中考数学一轮复习知识点总结完整版

合集下载

中考一轮知识点归纳总结

中考一轮知识点归纳总结

中考一轮知识点归纳总结中考是对初中学生学业水平的一次全面检测,考察的内容涵盖了多个学科的知识点。

为了便于学生们复习备考,现对中考一轮知识点进行归纳总结,帮助大家理清知识框架,更好地应对考试。

数学数学作为一门基础学科,在中考中占据重要的地位。

下面对中考数学的知识点进行总结:一、整数与有理数1. 整数运算:包括整数的加减乘除、绝对值等。

2. 有理数的概念:包括有理数的定义和性质。

3. 有理数之间的大小比较:包括相同符号的有理数比较大小和不同符号的有理数比较大小。

二、代数基础1. 代数字母的应用:包括对代数字母的认识及在公式和方程中的应用。

2. 一元一次方程:包括方程的定义、解方程的方法等。

3. 列式与方程:包括如何根据问题列方程和解方程。

三、几何1. 几何图形的认识:包括平面图形和立体图形的基本性质。

2. 平面图形的计算:包括平面图形的面积和周长的计算方法。

3. 空间图形的计算:包括空间图形的体积和表面积的计算方法。

四、概率与统计1. 概率的基本概念:包括事件、样本空间、概率等。

2. 计数原理:包括排列组合等计数方法。

3. 统计学:包括平均数、中位数和众数的计算方法。

英语英语作为一门国际性语言,在中考中也有着重要的地位。

以下是对中考英语的知识点进行总结:一、词汇与语法1. 词汇:包括常用词汇的掌握、词义的理解等。

2. 语法:包括主谓一致、时态、语态、被动语态、条件句等。

二、阅读理解1. 短文理解:包括根据短文内容回答问题、判断正误等。

2. 长文阅读:包括对长文的整体理解和主旨归纳。

三、写作能力1. 书面表达:包括书信、日记、作文等不同类型的写作表达。

2. 写作技巧:包括段落结构、语言表达准确性等写作要点。

四、听力技巧1. 听力理解:包括听力材料的整体理解以及细节抓取。

2. 对话和短文听写:包括对短对话和短文的听写和填空。

物理物理是一门实验性科学,它旨在研究物质和能量的基本规律。

以下是对中考物理的知识点进行总结:一、力和压力1. 力的定义:包括力的概念和力的计量单位。

中考数学一轮复习知识点总结完整版

中考数学一轮复习知识点总结完整版

中考数学一轮复习知识点总结完整版中考数学是一个综合性较强的学科,考察的知识点广泛且涵盖面较大。

下面是中考数学一轮复习的知识点总结,希望对大家的复习有所帮助。

一、数字与运算1.自然数、整数、有理数、实数、正负数的概念和性质;2.整除与倍数的概念和性质;3.分数的概念、性质和简化;4.百分数的概念、性质和应用;5.有理数四则运算,包括加减乘除的计算和性质;6.根号的概念和性质;7.科学计数法的概念和应用。

二、代数式与方程式1.代数式的概念、字母与数的关系和计算;2.方程的概念和性质;3.一次方程和一元一次方程;4.一元一次方程的解法和应用;5.二元一次方程组;6.一元二次方程及其解法。

三、几何基本概念1.点、线、面、角的基本概念;2.平行线与垂直线的性质;3.直角三角形的基本性质;4.同位角、内错角、同旁内角的概念和性质;5.一次性证明、角度和长度的估算。

四、函数与图像1.函数和自变量、因变量的概念;2.一次函数的图像和性质;3.二次函数的图像和性质;4.函数与方程的关系;5.线性函数和二次函数的应用。

五、统计与概率1.统计调查、样本和总体;2.频数、频率和密度的概念和计算;3.四则运算和统计的应用;4.试验、样本空间、事件的概念;5.概率的定义、性质和计算;6.简单事件、必然事件、不可能事件的概念。

六、数与图的表示与分析1.数量的估算、数轴、符号表示和近似计算;2.表格和图表的读取、分析和应用;3.直方图、折线图、饼图的绘制、读取和分析。

七、三角与圆1.三角形的基本概念和性质;2.三角形的相似性;3.角的平分线与垂直平分线;4.周长、面积和体积的计算;5.圆的基本概念和性质;6.圆内接四边形的性质。

