)X 的全部可能取值为 [0, 1],分段点0, 1,当x < 0时,0)()(==∫∞−xdu u p x F ,当0 ≤ x < 1时,4304303234)43(12)(12)()(x x u u du u u du u p x F xxx−=−=−==∫∫∞−,当x ≥ 1时, 1)(12)()(132=−==∫∫∞−du u u du u p x F x,故⎪⎩⎪⎨⎧≥<≤−<=.1,1,10,34,0,0)(43x x x x x x F例 已知⎩⎨⎧<<−=,,0,11|,|)(其它x x x p是某连续型随机变量X 的密度函数,求分布函数F (x ).解:分段点−1, 0, 1,当x < −1时,0)()(==∫∞−xdu u p x F ;当−1 ≤ x < 0时, 212122)()()(22121x x u du u du u p x F xxx−=+−=−=−==−−∞−∫∫; 当0 ≤ x < 1时,21221022)()()(220212001x x u u udu du u du u p x F xxx+=++=+−=+−==−−∞−∫∫∫;当x ≥ 1时, 1)()()(101=+−==∫∫∫−∞−udu du u du u p x F x.故⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<≤−−<=.1,1,10,21,01,21,0,0)(22x x x x xx x F§2.2 随机变量的数学期望对于随机变量,还应当掌握反映其平均值、分散程度等的指标,这就需要引入数学期望和方差等概念. 2.2.1.数学期望的概念例 甲、乙两个射击选手,在射击训练中甲射了10次,其中3次10环,1次9环,4次8环,2次7环;乙射了15次,其中2次10环,9次9环,2次8环,2次7环.问谁的表现更好? 分析:比较他们射中的平均环数甲共射中3 × 10 + 1 × 9 + 4 × 8 + 2 × 7 = 85环,平均每次射中5.81085=环; 乙共射中2 × 10 + 9 × 9 + 2 × 8 + 2 × 7 = 131环,平均每次射中73.815131=&环. 故乙的表现更好.一般地,若在n 次试验中,出现了m 1次x 1,m 2次x 2,…,m k 次x k ,(其中m 1 + m 2 + … + m k = n ),则平均值为∑==+++ki i i k k n mx n x m x m x m 12211L ,即平均值等于取值与频率乘积之和.因n 很大时,频率稳定在概率附近,即平均值将稳定在取值与概率乘积之和附近. 2.2.2.数学期望的定义定义 设离散型随机变量X 的分布列是⎟⎟⎠⎞⎜⎜⎝⎛L L L L )()()(~2121k kx p x p x p x x x X ,如果级数∑∞=1)(k k k x p x 绝对收敛,则称之为X 的数学期望(Expectation ),记为E (X ). 数学期望的实际意义是反映随机变量的平均取值,是其全部可能取值以相应概率为权数的加权平均.如X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−2.04.01.03.04102,则E (X) = (−2) × 0.3 + 0 × 0.1 + 1 × 0.4 + 4 × 0.2 = 0.6. 例 某人有4发子弹,现在他向某一目标射击,若命中目标就停止射击,否则直到子弹用完为止.设每发子弹命中率为0.4,以X 表示射击次数,求E (X ). 解:先求X 的分布列,X 的全部可能取值为1, 2, 3, 4,X = 1,第一枪就命中, p (1) = 0.4;X = 2,第一枪没有命中,第二枪命中,p (2) = 0.6 × 0.4 = 0.24; X = 3,前两枪没有命中,第三枪命中,p (3) = 0.6 2 × 0.4 = 0.144; X = 4,前三枪没有命中, p (4) = 0.6 3 = 0.216.则X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛216.0144.024.04.04321,故E (X ) = 1 × 0.4 + 2 × 0.24 + 3 × 0.144 + 4 × 0.216 = 2.176.例 若X 的概率函数为L ,2,1,21)2(==⎟⎟⎠⎞⎜⎜⎝⎛−k kp k k,求E (X ). 解:因∑∑∞=∞=−=⋅−11)1(21)2(k kk k k k k 收敛但不是绝对收敛,故E (X ) 不存在.离散型随机变量的数学期望是取值乘概率求和:∑∞=1)(k k k x p x ,类似可定义连续型随机变量的数学期望是取值乘密度积分:∫+∞∞−dx x xp )(.定义 设连续型随机变量X 的密度函数为p (x ).如果广义积分∫+∞∞−dx x xp )(绝对收敛,则称之为X 的数学期望,记为E (X ).例 已知连续型随机变量X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其它x x x p 求E (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xp X E . 例 已知X 的密度函数为⎩⎨⎧<<+=.,0,20,)(其它x bx a x p 且32)(=X E ,求a , b . 解:由正则性得122)2()()(2220=+=⋅+=+=∫∫∞+∞−b a x b ax dx bx a dx x p ,又32382)32()()()(20322=+=⋅+⋅=+==∫∫∞+∞−b a x b x a dx bx a x dx x xp X E ,故21,1−==b a . 例 已知X 的密度函数为+∞<<∞−+=x x x p ,)1π(1)(2,求E (X ).解:因+∞∞−+∞∞−+∞∞−+∞∞−+=⋅+=+=∫∫∫)1ln(π21)(21)1π(1)1π()(2222x x d x dx x x dx x xp 发散, 故E (X )不存在. 2.2.3.数学期望的性质设X 为随机变量,g (x ) 为函数,则称Y = g (X ) 为随机变量函数,Y 也是一个随机变量.下面不加证明地给出随机变量函数的数学期望计算公式.定理 设X 为随机变量,Y = g (X ) 为随机变量函数,则(1)若X 为离散型随机变量,概率函数为p(x k ), k = 1, 2, …,则∑∞===1)()()]([)(k k k x p x g X g E Y E ;(2)若X 为连续型随机变量,密度函数为p (x ),则∫+∞∞−==dx x p x g X g E Y E )()()]([)(.数学期望具有以下性质:(1)常数的期望等于其自身,即E (c ) = c ;(2)常数因子可移到期望符号外,即E (aX ) = a E (X );(3)随机变量和的期望等于期望的和,即E [g 1 (X ) + g 2 (X )] = E [g 1 (X )] + E [g 2 (X )]. 证明:(1)将常数c 看作是单点分布p (c ) = 1,故E (c ) = c p (c ) = c ;(2)以连续型为例加以证明,)()()()(X aE dx x xp a dx x axp aX E ===∫∫+∞∞−+∞∞−;(3)以连续型为例加以证明,∫∫∫+∞∞−+∞∞−+∞∞−+=+=+dx x p x g dx x p x g dx x p x g x g X g X g E )()()()()()]()([)]()([212121= E [g 1 (X )] + E [g 2 (X )].由性质(2)、(3)知随机变量线性组合的期望等于期望的线性组合,可见数学期望具有线性性质. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−3.04.01.02.02101, 求E (2X +1),E (X 2).解:E (2X +1) = −1 × 0.2 + 1 × 0.1 + 3 × 0.4 + 5 × 0.3 = 2.6;E (X 2) = 1 × 0.2 + 0 × 0.1 + 1 × 0.4 + 4 × 0.3 = 1.8. 例 已知圆的半径X 是一个随机变量,密度函数为⎪⎩⎪⎨⎧<<=.,0,31,21)(其他x x p 求圆面积Y 的数学期望. 解:圆面积Y = π X 2,故3π1332π21π)(π)(3133122=⋅=⋅==∫∫∞+∞−xdx x dx x p x Y E . 例 设国际市场对我国某种出口商品的需求量X (吨)的密度函数为⎪⎩⎪⎨⎧<<=.,0,40002000,20001)(其他x x p 设每售出一吨,可获利3万美元,但若销售不出,每积压一吨将亏损1万美元,问如何计划年出口量,能使国家获利的期望最大.解:设计划年出口量为a 吨,每年获利Y 万美元.