二次根式的运算
二次根式的化简与运算

二次根式的化简与运算二次根式是指含有根号的代数表达式,通常是一种简化和运算方式,可以将复杂的表达式化简为简单的形式,并进行加减乘除等基本运算。
本文将介绍二次根式化简与运算的基本方法和技巧。
一、二次根式的化简1. 同底数的根式相加减:当根式的底数相同且指数相同时,可以直接对系数进行加减运算,保持根号不变。
例如:√2 + √2 = 2√22. 二次根式的有理化:当二次根式的底数是一个整数,但含有一个或多个根号时,可以通过有理化的方法化简。
例如:√(2/3) = (√2)/(√3) = (√2)/(√3) × (√3)/(√3) = √6/33. 二次根式的合并:当二次根式的底数相同,但系数不同时,可以合并为一个根式,将系数加在一起,并保持底数不变。
例如:3√2 + 2√2 = 5√24. 二次根式的分解:当二次根式的底数是一个整数,且无法进行合并时,可以进行分解,并找出其中可以合并的部分。
例如:√12 = √(4 × 3) = 2√3二、二次根式的运算1. 加减运算:当二次根式的底数和指数都相同时,可以直接对系数进行加减运算,保持底数和指数不变。
例如:2√5 + 3√5 = 5√52. 乘法运算:当二次根式相乘时,可以将根式的系数分别相乘,并保持底数和指数不变。
例如:2√3 × 3√2 = 6√63. 除法运算:当二次根式相除时,可以将根式的系数分别相除,并保持底数和指数不变。
例如:6√8 ÷ 2√2 = 3√24. 乘方运算:当二次根式进行乘方运算时,可以将指数分别应用到系数和根号上,并保持底数不变。
例如:(2√3)^2 = 2^2 × (√3)^2 = 4 × 3 = 12总结:二次根式的化简与运算是一种常见的数学操作,在代数表达式的计算中经常会遇到。
通过适当的化简和运算,可以简化复杂的根式,得到更加简单和规范的表达形式。
熟练掌握二次根式的化简和运算方法,有助于提高数学计算的效率和准确性。
二次根式及其运算

(2)原式=( 10-3)2016×( 10+3)2016×( 10-3) =[( 10-3)( 10+3)]2016×( 10-3) =[( 10)2-32]2016×( 10-3) =(10-9)2016×( 10-3)=1×( 10-3) = 10-3.
★名师指津 最简二次根式成立的条件缺一不可,而二次 根式在表达形式上,容易导致认识错误,例如 0.2b和 x2-y2,会误以为前者不含分母、后者含有能开方的因 式.应注意对数学概念的理解:小数可以转化成分数, 因式和项有区别.
易错点3
二次根式的性质
=|a|
1 1 1 2 【典例 3】 化简并求值:a+ a + 2-2,其中 a= . a 5 12 a - 1 1 1 【错解】 原式= + a = +a- =a. a a a 1 1 当 a= 时,原式=a= . 5 5 12 a - 1 【析错】 化简 a2+ 2-2= 根据 a2=|a|, a 时, a 可知结果一定是非负数. 12 1 a- a- 1 1 1 ∵当 a= 时,a- <0,∴ a = a = -a, 5 a a 1 而不是 a- . a
按时完成课后强化训练5,全面提升自我!
单击此处进入课后强化训练5
x≤ 9
x- 1 【类题演练 1】 (2016· 怀化)函数 y= 中, 自变量 x x- 2 的取值范围是 ( ) A. x≥0 B. x>1 C. x≥1 且 x≠2 D. x≠2
【解析】 根据二次根式有意义的条件,得 x-1≥0,由 分式有意义的条件,得 x-2≠0, ∴x≥1 且 x≠2.