八、空间与形体1.空间直线的判定和性质;2.平面与空间直线的位置关系和夹角的判定;3.空间点距离的计算;4.空间图形的投影和旋转;5.空间图形的展开和折叠。

这是中考数学一轮复习的知识点总结,希望对同学们的复习有所帮助。

中考一轮知识点总结数学

中考一轮知识点总结数学

中考一轮知识点总结数学本文将对中考数学一轮知识点进行总结,包括整数、分式、代数式、方程、函数、图形与变换、统计与概率等内容。

希望通过本文的总结,可以帮助同学们系统地复习数学知识,为中考打下坚实的基础。

一、整数整数包括正整数、负整数和零,其中正整数用正号(+)表示,负整数用负号(-)表示,零用0表示。

在整数中,有加法、减法、乘法和除法等运算。

在做整数的乘法时,当两个整数的符号相同时,乘积为正数;当两个整数的符号不同时,乘积为负数。

在做整数的除法时,要注意零不能做被除数。

二、分式分式是指一个整数和一个非零整数的商的形式,分数由分子和分母两部分组成。

在分式中,有加、减、乘、除等运算。

两个分数相加或相减时,需要先找到它们的公分母,然后按照公分母进行运算;两个分数相乘时,直接将分子相乘,分母相乘;两个分数相除时,转为乘以倒数。

三、代数式代数式是由数、代数符号和运算符号组成的表达式,其中包括常数项、变量项、其它代数式的和或积等。

在代数式中,有整式和分式两种形式。

整式包括单项式、多项式和恒等式,单项式是指只有一个项的代数式,多项式是指由一个或多个单项式求和而成,恒等式是指将两个代数式用等号连接起来。

四、方程方程是指含有未知数的等式,未知数的个数通常是1。

方程可以分为一元方程和二元方程,一元方程是指只有一个未知数的方程,二元方程是指有两个未知数的方程。

在解方程时,需要根据方程的性质和特点,采取合适的方法进行求解,比如整理方程、辅助角、两边平方等方法。

五、函数函数是指一个或多个自变量与一个或多个因变量之间的对应关系,函数通常用f(x)或y来表示。

函数包括初等函数和差数函数两种。

在初等函数中,有常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、多项式函数和有理函数等。

在差数函数中,包括导数、微分、积分等内容。

六、图形与变换图形是平面内由线段、直线、角等图形要素按一定规律排列而成的。

在图形中,有点、直线、角、三角形、四边形、圆等概念。

中考数学第一轮复习方程与不等式知识总结

中考数学第一轮复习方程与不等式知识总结

中考数学第一轮复习方程与不等式知识总结一、方程基础概念方程是数学中用于描述两个数学表达式之间相等关系的一种形式。

它通常由未知数、已知数和运算符号组成。

在中考数学中,方程是解决问题的重要工具之一。

理解方程的定义、解的概念以及方程解的性质是后续学习的基础。

二、一元一次方程解法一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

其一般形式为`ax + b = 0`(其中`a ≠0`)。

解一元一次方程的基本步骤包括:去分母、去括号、移项、合并同类项、系数化为1。

掌握这些步骤,能够高效地求解一元一次方程。

三、二元一次方程组二元一次方程组是由两个或两个以上含有两个未知数的一次方程组成的方程组。

解二元一次方程组的基本思想是通过消元法(代入消元法或加减消元法)将二元一次方程组转化为一元一次方程来求解。

掌握二元一次方程组的解法,对于解决实际问题具有重要意义。

四、一元二次方程公式法一元二次方程是只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为`ax^2 + bx + c = 0`(其中`a ≠0`)。

对于一元二次方程的求解,当判别式`Δ= b^2 - 4ac`大于或等于0时,可以使用公式法求解。

公式法求解一元二次方程的公式为`x = [-b ±√(Δ)] / (2a)`。

掌握公式法,能够准确地求解一元二次方程的根。

五、不等式与解集不等式是表示两个数学表达式之间不等关系的一种形式。

它通常用“<”、“>”、“≤”、“≥”等符号表示。

不等式的解集是指满足不等式的所有未知数的值的集合。

理解不等式的性质,掌握不等式解集的表示方法,是求解不等式的基础。

六、一元一次不等式解法一元一次不等式是只含有一个未知数,且未知数的次数为1的不等式。

解一元一次不等式的基本步骤与解一元一次方程类似,包括去分母、去括号、移项、合并同类项等。

但需要注意的是,在解不等式时,当两边同时乘以或除以一个负数时,不等号的方向会发生变化。

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0

x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .

初三数学知识点总结梳理

初三数学知识点总结梳理

初三数学知识点总结梳理第一章:有理数与实数1. 整数的概念与性质- 整数的定义及其表示方法- 整数的比较、运算规则和性质- 整数的绝对值及其性质- 整数的约数与倍数- 整数的倒数的概念与性质2. 有理数的概念与性质- 有理数的定义及其表示方法- 有理数的比较、运算规则和性质- 有理数的绝对值及其性质- 有理数的相反数和倒数的概念与性质- 有理数的大小关系3. 实数的概念与性质- 实数的定义与分类- 实数的基本性质- 实数的大小关系- 实数的逼近性质第二章:代数式与方程式1. 代数式的概念与性质- 代数式的定义与表示方法- 同类项与同类项合并- 代数式的化简与展开2. 方程式的概念与性质- 方程式的定义与性质- 一元一次方程的解的存在与唯一性- 一元一次方程的变形与解法- 一元一次方程组的概念与解法- 一元二次方程的求解与判别式3. 不等式的概念与性质- 不等式的定义与性质- 不等式的解集的表示- 一元一次不等式与一元一次方程的联系与比较- 一元一次不等式组的概念与解法第三章:平面图形与空间图形1. 平面图形的概念与性质- 点、线、面的定义与性质- 角的定义、性质及其分类- 平行线与垂直线的判定条件- 三角形的定义及其分类- 三角形的内角和及其应用- 三角形的相似与全等的概念与判定条件2. 空间图形的概念与性质- 四面体、正四面体、正六面体的定义与性质- 柱、锥棱的定义与性质- 平面与空间图形的相交关系3. 图形的投影与观察- 立体图形的投影与观察方法- 投影的性质与应用- 平行线与投影的关系第四章:初等几何与解析几何1. 初等几何的基本概念与定理- 点、线、面、角的定义与性质- 垂线、平分线、中位线的概念与性质- 垂直、平行、全等三角形的判定条件- 三角形内角和的计算方法- 直角三角形、等腰三角形、等边三角形的定理2. 解析几何的基本概念与方法- 点、坐标系的定义与性质- 坐标的运算法则与性质- 直线、圆的方程与性质- 直线的稳定与相关性质- 圆的位置关系与性质3. 二次函数的概念与性质- 二次函数的定义与表示方法- 二次函数的图像与性质- 二次函数的最值与零点的求解方法- 二次函数与方程、不等式、直线的关系与应用第五章:数与变量1. 整式的概念与性质- 整式的定义与运算规则- 整式的因式分解与乘法公式- 整式的化简- 整式的值与单位问题2. 分式的概念与性质- 分式的定义与基本运算规则- 分式的化简与恒等式- 分式的值与解3. 幂与根的概念与性质- 幂的定义与运算规则- 根的定义与运算规则- 幂与根的化简- 幂与根的近似计算与应用。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

2024年九年级中考数学一轮复习大纲课件

2024年九年级中考数学一轮复习大纲课件
学习幂的运算方法, 了解幂的性质及其在 代数式中的应用。
指数与对数的运算
学习指数与对数的定 义及其运算规则,掌 握它们在代数式中的
应用。
函数与关系的建立
了解函数与关系的概 念,学会建立函数关 系式并进行相关运算。
代数式的综合应用
综合运用所学知识, 解决复杂的代数式问 题,提高解决问题的
能力。
一元一次方程与不等式
反比例函数
反比例函数的图像与性质
反比例函数基础
详解反比例函数的定义、性质和图像特征
反比例函数应用
阐述反比例函数在实际问题中的应用和解题技巧
反比例函数综合
探讨反比例函数的综合问题和解题策略
函数图像的识别与应用
函数图像的特点和应用场景
函数图像的基本性质
图像变换、对称性、单调性、最值问题
函数图像的识别
• 学习如何用区间表示一元一次方程和 一元一次不等式的解集。
二元一次方程与不等式
二元一次方程和不等式的解法与应用
二元一次方程基本概念
01
介绍二元一次方程的定义、组成及解法
解二元一次方程组
02
解析二元一次方程组的解法及应用
不等式基本概念
03
阐述不等式的定义、性质及解集表示
解二元一次不等式组
04
讲解二元一次不等式组的解法及应用
中考数学一轮复习
全面提高数学素养,备战中考
目录 1.实数与函数 2.几何 3.代数 4.统计与概率 5.综合应用题 6.数学思想与方法
实数与函数
实数与函数的基础知识和应用
实数概念及运算
实数的定义、分类和运算规则
实数的分类与表 示
实数分为有理数和无理数, 有理数可以表示为分数或 整数,无理数不能表示为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算 1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n 个实数相乘,有一个因数为0,积就为0;若n 个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

六、有效数字和科学记数法1、科学记数法:设N >0,则N= a ×n10(其中1≤a <10,n 为整数)。

例题:例2、若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。

例3、若22+-b a 与互为相反数,求a+b 的值例4、已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,求2m cd mba +-+的值。

第二章:代数式基础知识点:3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:nm n m a a a +=⋅; 同底数幂相除:nm n m aa a -=÷;幂的乘方:mnnm a a =)(; 积的乘方:nnnb a ab =)(。

乘法公式:平方差公式:22))((b a b a b a -=-+;完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=- 三、因式分解四、分式1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(五、二次根式1、二次根式的概念:式子)0(≥a a 叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