当X ≥ a 时,销售a 吨,获利3a 万美元;当X < a 时,销售X 吨,积压a − X 吨,获利3X − (a − X ) = 4X − a 万美元;即⎩⎨⎧<≤−≤≤==.2000,4,4000,3)(a X a X X a a X g Y则4000200024000200020003)2(2000120001320001)4()()()(aa a a x a ax x dx a dx a x dx x p x g Y E +−=⋅+⋅−==∫∫∫+∞∞− 8250)3500(10001400071000122+−−=−+−=a a a , 故计划年出口量为3500吨时,使国家获利的期望最大.§2.3 随机变量的方差与标准差数学期望反映平均值,方差反映波动程度.如甲、乙两台包装机,要求包装重量为每袋500克,现各取5袋,重量为甲:498,499,500,501,502; 乙:490,495,500,505,510.二者平均值相同都是500克,但显然甲比乙好.此时比较的是它们的偏差(即取值与平均值之差).偏差:甲:−2,−1,0,1,2;乙:−10,−5,0,5,10. 2.3.1.方差的定义定义 随机变量X 与其数学期望E (X ) 之差X − E (X ) 称为偏差.偏差有大有小,可正可负,比较时需要去掉符号,但绝对值函数进行微积分处理不方便,因此考虑偏差平方的数学期望.定义 随机变量X ,若E [X − E (X )]2存在,则称之为X 的方差(Variance ),记为Var (X ) 或D (X ).即Var (X ) = E [X − E (X )]2.显然方差Var (X ) ≥ 0,称)Var(X 为X 的标准差(Standard Deviation ).在实际问题中,标准差与随机变量有相同的量纲.方差与标准差反映波动程度.方差越大,取值越分散;方差越小,取值越集中. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求E (X ), Var (X ).解:E (X ) = 1 × 0.2 + 2 × 0.4 + 3 × 0.4 = 2.2;Var (X ) = (−1.2)2 × 0.2 + (−0.2)2 × 0.4 + 0.82 × 0.4 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p求E (X ), Var (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xf X E ; 181949821949842)98382()()32()Var(1023410232=+−=⎟⎠⎞⎜⎝⎛+−=+−=−=∫∫∞+∞−x x x dx x x x dx x p x X .例 已知X 的全部可能取值为0, 1, 2,且E (X ) = 1.3,Var (X ) = 0.81.求X 的分布列.解:设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛c b a 210,由正则性得:a + b + c = 1,且E (X ) = 0 × a + 1 × b + 2 × c = b + 2c = 1.3,Var (X ) = (−1.3)2 × a + (−0.3)2 × b + 0.72 × c = 1.69a + 0.09b + 0.49c = 0.81, 解得a = 0.3,b = 0.1,c = 0.6,故X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛6.01.03.0210.2.3.2. 方差的性质方差具有以下性质:(1)方差计算公式:Var (X ) = E (X 2) − [E (X )]2; (2)常数的方差等于零,即Var (c ) = 0;(3)设a , b 为常数,则Var (a X + b ) = a 2 Var (X ). 证:(1)Var (X ) = E [X − E (X )]2 = E [X 2 − 2X ⋅ E (X ) + E (X )2] = E (X 2 ) − 2E (X ) ⋅ E (X ) + [E (X )]2.= E (X 2) − [E (X )]2;(2)Var (c ) = E [c − E (c )]2 = E (c − c )2 = E (0) = 0;(3)Var (a X + b ) = E [(a X + b ) − E (a X + b )]2 = E [a X + b − a E (X ) − b ]2 = a 2 E [X − E (X )]2 = a 2 Var (X ). 由性质(1),显然有以下推论:推论 对于随机变量X ,如果E (X 2) 存在,则E (X 2) ≥ [E (X )]2.以后常利用方差计算公式Var (X ) = E (X 2) − [E (X )]2计算随机变量的方差.通常用公式计算比直接用定义计算方差要方便. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求Var (X ).解:前面已求得E (X ) = 2.2,因E (X 2) = 1 2 × 0.2 + 2 2 × 0.4 + 3 2 × 0.4 = 5.4, 故Var (X ) = E (X 2) − [E (X )]2 = 5.4 − 2.22 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p 求Var (X ).解:前面已求得32)(=X E , 因21422)(141022=⋅=⋅=∫x xdx x X E , 故1813221)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 对于随机变量X ,若方差Var (X ) 存在,且Var (X ) > 0.令)Var()(*X X E X X −=,有0)]()([)Var(1)]([)Var(1)Var()(*)(=−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=X E X E X X E X E X X X E X E X E ; 1)Var()Var(1)](Var[)Var(1)Var()(Var *)Var(==−=⎟⎟⎠⎞⎜⎜⎝⎛−=X X X E X X X X E X X .称X *为X 的标准化随机变量.2.3.3. 切比雪夫不等式方差反映随机变量的分散程度,切比雪夫不等式给出其定量标准.切比雪夫不等式表明大偏差概率的上限与方差成正比.定理 设X 为随机变量,且方差Var (X ) 存在,则对于任何正数ε ,都有2)Var(}|)({|εεX X E X P ≤≥−.证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫≥−=≥−εε|)(|)(}|)({|X E x dx x p X E X P ,且∫∞+∞−−=−=dx x p X E x X E X E X )()]([)]([1)Var(22222εεε,故222|)(|22)Var()()]([)()]([}|)({|εεεεεX dx x p X E x dx x p X E x X E X P X E x =−≤−≤≥−∫∫∞+∞−≥−,得证.注:切比雪夫不等式的等价形式2)Var(1}|)({|εεX X E X P −≥<−.如随机变量X 的数学期望为E (X ) = 10,方差Var (X ) = 1,则由切比雪夫不等式可得43211}2|10{|}128{2=−≥<−=<<X P X P . 例 设随机变量X 的全部可能取值为),0[∞+,且数学期望E (X ) 存在,试证:对任何正数a ,都有)(1}{X E aa X P ≤≥. 证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫+∞=≥a dx x p a X P )(}{,且∫∫+∞+∞∞−==0)()(1)(1dx x p a x dx x xp a X E a ,故)(1)()(}{0X E adx x p a x dx x p a x a X P a =≤≤≥∫∫+∞+∞,得证.定理 设随机变量X 的方差存在,则Var (X ) = 0的充分必要条件是存在常数b ,使得X 几乎处处收敛于b ,即P {X = b } = 1.证:充分性,设存在常数b ,使得P {X = b } = 1,有P {X ≠ b } = 0,即E (X ) = b P {X = b } = b ,故Var (X ) = E [X − E (X )]2 = E (X − b )2 = 0 × P {X = b } = 0; 必要性,设X 的方差Var (X ) = 0,因事件U +∞=+∞→⎭⎫⎩⎨⎧≥−=⎭⎬⎫⎩⎨⎧≥−=>−11|)(|lim 1|)(|}0|)({|n n n X E X n X E X X E X ,则01)Var(lim 1|)(|lim 1|)(|}0|)({|21=⎟⎠⎞⎜⎝⎛≤⎭⎬⎫⎩⎨⎧≥−=⎟⎟⎠⎞⎜⎜⎝⎛⎭⎬⎫⎩⎨⎧≥−=>−+∞→+∞→+∞=n X n X E X P n X E X P X E X P n n n U , 可得P {| X − E (X )| > 0} = 0,即P {| X − E (X )| = 0} = 1,取b = E (X ),有b 为常数, 故P {X = b } = 1.