【答案】 D
2.(2016· 自贡)下列根式中,不是最简二次根式的是( A. 10 B. 8 C. 6 D. 2
二次根式的公式

二次根式的公式
二次函数的求根公式:x=[—b±√(b2—4ac)]/(2a)。
二次根式计算方法:
1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化(但最后结
果必须是分母有理化的)。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时
可以考虑提带根号的公因式。
一般地,形如Va的代数式叫做二次根式,其中,a叫做被开方数。
当a≥0时,Va表示a的算术平方根;当a小于0时,Va的值为纯虚
数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共
轭虚根)。
判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
二次根式混合计算

二次根式混合计算二次根式,也叫做二次方根,是指一个数的平方等于给定数的根。
在数学中,二次根式是一个被开方的数,根号下面是一个整数或分数。
二次根式的运算主要包括加法、减法、乘法和除法。
下面我们分别来看一下这四种运算。
1.二次根式的加法和减法:当两个二次根式具有相同的根指数,并且根数相同,可以进行加法和减法运算。
例如,√2+√3=√2+√3(二次根式不能进行化简,所以直接相加)√2+√2=2√2(相同数的根数相加)√2+√8=√2+2√2=3√2(相似的根数相加)2.二次根式的乘法:二次根式的乘法需要使用到公式:(a + b) × (c + d) = ac + ad + bc + bd例如,(√3+√2)×(√3+√2)=(√3)²+√3×√2+√3×√2+(√2)²=3+2√6+2√6+2=5+4√63.二次根式的除法:二次根式的除法需要使用到有理化的方法。
具体步骤如下:Step 1: 计算除数和被除数的积Step 2: 将除数和被除数的积化简为一个二次根式Step 3: 用化简后的积除以除数,得到结果例如,计算(√6+√2)÷√2Step 1: (√6 + √2) ×√2 = 2√3 + 2Step 2: 化简为2√3 + 2Step 3: (2√3 + 2) ÷√2 = (2√3 ÷√2) + (2 ÷√2)=2√2+√2=3√2这就是二次根式的加法、减法、乘法和除法的基本运算方法。
除此之外,二次根式还有很多特殊的性质和运算规律,如指数法则、化简法则、合并根的法则等。
在实际的数学问题中,需要根据具体的题目来运用这些性质和规律进行计算。
二次根式的概念与运算

二次根式的概念与运算二次根式是数学中的一个重要概念,它与根式和平方根密切相关。
在本文中,我们将介绍二次根式的定义、运算法则以及一些常见的例题,帮助读者更好地理解和运用二次根式。
一、二次根式的定义二次根式是指形如√a的根式,其中a是一个非负实数。
在二次根式中,√称为根号,a称为被开方数。
二次根式有以下几个基本特点:1. 当被开方数a为非负实数时,二次根式有意义,结果为一个实数;2. 当被开方数a为负实数时,二次根式无意义,即不存在实数解。
二、二次根式的运算法则1. 二次根式的相加减法则:对于两个二次根式,若它们的被开方数相同,则它们可以直接相加或相减。
例如:√2 + √2 = 2√2;5√3 - 2√3 = 3√32. 二次根式的乘法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行乘法运算,并将结果相乘。
例如:√2 × √3 = √(2 × 3) = √63. 二次根式的除法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行除法运算,并将结果相除。
例如:√6 ÷ √2 = √(6 ÷ 2) = √3三、二次根式的化简在进行二次根式的运算过程中,我们常常需要对二次根式进行化简,使得结果更简洁。
在化简二次根式时,可以利用以下的方法:1. 因式分解法:将被开方数进行因式分解,然后利用乘法法则将二次根式化简。
例如:√(8) = √(2 × 2 × 2) = 2√22. 合并同类项法:对于具有相同根号下的数的二次根式,可以合并为同一个二次根式。
例如:5√3 + 3√3 = 8√3四、二次根式的应用举例下面我们来举一些常见的二次根式的应用例题,帮助读者更好地理解和运用二次根式的概念和运算法则。
例题一:计算下列各式的值,并化简结果:√12 + 2√3解:首先对被开方数进行因式分解:√12 = √(2 × 2 × 3) = 2√3将化简后的结果代入原式:2√3 + 2√3 = 4√3例题二:化简下列各式:5√6 - √24解:对被开方数进行因式分解:√24 = √(2 × 2 × 2 × 3) = 2√6将化简后的结果代入原式:5√6 - 2√6 = 3√6总结:本文介绍了二次根式的定义、运算法则,以及二次根式的化简方法。
二次根式的乘除运算

二次根式的乘除运算1、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.2、有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.一、分母有理化:把分母中的根号化去,叫做分母有理化。
二、有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:1a =b a -与b a -等分别互为有理化因式。
2、两项二次根式:利用平方差公式来确定。
如a与a3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
例、已知x =y =,求下列各式的值:(1)x y x y +-(2)223x xy y -+ 小结:一般常见的互为有理化因式有如下几类: ①与; ②与; ③与; ④与.三、二次根式的乘除1、积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
a≥0,b≥0)2、二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