2、二次根式的性质:(1) )0()(2≥=a a a ;(2)⎩⎨⎧<-≥==)0()0(2a aa aa a ;(3)b a ab ⋅=(a ≥0,b ≥0);(4))0,0(≥≥=b a bab a 3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法:ab b a =⋅(a ≥0,b ≥0)。

(3)二次根式的除法:)0,0(≥≥=b a baba 二次根式运算的最终结果如果是根式,要化成最简二次根式。

例题:一、因式分解:4、根式计算例8、已知最简二次根式12+b 和b -7是同类二次根式,求b 的值。

分析:根据同类二次根式定义可得:2b+1=7–b 。

解:略代数部分第三章:方程和方程组基础知识点: 二、一元方程2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法 (3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解; 当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,acx x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组 例题:一、一元二次方程的解法 例1、解下列方程:(1)2)3(212=+x ;(2)1322=+x x ;(3)22)2(25)3(4-=+x x分析:(1)用直接开方法解;(2)用公式法;(3)用因式分解法 解:略例3、解下列方程: (2)111122-+=-x x ;分析:(1)用去分母的方法;(2)用换元法 解:略[规律总结]一般的分式方程用去分母法来解,一些具有特殊关系如:有平方关系,倒数关系等的分式方程,可采用换元法来解。

三、根的判别式及根与系数的关系例4、已知关于x 的方程:032)1(2=+++-p px x p 有两个相等的实数根,求p 的值。

分析:由题意可得∆=0,把各系数代入∆=0中就可求出p ,但要先化为一般形式。

解:略[规律总结]对于根的判别式的三种情况要很熟练,还有要特别留意二次项系数不能为0例5、已知a 、b 是方程0122=--x x 的两个根,求下列各式的值: (1)22b a +;(2)ba 11+ 分析:先算出a+b 和ab 的值,再代入把(1)(2)变形后的式子就可求出解。

例7、解下列方程组:(1)⎩⎨⎧=-=+52332y x y x ;分析:(1)用加减消元法消x 较简单;代数部分第四章:列方程(组)解应用题知识点:二、列方程(组)解应用题常见类型题及其等量关系; 1、工程问题(1)基本工作量的关系:工作量=工作效率×工作时间(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量(3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题2、行程问题(1)基本量之间的关系:路程=速度×时间 (2)常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程 3、水中航行问题:顺流速度=船在静水中的速度+水流速度; 逆流速度=船在静水中的速度–水流速度 4、增长率问题:常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率);5、数字问题:基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100 例题:例1、甲、乙两组工人合作完成一项工程,合作5天后,甲组另有任务,由乙组再单独工作1天就可完成,若单独完成这项工程乙组比甲组多用2天,求甲、乙两组单独完成这项工程各需几天?分析:设工作总量为1,设甲组单独完成工程需要x 天,则乙组完成工程需要(x+2)天,等量关系是甲组5天的工作量+乙组6天的工作量=工作总量解:略例2、某部队奉命派甲连跑步前往90千米外的A 地,1小时45分后,因任务需要,又增派乙连乘车前往支援,已知乙连比甲连每小时快28千米,恰好在全程的31处追上甲连。

求乙连的行进速度及追上甲连的时间 分析:设乙连的速度为v 千米/小时,追上甲连的时间为t 小时,则甲连的速度为(v –28)千米/小时,这时乙连行了)47(+t 小时,其等量关系为:甲走的路程=乙走的路程=30解:略例3、某工厂原计划在规定期限内生产通讯设备60台支援抗洪,由于改进了操作技术;每天生产的台数比原计划多50%,结果提前2天完成任务,求改进操作技术后每天生产通讯设备多少台?分析:设原计划每天生产通讯设备x 台,则改进操作技术后每天生产x (1+0.5)台,等量关系为:原计划所用时间–改进技术后所用时间=2天解:略例4、某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后经加强管理,又使月销售额上升,到四月份销售额增加到96万元,求三、四月份平均每月增长的百分率是多少?分析:设三、四月份平均每月增长率为x%,二月份的销售额为60(1–10%)万元,三月份的销售额为二月份的(1+x )倍,四月份的销售额又是三月份的(1+x )倍,所以四月份的销售额为二月份的(1+x )2倍,等量关系为:四月份销售额为=96万元。

解:略例5、一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,例如存入一年期100元,到期储户纳税后所得到利息的计算公式为:税后利息=%)201%(25.2100%20%25.2100%25.2100-⨯=⨯⨯-⨯已知某储户存下一笔一年期定期储蓄到期纳税后得到利息是450元,问该储户存入了多少本金?分析:设存入x 元本金,则一年期定期储蓄到期纳税后利息为2.25%(1-20%)x 元,方程容易得出。

相关文档
最新文档