注:如果P {X = b } = 1,记为X = b , a.e.(或a.s.),称为X = b 几乎处处成立(或几乎必然成立).这里,a.e.就是almost everywhere 的缩写,a.s.就是almost surely 的缩写.意味着不成立的情况是一个测度(或概率)等于零的集合(或事件).§2.4 常用离散分布对于一个给定的函数,只要满足概率函数的两条基本性质:非负性、正则性,都可以成为某个离散随机变量的概率函数.但绝大多数在实际工作中并不常见,下面是几种常用的概率函数. 2.4.1.两点分布与二项分布一.两点分布两点分布只可能在两个点取值,通常就是0或1.定义 随机变量的可能取值只有两个:0或1,且概率函数为p (0) = 1 − p ,p (1) = p , 其中0 < p < 1,称X 服从两点分布(Two-point Distribution )或0-1分布,记为X ~ (0-1).分布列为⎟⎟⎠⎞⎜⎜⎝⎛−p p110. 两点分布实际背景是一次伯努利试验.通常描述为:X 表示一次伯努利试验中事件A 发生的次数.非负性:p (0) = 1 − p > 0,p (1) = p > 0; 正则性:(1 − p ) + p = 1. 两点分布的数学期望为E (X ) = 0 × (1 − p ) + 1 × p = p .又因E (X 2 ) = 02 × (1 − p ) + 12 × p = p ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = p − p 2 = p (1 − p ).二.二项分布在n 重伯努利试验中,以X 表示事件A 的发生次数,则X 的全部可能取值为0, 1, 2, …, n ,且kn k p p k n k X P −−⎟⎟⎠⎞⎜⎜⎝⎛==)1(}{. 定义 若离散型随机变量X 的概率函数为kn k p p k n k p −−⎟⎟⎠⎞⎜⎜⎝⎛=)1()(, k = 0, 1, 2, …, n ;0 < p < 1, 则称X 服从二项分布(Binomial Distribution ),记为X ~ b (n , p ).二项分布的实际背景是n 重伯努利试验. 当n = 1时,二项分布就是两点分布.非负性:0)1()(>−⎟⎟⎠⎞⎜⎜⎝⎛=−kn k p p k n k p ; 正则性:1)]1([)1()(11=−+=−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑=−=nnk k n k nk p p p p k n k p . 例 掷三枚硬币,X 表示正面朝上的次数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3 ,将掷每一枚硬币看作一次试验.每次试验两种结果:正面A ,反面A ;每次试验相互独立;每次试验概率5.0)(=A P . 即n 重伯努利试验,n = 3,5.0=p ,有X ~ b (3, 0.5),p (0) = 0.5 3 = 0.125,375.05.05.013)1(21=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 375.05.05.023)2(12=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (3) = 0.5 3 = 0.125.例 现有5台机床,每台机床一小时内平均开动18分钟,且是否开动相互独立,以X 表示同一时刻开动的机床数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3, 4, 5 ,将每台机床是否开动看作一次试验.每次试验两种结果:开动A ,不开动A ;每次试验相互独立;每次试验概率P (A ) = 0.3. 即n 重伯努利试验,n = 5,p = 0.3,有X ~ b (5, 0.3).p (0) = 0.7 5 = 0.16807,36015.07.03.015)1(41=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 3087.07.03.025)2(32=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 1323.07.03.035)3(23=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 02835.07.03.045)4(14=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (5) = 0.3 5 = 0.00243 .一般地,如果随机变量X 服从二项分布,概率函数值p (k ) 将随着k 的增加,先逐渐增加,达到最大值后,又逐渐减少.通常,一个随机变量X 的概率函数或密度函数的最大值点称为X 的最可能值.二项分布b (n , p )的最可能值为⎩⎨⎧+−++++=.)1(,1)1()1(,)1(],)1[(0是正整数时当或不是正整数时当p n p n p n p n p n k 这里[x ]表示不超过x 的最大整数.如[2.3] = 2,[3.14] = 3,[−1.2] = −2.证:若X ~ b (n , p ),有n k p p k n k n p p k n k p k n k kn k ≤≤−−=−⎟⎟⎠⎞⎜⎜⎝⎛=−−0,)1()!(!!)1()(, 则11)1()!1()!1(!)1()!(!!)1()(+−−−−+−−−−−=−−k n k k n k p p k n k n p p k n k n k p k p ⎟⎠⎞⎜⎝⎛+−−−⋅−−−=−−11)1()!()!1(!1k n p k pp p k n k n k n k)1()1()1()!()!1(!1+−−+⋅−−−=−−k n k k p n p p k n k n k n k , 当k < (n + 1) p 时,有p (k ) > p (k − 1);当k > (n + 1) p 时,有p (k ) < p (k − 1).如果(n + 1) p 不是正整数,取k 0 = [(n + 1) p ],有k 0 < (n + 1) p ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > (n + 1) p ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果(n + 1) p 是正整数,取k 0 = (n + 1) p ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值.如X ~ B (3, 0.5),有(n + 1) p = 4 × 0.5 = 2是正整数,最可能值k 0 = 2或1;X ~ B (5, 0.3),有(n + 1) p = 6 × 0.3 = 1.8不是正整数,最可能值k 0 = [1.8] = 1.三.二项分布的数学期望和方差组合数公式⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−⋅−−⋅=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!(!!k n k n k n k n k n k n k n k n , (n ≥ k > 0). 二项分布b (n , p )的数学期望为∑∑∑=−−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅⋅=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k kn k nk k n k p p k n np p p k n k n k p p k n k X E 1110)1(11)1(11)1()( = np [ p + (1 − p )]n − 1 = np .