a≥0,b≥0)注意:1、公式中的非负数的条件;2、在被开方数相乘时,就应该考虑因式分解(或因数分解;3、c=abc( a ≥0,b≥0,c ≥03、商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根a≥0,b>0)4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
a≥0,b>0)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.例1.=,且x为偶数,求(1+x的值.解:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩∴6<x≤9∵x为偶数∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值.例2=成立的的x的取值范围是()A 、2x >B 、0x ≥C 、02x ≤≤D 、无解例3、·(m>0,n>0)解: 原式==-22n n m m =-例4、(a>0)解:原式规律公式:1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,32=-同理可得:计算代数式(+)的值.解:原式=(……)=() =2002-1=20012、观察下列各式及其验证过程:,验证:;验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想(2)针对上述各式反映的规律,写出用a(a>1的整数)表示的等式,并给出验证过程.(aa>1))。
二次根式的化简与运算方法

二次根式的化简与运算方法二次根式是指含有根号的算式,可以看作是根数和字母的组合。
化简二次根式是对根式进行简化,使得根号下的数变得更简洁。
而运算二次根式则是对含有二次根式的算式进行加减乘除等数学运算。
一、二次根式的化简方法二次根式的化简涉及到有理化的概念,有理化即通过变形将根式转换成有理数的操作。
下面将分别介绍三种常见的二次根式的化简方法。
1. 同底同指并简化当二次根式的根号下的数相同,指数相同时,可以进行合并并简化。
例如:√8 + √8 = 2√22√3 + 3√3 = 5√32. 有理化分母对于分母含有根号的二次根式,可以通过有理化的方法将其转化为有理数。
例如:1/√2 = √2/21/√3 = √3/33. 用有理数乘以二次根式可以使用有理数乘以二次根式进行化简。
例如:2√5 × 3√5 = 6√25 = 30二、二次根式的运算方法二次根式的运算涉及到加减乘除等数学运算,下面将分别介绍这几种运算方法。
1. 加减运算二次根式的加减运算需要先找到根号下的数相同的根式,然后根据正负号进行合并。
例如:√5 + √8 = √5 + 2√2 (不能合并)2√3 + 3√3 = 5√32. 乘法运算二次根式的乘法运算可以直接相乘。
例如:√5 × √2 = √103√3 × 2√3 = 6√9 = 6×3 = 183. 除法运算二次根式的除法运算可以通过有理化的方法转化为乘法。
例如:(√10) / (√5) = (√10) / (√5) × (√5) / (√5) = (√50) / 5 = 10/5 = 24. 指数运算对于含有二次根式的指数运算,可以将根式拆解成两个因数相同的根式。
例如:(√2) ^ 3 = (√2) × (√2) × (√2) = (√8) = 2√2结论二次根式的化简与运算方法在数学的学习中经常会用到,掌握了这些方法能够帮助我们更好地解决问题。
二次根式加减运算法则公式

二次根式加减运算法则公式1. 什么是二次根式?二次根式是指某个数的平方根,其中这个数可以是整数、分数或者解析式的形式。
例如√16、√(4/9)、√(x+1) 都是二次根式。
2. 二次根式加减法则对于二次根式的加减运算,需要遵循一定的法则,以下是二次根式加减法则:1. 对于同类项的二次根式,即根号里面的数相同的根式,可以直接合并,例如√2+√2=2√2。
2. 对于不同类项的二次根式,则不能直接合并,需要进行化简,即将其转化为同类项的形式后再合并。
3. 化简的方法一般有提公因式、有理化分母等,但需要保证等式两边的值相等。
3. 实例分析为了更好地了解二次根式加减法则,下面举几个例子进行分析:1. 化简√10+2√5-√80将√10 和√5 提取公因式得到√10+2√5-√80=√2(5+10-40)=√2(-25)=-5√2。
因此,√10+2√5-√80=-5√2。
2. 化简√(2/5)+√(3/20)先将分母提出来,即√(2/5)+√(3/20)=√(2)/√(5)+√(3)/√(20)。
然后将分母有理化,即分别用√(5) 和√(20) 乘以相应分子分母。
化简后的结果是:√(2)/√(5)+√(3)/√(20)=√(40)/5+√(15)/10。
3. 化简√3-√7+√12将√3和√12提取公因式,得到√3-√7+√12=√3+2√3-√7-2√3+√12=(√3+2√3+√12)-(2√3+√7)因此,√3-√7+√12=3√3-√7-2√3+√12=√3-√7+√12。
4. 总结二次根式是基础数学中的重要概念,对于二次根式的加减运算,也有一定的规则和方法。
只有掌握了二次根式的加减法则,才能更好地处理涉及到二次根式的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的运算编稿:庄永春审稿:邵剑英责编:张杨一、目标认知1.学习目标(1)理解二次根式的乘法法则和积的算术平方根的性质及二次根式的除法法则和商的算术平方根的性质,并能利用它们进行计算和化简;(2)了解最简二次根式的概念,能运用二次根式的有关性质进行化简;(3)理解同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;(4)会利用运算律和运算法则进行二次根式的混合运算.2.重点(1)理解,及利用它们进行计算和化简;(2)理解,及利用它们进行计算和化简;(3)最简二次根式的运用;(4)合并同类二次根式;(5)二次根式的混合运算.3.难点(1)发现规律,归纳出二次根式的乘除法则;(2)会判定一个二次根式是否是最简二次根式,及二次根式的化简.二、知识要点梳理知识点一:二次根式的乘法法则:,即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数)(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能写成的形式,则应化简,如.