又因∑∑∑=−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k k n k nk k n k p p k n k p p k n k k p p k n k X E 002022)1()1(11)()1()( )()1(22)1()1()(22X E p p k n k k n n k k nk k n k+−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=∑=− np p p k n pn n nk kn k +−⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=−−222)1(22)1( = n (n − 1) p 2 [ p + (1 − p )]n − 2 + np = (n 2 − n ) p 2 + np ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = (n 2 − n ) p 2 + np − (np )2 = − np 2 + np = np (1 − p ).2.4.2.泊松分布一.泊松分布泊松分布是一种理论推导的极限分布(成立的条件和推导过程见附录). 定义 若随机变量X 的概率函数为λλ−=e !)(k k p k, k = 0, 1, 2, …… ;λ > 0,则称X 服从参数为 λ 的泊松分布(Poisson’s Distribution ),记为X ~ P (λ).泊松分布的实际背景是已知平均发生次数为常数λ ,实际发生次数的概率分布.如足球比赛进球数,商店进店人数,电话接听次数等.非负性:λ > 0时,0e !>−λλk k;正则性:1e e e !=⋅=⋅−∞=−∑λλλλk kk .例 已知一场足球比赛的进球数X 服从参数λ = 2.3的泊松分布,求比分为0:0, 1:0以及总进球数超过5个的概率.解:因X ~ P(2.5),则3.2e !3.2)(−=k k p k , k = 0, 1, 2, …….比分0:0,即X = 0,100.0e e !03.2)0(3.23.20===−−p (查表);比分1:0,即X = 1,231.0100.0331.0e 3.2e !13.2)1(3.23.21=−===−−p (查表);总进球数超过5个,即X > 5,030.0970.01e !3.21e!3.2}5{53.263.2=−=−==>∑∑=−∞=−k k k k k k X P (查表). 例 已知某公用电话每小时内打电话的人数X 服从参数为λ = 8的泊松分布.求某一小时内无人打电话的概率,恰有10人打电话的概率,至少有10人打电话的概率.解:因X ~ P(8),有8e !8}{−==k k X P k . 无人打电话的概率0003.0e e !08}0{880====−−X P ,恰有10人打电话的概率099.0717.0816.0e !108}10{810=−===−X P (查表),至少有10人打电话的概率283.0717.01}9{1e !8}10{108=−=≤−==≥∑∞=−X P k X P k k (查表). 例 已知某商店一天中某种贵重商品的销售件数X 服从泊松分布P (7),问该商店每天应该准备多少件该商品才能以99.9%以上的概率满足顾客需要?解:设准备了a 件该商品,X ~ P(7),则7e !7)(−=k k p k .事件“满足顾客需要”,即X ≤ a ,有P {X ≤ a } ≥ 0.999,故查表可得a = 16. 泊松分布P (λ )的最可能值为⎩⎨⎧−=.,1,],[0是正整数时当或不是正整数时当λλλλλk 证:若X ~ P(λ),有L ,2,1,0,e !)(==−k k k p kλλ,故k k k k k k k k p k p k k k k−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=−−=−−−−−−−−−λλλλλλλλλλe )!1(1e )!1(e)!1(e !)1()(111,当k < λ 时,有p (k ) > p (k − 1);当k > λ 时,有p (k ) < p (k − 1).如果λ 不是正整数,取k 0 = [λ ] ,有k 0 < λ ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > λ ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果λ 是正整数,取k 0 = λ ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值. 二.泊松分布的数学期望和方差泊松分布P (λ )的数学期望为λλλλλλλλλλλ=⋅=−⋅=−=⋅=−∞=−−∞=−∞=−∑∑∑e e )!1(e e)!1(e!)(111k k k kk kk k k k X E ,即泊松分布的参数 λ 反映平均发生次数.又因)()!2(e e!e!)(e!)(222222X E k k k k k k k k X E k k k kk kk k+−⋅=⋅+⋅−=⋅=∑∑∑∑∞=−−∞=−∞=−∞=−λλλλλλλλλ= λ 2 e −λ ⋅ e λ + λ = λ 2 + λ ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = λ 2 + λ − (λ )2 = λ .三.二项分布的泊松近似二项分布与泊松分布的实际背景都是反映发生次数问题.下面的定理说明了二者之间的联系,泊松分布是二项分布的一种极限分布. 定理 (泊松定理)在n 重伯努利试验中,记事件A 在每次试验中发生的概率为与试验次数n 有关的数p n ,如果当n → +∞ 时,有n p n → λ ,则λλ−−+∞→=−⎟⎟⎠⎞⎜⎜⎝⎛e !)1(lim k p p k n k k n n k n n . 证:记λ n = n p n ,有λλ=+∞→n n lim ,因nk n n n kn n k n n n n n n p )(11)1(−−⋅−−−⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛−=−λλλλ,且e 1lim =⎟⎠⎞⎜⎝⎛−+−+∞→nnn n n λλ,λλ−=−−+∞→n k n n n )(lim , 则λλλλ−−−⋅−+∞→−+∞→=⎟⎠⎞⎜⎝⎛−+=−e 1lim )1(lim )(n k n n n n k n n n n n n p ,又因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛n k n k n k k n n n k n k 1111!!)1()1(L L ,且11111lim =⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−+∞→n k n n L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→−+∞→n k n p p k n p p k n k n nk n k n k n n k n n 1111)1(!lim )1(lim L λλ−+∞→−+∞→+∞→=⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅=e !1111lim )1(lim !)(lim k n k n p k np k n k n n n k n n L . 此定理表明对于二项分布b (n , p ),当n 很大,p 很小时,可用泊松分布P (λ ) 近似,其中λ = n p .例 某地区每年人口意外死亡率为0.0001,现有60000人投保人身意外保险,求一年内因投保人意外死亡恰好赔付8人的概率以及赔付不超过5人的概率.解:设X 表示“一年内因投保人意外死亡而赔付的人数”,X ~ B (60000, 0.0001).则5999289999.00001.0860000}8{××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,∑=−××⎟⎟⎠⎞⎜⎜⎝⎛=≤50600009999.00001.060000}5{k kk k X P , 但显然计算很繁琐,为便于计算,用泊松分布近似.因n = 60000很大,p = 0.0001很小,λ = np = 6,有)6(~P X &,故103.0744.0847.0e !86}8{68=−=≈=−X P ,446.0e !6}5{506=≈≤∑=−k k k X P .2.4.3. 超几何分布一.超几何分布在N 件产品中,有M 件次品,从中不放回地取n 件,以X 表示取得的次品数.设X 取值为k ,一方面,显然有k ≤ n 且k ≤ M ,即k ≤ min{n , M },另一方面,有k ≥ 0且n − k ≤ N − M ,可得k ≥ M + n − N ,即k ≥ max{0, M + n − N }.这样X 的全部可能取值为l , l + 1, …, L ,其中l = max{0, M + n − N },L = min{n , M },且⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛==n N k n M N k M k X P }{.定义 若随机变量X 的概率函数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=n N k n M N k M k p )(,k = l , l + 1, …, L ,l = max(0, n + M − N ),L = min(M , n ),M < N ,n < N , 则称X 服从超几何分布(Hypergeometric Distribution ),记为X ~ h (n , N , M ).超几何分布的实际背景是古典概型中的不放回抽样检验问题. 注:有放回检验抽样问题对应的是二项分布.非负性:0>⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛n N k n M N k M ;正则性:10=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑∑==n N n N n N k n M N k M n N k n M N k M Ll k L k .注:比较(1 + x )M(1 + x )N − M与(1 + x )N中x n的系数可以证明⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑=n N k n M N k M Ll k .例 一袋中有3个红球,2个白球,不放回地取出3个球,X 表示取得的红球数.求X 的概率分布.解:不放回抽样,N = 3,M = 2,n = 3,则X ~ h (3, 5, 3).故X 的全部可能取值为1, 2, 3, (l = max (0, n + M − N ) = 1,L = min(n , M ) = 3),3.0352213}1{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,6.0351223}2{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,1.0350233}3{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P . 超几何分布h (n , N , M )的最可能值为⎪⎩⎪⎨⎧+++−++++++++++++=.21)1(,121)1(21)1(,21)1(],21)1[(0是正整数时当或不是正整数时当N M n N M n N M n N M n N M n k证:若X ~ h (n , N , M),有)!()!()!()!(!!1)(k n M N k n M N k M k M n N n N k n M N k M k p +−−−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=, 故p (k ) − p (k − 1))!1()!1()!1()!1()!(!)!()!()!(!)!(!−+−−+−+−−⎟⎟⎠⎞⎜⎜⎝⎛−−+−−−−⎟⎟⎠⎞⎜⎜⎝⎛−=k n M N k n k M k n N M N M k n M N k n k M k n N M N M)]()1)(1[()!()!1()!1(!)!(!k n M N k k n k M k n M N k n k M k n N M N M +−−−+−+−+−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=)]2()1)(1[()!()!1()!1(!)!(!+−+++−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=N k n M k n M N k n k M k n N M N M .当21)1(+++<N M n k 时,有p (k ) > p (k − 1);当21)1(+++>N M n k 时,有p (k ) < p (k − 1). 如果21)1(+++N M n 不是正整数,取21)1[(0+++=N M n k ,有21)1(0+++<N M n k ,即p (k 0) > p (k 0 − 1);且21)1(10+++>+N M n k ,即p (k 0 + 1) < p (k 0).故p (k 0) 为最大值.如果21)1(+++N M n 是正整数,取21)1(0+++=N M n k ,即p (k 0) = p (k 0 − 1),故p (k 0) 和p (k 0 − 1) 都是最大值. 二.超几何分布的数学期望和方差超几何分布h (n , N , M )的数学期望为N nM n N k n M N k M N nM n N n N k n M N k M k M k n N k n M N k M k X E Ll k L lk L l k =⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=∑∑∑===11111111)(, 又因∑∑∑===⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=L lk L l k Ll k n N k n M N k M k n N k n M N k M k k n N k n M N k M k X E )()(222 ∑=+⎟⎟⎠⎞⎜⎜⎝⎛−−−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=Llk X E n N n n N N k n M N k M k k M M k k )(22)1()1(22)1()1()(2N nM N N M M n n N nM n N k n M N k M N N M M n n Ll k +−−−=+⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−−=∑=)1()1()1(2222)1()1()1(, 故方差为)1())(()1()1)(1()]([)()Var(222222−−−=−+−−−=−=N N n N M N nM N M n N nM N N M n nM X E X E X . 为了便于记忆,可将超几何分布与二项分布的数学期望和方差进行比较.二项分布b (n , p ):数学期望E (X ) = np ,方差Var (X ) = np (1 − p );超几何分布h (n , N , M ):数学期望N M nX E =)(,方差11)Var(−−⎟⎠⎞⎜⎝⎛−=N n N N M N M n X ; 可见分布h (n , N , M )中的N M 相当于二项分布b (n , p )中的p ,方差修正因子为1−−N nN . 三.超几何分布的二项近似直观上,当抽样个数n 远小于M 及N − M 时,不放回抽样问题可近似看作有放回抽样问题,也就是此时超几何分布可用二项分布近似.定理 如果当N → +∞ 时,p NM→, (0 < p < 1),则k n k N p p k n n N k n M N k M −+∞→−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛)1(lim . 证:因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛N n N n N n n N N N n N n 1111!!)1()1(L L , 且⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛M k M k M k M k 1111!L ,⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−=⎟⎟⎠⎞⎜⎜⎝⎛−−−M N k n M N k n M N k n M N kn 1111)!()(L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→+∞→N n N n N M N k n M N k n M N M k M k M n N k n M N k M n k n k N N 1111!1111)!()(1111!lim lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅−=−+∞→N n N M N k n M N M k M N M N M k n k n nk n k N 111111111111)()!(!!lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=+∞→−+∞→N n N M N k n M N M k M N M N M k n N kn k N 111111111111lim 1lim L L L。