知识点二、积的算术平方根的性质,即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.知识点三、二次根式的除法法则:,即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,其中,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题.知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式.要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的代分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数;(2)被开方数是多项式的要进行因式分解;(3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号;(6)约分.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并.知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次根式之和或差,或是有理式.三、规律方法指导二次根式的运算,主要研究二次根式的乘除和加减.(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.经典例题透析类型一、二次根式的乘除运算1、计算(1)×;(2)×;(3)×;(4)×.思路点拨:直接利用计算即可.解:(1)×=;(2)×==;(3)×==9;(4)×==.2、计算:(1);(2);(3);(4).思路点拨:直接利用便可直接得出答案.解:(1)===2;(2)==×2=2;(3)===2;(4)===2.3、化简(1);(2);(3);(4);(5).思路点拨:利用直接化简即可.解:(1)=×=3×4=12;(2)=×=4×9=36;(3)=×=9×10=90;(4)=×=××=3xy;(5)==×=3.举一反三【变式1】判断下列各式是否正确,不正确的请予以改正:(1);(2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6;(2)不正确.改正:×=×====4.4、化简:(1);(2);(3);(4).思路点拨:直接利用就可以达到化简之目的.解:(1)=;(2)=;(3)=;(4)=.举一反三【变式1】已知,且x为偶数,求(1+x)的值.思路点拨:式子=,只有a≥0,b>0时才能成立.因此得到9-x≥0且x-6>0,即6<x≤9,又因为x为偶数,所以x=8.解:由题意得,即∴6<x≤9,∵x为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.5、计算(1)·(-)÷(m>0,n>0);(2)-3÷()×(a>0).解:(1)原式=-÷=-==-;(2)原式=-2=-2=- a.类型二、最简二次根式的判别6、下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).思路点拨:判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.总结升华:对于最简二次根式的判断,一定要把握其实质,既要注意其中的“似是而非”,还要注意其中的“似非而是”,特别象这样的式子,带有很大的隐蔽性,更应格外小心.7、把下列各式化成最简二次根式.(1);(2);(3);(4);(5)思路点拨:把被开方数分解因数或分解因式,再利用积的算术平方根的性质及进行化简.解:(1) ;(2) ;(3) ;(4) ;(5) .类型三、同类二次根式8、如果两个最简二次根式和是同类二次根式,那么a、b的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1思路点拨:根据同类二次根式的识别方法,在最简二次根式的前提下,被开方数相同.解:根据题意,得解之,得,故选D.总结升华:同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式1】下列根式中,能够与合并的是( )A. B. C. D.思路点拨:首先要把不是最简二次根式的化成最简二次根式,然后比较它们的被开方数是否相同,如果相同,就能进行合并,反之,则不能合并.解:合并,故选B.总结升华:同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式.【变式2】若最简根式与根式是同类二次根式,求a、b 的值.思路点拨:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=•2,2a-b+6=4a+3b.解:首先把根式化为最简二次根式:==|b|·由题意得,∴,∴a=1,b=1.类型四、二次根式的加减运算9、计算(1)+(2)-思路点拨:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)+=2+3=(2+3)=5(2)-=4-8=(4-8)=-4总结升华:一定要注意二次根式的加减要做到先化简,再合并.举一反三【变式1】计算(1)3-9+3;(2)(+)+(-);(3);(4).解:(1)3-9+3=12-3+6=(12-3+6)=15;(2)(+)+(-)=++-=4+2+2-=6+;(3)(4)【变式2】已知≈2.236,求(-)-(+)的值.(结果精确到0.01) 解:原式=4---=≈×2.236≈0.45.类型五、二次根式的混合运算10、计算:(1)(+)×;(2)(4-3)÷2.思路点拨:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2;(2)(4-3)÷2=4÷2-3÷2=2-.11、计算(1)(+6)(3-);(2)(+)(-).思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3;(2)(+)(-)=()2-()2=10-7=3.