概率论与数理统计第二讲

概率论与数理统计第二讲

定义 设X是S上的随机变量F(x)为其分布函数, 如果存在定义在(-∞,+∞)上的非负实质函数 f(x),使得
F ( x)
x

f ( t )dt, x
则称X为连续型随机变量,称F(x)为连续型分 布函数,称f(x)为X的概率密度函数(或概率 密度或分布密度)。
设X为连续型随机变量,F(x)与f(x)分别 为其分布函数和概率密度 1)对任意常数a<b有

P(X<0)=P(X-3<-3)=0.1。
当μ=0且σ=1的正态分布N(0,1),称为标准正 态分布。 x2 1 2 概率密度 ( x ) e , x ,
2
在统计用表中给出了 x 0至x 3.49所对应 的( x)值。 当x 3.49时,( x) 1 ;
P(λ)
λ=np=1
0.368 0.368 0.184 0.061 0.015 0.004
例 某物业管理公司负责10000户居民的 房屋维修工作。假定每户居民是否报修 是相互独立的,且报修的概率都是0.04% 另外,一户居民住房的维修只需一名修理 工来处理。易知,在某个时段报修的居民 数X~B(10000,0.0004).试问 1)该物业管理公司至少需要配备多少名 维修工人,才能使居民报修后能得到及时 修理的概率不低于99%。
P (a X b) f ( x )dx
a
b
2)F(x)是连续函数,且当f(x)在x=x0处连续时
F ( x0 ) f ( x0 )
3)对任意常数c,P(X=c)=0,从而对任何a<b,有
P (a X b) P (a X b) P (a X b) P (a X b)

《概率论与数理统计》第二章 随机变量及其分布

《概率论与数理统计》第二章 随机变量及其分布

两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2

xn

pk
p1
p2

pn

在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k

概率论与数理统计-第4章-第2讲-随机变量函数的数学期望

概率论与数理统计-第4章-第2讲-随机变量函数的数学期望

02 典型例题
应用 设市场上对某种产品每年需求量为X 吨 ,其中X ~ U [200,400],
每出售一吨可赚300元 , 售不出去,则每吨需保管费100元,问应
该组织多少货源, 才能使平均利润最大?
f
X
(
x)
1 200
,
0,
200 x 400, 其它
解 设组织n吨货源, 利润为 Y,
Y
因此只要掌握了期望的计算,所有的数字特征计算都解决了!
概率论与数理统计
学海无涯,祝你成功!
主讲教师 |
01 随机变量函数的数学期望
(1) Y = g(X) 的数学期望
设离散 r.v. X 的概率分布为 P( X xi ) pi , i 1, 2,
若无穷级数 g(xi ) pi 绝对收敛,则 i 1 E(Y ) g(xi ) pi i 1
设连续 r.v. X 的密度为 f (x)
若广义积分 g(x) f (x)dx 绝对收敛, 则
例 设风速V是一个随机变量,它服从(0,a)上的均匀分布,而飞 机某部位受到的压力F是风速V 的函数:
F kV 2
(常数k > 0),求F 的数学期望.
01 随机变量函数的数学期望
如何计算随机变量函数的数学期望?
一种方法是: 因为g(X)也是随机变量,故应有概率分布,它 的分布可以由X的分布求出来. 一旦我们知道了g(X)的分布,就 可以按照期望的定义把E[g(X)]计算出来.
xf (x, y)dxdy
0
0
dx
2xdy 1
1 x1
3
E(3X 2Y )
(3x 2 y) f (x, y)dxdy
0
0

第二节 中心极限定理(概率论与数理统计)

第二节 中心极限定理(概率论与数理统计)
= Φ(17.32) ≈0
反查标准正态函数分布表,得
Φ(3.09) = 99.9%

a 120 r = 3.09 48
解得
a = (3.09 48 +120)r ≈141r (千瓦)
例5 设有一批种子,其中良种占1/6. 试估计在任选的6000粒种子中,良种 比例与 1/6 比较上下不超过1%的概率. 解 设 X 表示6000粒种子中的良种数 , 则 X ~ B( 6000 , 1/6 ) 由德莫佛—拉普拉斯中心极限定理, 近似 1000, 5000 有 X ~ N 6
Xk P
10 0.5
20 0.5
E( Xk ) =15, D( Xk ) = 25
X1, X2 , X1900 相互独立同分布, X = ∑Xk ,
k=1 1900
E( X ) =1900×15 = 28500 D( X ) =1900× 25 = 47500
近似
X ~ N(28500,47500)
P( Xi = k) = p(1 p)
k1 p=1/ 3
, k =1,2,
(几何分布)
1 1 p E( Xi ) = = 3, D( Xi ) = 2 =6 p p=1/ 3 p p=1/ 3
X1, X2 ,, X100
相互独立, X = ∑Xk
k=1
100
E( X ) = 300, D( X ) = 600
例2 设每次试验中,事件 A 发生的概率为 0.75, 试用 中心极限定理估计, n 多大 时, 才能在 n 次独立重复试验中, 事件 A 出 现的频率在0.74 ~ 0.76 之间的概率大于 0.90? 解 设 X 表示 n 次独立重复试验中事件 A 发生的次数 , 则 X ~ B(n,0.75)

概率论与数理统计-第1章-第2讲-古典概率与几何概率

19
概率论与数理统计
学海无涯,祝你成功!
主讲教师 |
20
概率论与数理统计
第1章 随机事件与概率
第2讲 古典概率与几何概率
主讲教师 |
本章内容
01 古典概率 02 几何概率
02 古典概率
在概率论发展的历史上,最早研究的一类最直观、最简单的问题是等 可能摡型,在这类问题中,样本空间中每个样本点出现的可能性是相等的.
例如 抛掷一枚均匀的硬币,或抛掷一颗均匀的骰子,这类随机试验,它 们都有如下的两个特点:
10
02 古典概率
例 “分房模型”的应用
某班级有 k (k≤365)个人,求k 个人的生日均不相同的概率. 恰有 k 个盒子中各有一球
P( A)
C
k 365
k
!
365k
Ak 365
365k
问:如何求“至少有两人同生日”的概率?
下一讲揭晓
11
02 古典概率
几何概型 (古典概型的推广)
古典概型考虑了样本空间仅包含有限个样本点的等可能概率模型, 但等可能概型还有其它类型,如样本空间为一线段、平面或空间区域 等,这类等可能概型称为几何概型,思路如下:
(n k 1) n! (n k)!
从n个不同元素中任取 k个的不同排列总数
(4)组合公式
C
k n
n(n 1)
(n k 1) n!
ห้องสมุดไป่ตู้
k!
(n k)!k!
从n个不同元素中任取 k个的不同组合总数
5
02 古典概率
典型例题
例 设有N件产品,其中有M件次品,现从这N件中任取n件, 求其中恰 有k件次品的概率.
9
02 古典概率

概率论与数理统计第2章随机变量及其分布


1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.

例2.2 测试灯泡的寿命.

样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4

北京工业大学《概率论与数理统计》课件 第2章 连续性随机变量


2.3.3 常见的连续型随机变量的概率密度函数
△ 均匀分布 △ 指数分布 △ 正态分布
1. 均匀分布 (Uniform) 若随机变量 X 的概率密度为
则称 X 服从区间[a, b]上的均匀分布,记作 X ~U[a, b]。(注: 有时也记作X~U(a, b) )
若X ~ U[a, b],则对于满足 a≤c≤d≤b 的 c 和 d,总有
例2.3.4 假设某地区成年男性的身高(单位: cm) X~N(170,7.692), 求该地区成年男性的身 高超过175 cm的概率。
解 根据假设X~N(170 ,7.692), μ=170, a=175, σ= 7.69。由(2.3.15) 式的后一式,得
小结
本讲首先介绍连续型随机变量、直方图、 概率密度函数及其性质;然后介绍三种常用的 连续型随机变量:均匀分布,指数分布和正态 分布;给出了三种分布应用的例子。
概率密度曲线可用来准确地刻画 X 的概率 分布情况。
2.3. 2 概率密度函数 定义2.3.1 若存在非负可积函数 f(x), 使
随机变量X落入任意区间(a, b]的概率
则称 X为连续型随机变量,f(x)为X的概率密 度函数,简称概率密度或密度。
对概率密度的进一步解释: 若 x 是 f(x) 的连续点,则有
且 f (μ+c) ≤ f (μ), f (μ-c)≤ f (μ). 故 f(x)以 x=μ为对称轴,并在 x =μ处达到最大 值

当 x→ ∞时,f(x) → 0。 这说明:曲线 f(x) 向左右伸展时,越来越贴 近 x 轴。即 f (x) 以 x 轴为渐近线。

可以证明: x =μσ
为 y = f (x) 曲线的两个拐点的横坐标。

概率论与数理统计第二章知识点

概率论与数理统计第二章知识点一、知识概述《概率论与数理统计第二章知识点》①基本定义:概率论与数理统计第二章通常会涉及随机变量及其分布相关知识。

随机变量简单来说,就是把随机试验的结果用一个数值来表示。

比如扔硬币这个随机试验,我们规定正面为1,反面为0,这个1或者0就是随机变量的值。

②重要程度:这部分知识在整个学科里可以说是根基般的存在。

就像盖房子的砖头,后面很多章节的知识,像期望、方差等都依赖这些内容进行构建。

③前置知识:得对基本的概率概念有认识,像样本空间、事件、古典概型等基础知识要掌握。

如果这些搞不清楚,那学随机变量就像没地基想盖楼。

④应用价值:在实际生活中有很多应用。

比如保险公司确定保险费用,不同人的健康情况这些不确定因素就可以看成随机变量,然后根据这些变量出现的概率分布来制定保险费。

二、知识体系①知识图谱:在学科中,这部分是承上启下的作用。

承接着概率基础,开启后面关于数字特征等更深层次知识的大门。

②关联知识:和第一章概率的基本概念联系紧密,同时也是后续关于多维随机变量、数字特征等知识的重要铺垫。

③重难点分析:掌握难度中等。

难点在于理解随机变量的分布函数概念,关键点是要理解分布函数在描述随机变量取值规律中的作用。

④考点分析:考试特别重要。

考查方式有让你根据已知条件求随机变量的分布函数、概率密度(如果是连续型随机变量)等。

三、详细讲解【理论概念类】①概念辨析:随机变量分为离散型和连续型两种。

离散型随机变量就是取值是可以一一列举出来的,像扔骰子得到的点数。

连续型随机变量取值是某个区间内的任意值,比如测量人的身高。

②特征分析:离散型随机变量有概率分布列,能清楚展示每个取值对应的概率。

连续型随机变量有概率密度函数,它的图形和面积有特殊意义,代表着取值在某个区间的概率。

③分类说明:从取值类型就是离散型和连续型区分。

从分布类型又有很多,像离散型的二项分布,在多次独立重复试验中出现的次数服从这个分布。

比如做10次抛硬币试验,正面出现的次数可能服从二项分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

II. 概率的性质
1. P(Ø)=0,即不可能事件的概率为零。 2. 若事件 A1,A2,„, An 两两互斥,则有
(1.2.2) 式称为有限可加性。 3. 对任一事件 A, 均有
4. 对两个事件A和B,若AB, 则有 P(B-A)=P(B)-P(A), P(B)≥P(A).
5. 对任意两个事件A, B,有 证明 因 AB,A-AB,B-AB 两两互斥,且
许多问题和上例有相同的数学模型。 如(生日问题): 某组人群有n个人,他们中至 少有两人生日相同的概率有多大? 设每个人在一年(按365天计)内每天出 生的可能性都相同,现随机地选取n(n≤365) 个人,则他们生日各不相同的概率为 A365n / 365n。 于是, n个人中至少有两人生日相同的概率为 1-A365n / 365n。 打开书 P12,可看到表1.3。
解 (1).由于每次抽测后放回, 因此,每 次都是在6只三极管中抽取。 因第一次从6只中取一只,共有6种可能取 法;第二次还是从6只中取一只,还是有6种取 法。故,取两只三极管共有66=36种可能的取 法。从而, n=36。
注意:这种分析方法使用的是相同。故第 一次取一只甲类三极管共有4种可能取法,第二 次再取一只甲类三极管还是有4种可能取法。 故,取两只甲类三极管共有44=16 种可能的取 法,即kA=16。所以,P(A)=16/36=4/9; 令M={抽到两只乙类三极管}, 则 kM=22=4。 故,P(M)=4/36=1/9; 因C是M的对立事件,所以 P(C)=1-P(M)=8/9; 因B=A∪M, 且A与M互斥,得 P(B)=P(A)+P(M)=5/9; D是B的对立事件, 得 P(D)=1-P(B)=4/9。
考虑在相同条件下进行的 k 组试验
事件 A 在各组试验中的频率形成一个数列 m1 m2 mk , , , . n1 n2 nk
频率稳定性是指:当各组试验次数n1,n2, „, nk 充分大时,在各组试验中事件 A 出现的频率 mk m1 m2 , , , 与某定值 p 相差很小 。 n1 n2 nk
注意:这里的函数 P(A) 与以前所学过的 函数不同。不同之处在于:P(A)的自变量是事 件 ( 集合 )。 不难看出:这里事件概率的定义是在频率 性质的基础之上提出的。 在§5.1中, 我们将看到:频率 fn(A) 在某 种意义下收敛到概率P(A)的事实。基于这一点, 我们有理由用上述定义的P(A) 来度量事件A 在 一次试验中发生的可能性大小 (概率)。
例1.3.5 n 个球随机地放入 N(N≥n) 个盒子 中,若盒子的容量无限制。求“每个盒子中至 多有一球” 的概率。 解 因每个球都可以放入 N 个盒子中的任何 一个,故每个球有 N 种放法。由乘法原理,将 n个球放入 N 个盒子中共有 Nn 种不同的放法。 每个盒子中至多有一个球的放法(由乘法原 理得): N(N-1)„(N-n+1)=ANn 种。故, P(A)= ANn / Nn .
k Cn K k ( N K ) nk P ( A) Nn k nk K N K k Cn , k 0,1,2, , n. N N
解 假定 N 件产品有编号,每次从中任意 取出一件,每次都有 N 种取法。由乘法原理, 抽 n 次共有Nn 种取法,故基本事件总数为Nn。 当所取的 n 件产品中恰有k 件次品时,因 取到这 k 件次品次序之不同,从次序考虑:共 有Cnk 种情况。
当每种情况确定后,从 K 件次品中取出 k 件, 共有Kk 种取法;从 N-K 件正品中取 n-k 件, 有 (N-K)n-k 种取法。 由乘法原理,知“抽到的 n 件产品中恰有 k 件是次品”的取球法共有 Cnk Kk (N-K)n-k种。 即 A 中基本事件数为 Cnk Kk(N-K)n-k,故
从上表可看出: 在 40 人左右的人群里, 十有八九会发生{两人或两人以上生日相同} 这一事件。
公式
把 n 个物品分成 k 组,使第一组有n1个, 第二组有n2个,„,第 k 组有nk个,且 n1+ n2+„+nk=n, 则不同的分组方法数为
n! n1 ! n2 ! nk !
例1.3.6 有乒乓球15只,其中白色球12只, 黄色球3只。现将它们随机地分装在 3 个盒中, 每盒装5只,设A={每盒中恰有 1 只黄球}, B={3 只黄球都在同一盒中}。求 P(A) 和 P(B)。
解 15只球装入3个盒,每盒装 5只,共有
15! /(5!5!5!)
种等可能的装法。 故,基本事件总数为
15! /(5!5!5!) .
把3只黄球分别装入3个盒中,共有3!种装 法。在这样的每一种装法取定之后,再把其余 12只白球平均装入3个盒中,每盒装4球,有
12!/(4!4!4!) 种装法。
由乘法原理知,装盒总方法数有
从而, P({i})= 1/n,i=1,2,„,n.
因此,若事件 A 包含 k 个基本事件,即
A {i } {i }{i },
1 2 k