类型六、化简求值12、已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:4x2+y2-4x-6y+10=04x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3原式=+y2-x2+5x=2x+-x+5=x+6当x=,y=3时,原式=×+6=+3.举一反三【变式1】先化简,再求值.(6x+)-(4y+),其中x=,y=27.解:原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-.【变式2】已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.思路点拨:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=(x+1)+x-2+(x+1)+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2.类型七、二次根式的应用与探究13、一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?解:设底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,x=×=30.答:铁桶的底面边长是30厘米.14、如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)思路点拨:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:x·2x=35,x2=35,x=所以秒后△PBQ的面积为35平方厘米.PQ==5答:秒后△PBQ的面积为35平方厘米,PQ的距离为5厘米.15、探究过程:观察下列各式及其验证过程.(1)2=验证:2=×====(2)3=验证:3=×====同理可得:45,……通过上述探究你能猜测出:a=_______(a>0),并验证你的结论.解:a=验证:a====.总结升华:解答此类问题的特点是根据题目给出的条件,寻找内在联系和一般规律,然后猜想所求问题的结果,有利于提高综合分析能力.学习成果测评基础达标一、选择题1.下列根式是最简二次根式的是()A. B. C.D.2. 下列各式不是最简二次根式的是()A. B. C. D.3.下列根式中,与是同类二次根式的为()A. B.C.D.4.(江苏省无锡市)下列各式中,与是同类根式的是()A. B. C.D.5.若最简二次根式与是同类二次根式,则a=()A.1 B.2 C.D.–26. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B. 与是同类二次根式C. 与不是同类二次根式D. 同类二次根式是根指数为2的根式7. 与不是同类二次根式的是()A. B. C. D.8. 若,则化简的结果是()A. B. C. 3 D. -39. 若,则的值等于()A. 4B.C. 2D.10.(辽宁省大连市) 计算的结果是()A.B.2 C.D.1.411.(四川省攀枝花市) 下列计算中,正确的是()A. B.C. D.12.(山东省东营市)下列计算正确的是( )A.B.==1 C. D.13. 下列式子中正确的是()A. B.C. D.二、填空题1.若最简根式与根式是同类二次根式,则a = ____________.2. 计算:.3. 计算:.4.(广东省) 化简= ____________.5.(安徽省) 计算的结果是___________.6.(南昌) 计算:___________.7.(重庆市) 化简: = ___________.8.计算:___________.9.计算:=___________.10.计算:=___________.11.一个三角形的三边长分别为,则它的周长是_________cm.12.已知,则.三、解答题1. 计算:2. 计算:⑴⑵⑶⑷3.计算:(1);(2).能力提升一、选择题1. 已知,化简二次根式的正确结果为()A. B. C. D.2. 对于所有实数,下列等式总能成立的是()A. B.C. D.3. 和的大小关系是()A. B. C. D. 不能确定4.(山东省济南市)已知,则代数式的值为()A.B. C.D.5.(山东省临沂市) 计算的值为( )A.2 B.-2 C.-2-2D.-2+26.化简甲,乙两同学的解法如下:甲:=乙:=对他们的解法,正确的判断是()A.甲、乙的解法都正确B.甲的解法正确,乙的解法不正确C.乙的解法正确,甲的解法不正确D.甲、乙的解法都不正确7. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 3二、填空题1. 当,时,.2.若,则___________.3.若最简二次根式与是同类二次根式,则.4. 已知,则.5. 长方形的宽为,面积为,则长方形的长约为_______(精确到0.01).6.(天津市)已知x=,则的值等于____________.7.计算:___________.三、解答题1. 把根号外的因式移到根号内:;.2.计算:3.(辽宁省锦州市)计算:.4.(广西省贺州市) 计算:.5.(江苏省南通市) 计算:.6. 计算及化简:⑴;⑵;⑶;⑷.7. 已知:,求的值.综合探究先观察下列等式,再回答问题:①=②=③=(1) 根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2) 请按照上面几个等式反映的规律,试写出用(为正整数)表示的等式.答案与解析基础达标一、选择题1.B2.D3.C4.C5.A6.A7.A8.C9.C 10.C 11.B 12.A 13.C二、填空题1.2;2.,18;3.-5;4.;5.-1;6.;7.;8.;9.-1;10.;11.;12..三、解答题1. ;2. ;3.解:(1)原式(2)原式能力提升一、选择题1.D2.C3.A4.A5.B6.A7.C二、填空题1.;2.3.1,1;4.10;5.2.83;6.4;7..解:原式三、解答题1.2.解:3.解:4.解:5.解:6. ;7.解:综合探究解:(1)结果为.,验证:;(2).。