k A中包含基本事件数 P( A) P({i }) . n 基本事件总数 r 1
k
r
III. 古典概型举例 例1.3.1 掷一颗匀称骰子,设 A 表示所掷 结果为“四点或五点”,B 表示所掷结果为 “偶数点”,求 P(A) 和 P(B)。 解 由 n=6,kA=2,得 P(A)=2/6=1/3; 再由kB=3,得 P(B)=3/6=1/2。
3!12!/(4!4!4!) 种。
即A包含 3!12! /(4!4!4! ) 个基本事件。 从而,
12! 15! 25 P ( A) 3! 。 4!4!4! 5!5!5! 91
把 3只黄球装入同一盒中,共有3种装法。 在这样的每一种装法取定后,再把其余 12 只白 球装入3个盒中(一盒再装2只,另两盒各装5只) 又有
12!/(2!5!5!) 种装法。 由乘法原理,知装箱方法共有
3 12!/(2!5!5!) 种。
即B包含 3 12! /( 2!5!5! ) 个基本事件。故,
12! 15! 6 P( B) 3 。 2!5!5! 5!5!5! 91
例1.3.7 设 N 件产品中有K 件次品,N-K件 正品, K<N 。现从 N 件中每次任意抽取 1 件, 检查其是否为正品后放回,这样抽 n 次。求事 件 A={所抽到的 n 件产品中恰有 k 件是次品} 的 概率,k = 0, 1, 2, „, n。
k fn Ai i 1

i 1
k
f n ( Ai ) 。
1.2.2 事件概率 I. 概率定义
1933年,前苏联数学家(概率统计学家)柯 尔莫哥洛夫 (Kolmogorov) 给出了概率的公理化 定义。
定义1.2.2 设 E 是随机试验,Ω是其样本 空间,对Ω中的每个事件 A,定义一个实数 P(A)与之对应 ,若事件(集合)的函数 P(A) 满 足如下三条:
当试验次数 n充分大时,事件的频率总在 一个定值附近摆动,而且,试验次数越多, 一般说来摆动的幅度越小。这一性质称频率 的稳定性。
频率在一定程度上反映了事件在一次试 验中发生的可能性大小。尽管每进行n次试验, 所得到的频率可能不同,但只要 n足够大,频 率就会非常接近一个固定值——概率。 因此, 概率可以通过频率来“度量”, 频率 是概率的近似 , 概率是频率某种意义下的极限。
例1.3.4 有外观相同的三极管6只,按电流 放大系数分类,4只属甲类,2只属乙类。按下 列两种方案抽取三极管两只:
(1).每次抽取一只,测试后放回,然后再抽取下一只 (放回抽样); (2).每次抽取一只,测试后不放回,然后在剩下的三 极管中再抽取下一只(不放回抽样)。
设 A={抽到两只甲类三极管}, B={抽到两只同类三极管}, C={至少抽到一只甲类三极管}, D={抽到两只不同类三极管}。 求 P(A),P(B),P(C),P(D)。
(2).由于第一次抽测后不放回,所以第一次 从6只中取一只, 共有6种可能的取法;第二次 是从剩余的5只中取一只,有5种可能的取法。 由乘法原理,知取两只三极管共有n= 65=30种 可能的取法。 由乘法原理,得 kA=43=12。从而 P(A)=12/30=2/5; 类似地,得 kM=21=2,P(M)=2/30=1/15; 由C是M的对立事件,得 P(C)=1-P(M)=14/15; 由B=A∪M, 且A与M互斥,得 P(B)=P(A)+P(M)=7/15; 由D是B的对立事件, 得 P(D)=1-P(B)=8/15.
小结
本节首先介绍频率的概念,指出在试验 次数充分大的情况下,频率接近于概率的结 论;然后给出了概率的公理化定义及概率的 主要性质。
§1.3 古典概率模型
I. 什么是古典概率模型 如果试验 E 满足 (1).试验结果只有有限种; (2).各种结果出现的可能性相同。 则称这样的试验模型为等可能概率模型或古 典概率模型,简称等可能概型或古典概型。
概率论与数理统计 第二讲
§1.2 事件的概率
1.2.1 事件的频率 I. 频率定义 定义1.2.1 设 A 是一个事件, 在相同条件下 进行 n 次试验,A 发生了m 次。则称 m 为事件 A 在 n 次试验中发生的频数或次数, 称 m 与 n 之比 m / n 为事件 A 在 n 次试验中发生的频率, 记为 fn(A)。
II. 古典概型中事件概率求法 因试验 E 的结果只有有限种,即样本点有 有限个,不妨记成 1,2 ,„,n ,则 Ω ={1}∪{2 }∪„∪{n},
每个{i}都是基本事件,两两互斥,且各自发 生的概率相等。 于是,有 1=P(Ω )=P({1}∪{2 }∪„∪{n}) =P({1})+P({2 })+„+P({n}) =n P({i}), i=1,2,„,n。
稳定在概率 p 附近
相关文档
最新文档