2011数学建模试题及答案

合集下载

2011年数学建模B题答案

2011年数学建模B题答案

2011年数学建模B题答案load B1.txt %巡警站点号、横坐标、纵坐标(前三列)load B2.txt %起始点,末端位置号(两列)hzb=B1(:,2);%横坐标zzb=B1(:,3);%纵坐标start=B2(:,1);%起始位置fina=B2(:,2);%末端位置n=length(hzb);%坐标个数m=length(start);%起始点个数:含重复a=ones(n,n);%n阶矩阵b=10000.*a;%b为矩阵a的值乘上10000for i=1:m %每个始点出去x=start(i);y=fina(i);if y<=92s=((hzb(x)-hzb(y))^2+(zzb(x)-zzb(y))^2)^0.5;b(x,y)=s;b(y,x)=s;%双向图距离endendpath=zeros(n,20);%终点前一个路劲节点distance=b(:,1:20);%二十个站到其他点的最短距离u=0;mindis=10000;%最短距离初始为10000flag=1;s=zeros(n,1);for i=1:20s=0.*s;%每次清零flag=1;%bool型标量for j=1:nif distance(j,i)<10000path(j,i)=i;%若满足,就往下走endends(i)=1;for j=1:n% if flag==1mindis=10000;for k=1:nif s(k)==0 & distance(k,i)<mindisu=k;mindis=distance(k,i);%选择最小的赋给mindisendend% if mindis>30% flag=0;% ends(u)=1;for k=1:nif s(k)==0 & b(u,k)<10000 & distance(u,i)+b(u,k)<distance(k,i)distance(k,i)=distance(u,i)+b(u,k);path(k,i)=u; %选择最短路径endend% endendendfor i=1:20for j=1:nifdistance(j,i)<10000&fprintf(' %d %d %f,%d\n',i,j,distance(j,i),pa th(j,i));%fprintf('%d %d %f %d\n',i,j,distance(j,i),path(j ,i));%fprintf('%f\n',distance(j,i)); %输出路径,始点,终点,及终点前一个结点endendend数学建模文章格式模版题目:明确题目意思一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。

2011高教社杯全国大学生数学建模竞赛B题参考答案

2011高教社杯全国大学生数学建模竞赛B题参考答案

交巡警服务平台的设置与调度优化分析摘要本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。

并分别对题目的各问,作了合理的解答。

问题一:(1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd 算法及matlab编程求出两点之间的最短距离,使其尽量满足能在3分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。

(2)、我们对进出该区的13条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用0-1变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。

(3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。

我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。

问题二:(1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、D、E、F区域平台设置不合理。

并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。

(2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。

关健字: MATLAB软件,0-1规划,最短路,Floyd算法,指派问题一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

2011全国数学建模

2011全国数学建模

全国2011年数学建模题目
A 题 疾病的诊断
现要你给出疾病诊断的一种方法。

胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。

从胃癌患者中抽取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白(1X )、 蓝色反应(2X )、尿吲哚乙酸(3X )、中性硫化物(4X )、测得数据如表1所示:
表1. 从人体中化验出的生化指标
根据数据,试给出鉴别胃病的方法。

2011年数学建模B 题:科研项目评审中的数学问题
随着国家对科技工作的日益重视,对科技工作的资金投入力度逐步加大,科研项目数量也日益增加,申请科研项目也是广大科技工作者的迫切要求。

当然作为科研项目管理部门的项目评审任务愈加繁重。

现请考虑以下问题:
1、科研项目管理部门往往根据评审专家的意见和历年经验凭借项目申请书的以下内容来判定项目申请书的质量:项目相关研究基础、研究团队、申请内容
的创新性、申请内容的研究难度、研究思路与方法或技术方案的可行性、年度任务计划安排、申请资金预算合理性等等指标。

请你用数学建模的方法,利用上述指标(不限于上述指标,只要是合理指标)建立申请项目质量的评价标准。

2、现在科研项目管理部门一般采取专家评审办法,实现公平、公正一直是孜孜以求的目标,如何安排项目的评审也是科研管理重点关注的。

请你帮助解决以下项目安排:
a、100个项目,20个专家,要求每个项目要有3个专家评审,请给出合理的安排方案,并给出你认为合理的定义或说明;
b、10000个项目,要求每个项目要有3个专家评审,每个专家评审项目不超过20项,在a 的合理性要求下,请估计需要的专家数量。

2011年数学建模竞赛B题参考答案(只做了一半)

2011年数学建模竞赛B题参考答案(只做了一半)

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

2011年数学建模集训小题目答案

2011年数学建模集训小题目答案
double(ans)
ans =1.4396
2.已知 , ,画出 时, 的图形。
主程序:
syms t,syms h;
f=exp(t+h)*cos(t+h)+(t+h)^2*sin(t+h);
int(f,t,0,10)
ans =
exp(h)*sin(h)+cos(h)*h^2-2*cos(h)-2*sin(h)*h',[-10,10])
[t,x]=45('shier',[0,12],[1,0.5]);
plot(t,x(:,1),'-',t,x(:,2),'*')
[t,x]=45('shier',[0,12],[1,0.7]);
plot(t,x(:,1),'-',t,x(:,2),'*')
[t,x]=ode45('shier',[0,12],[1,0.9]);
Variable Value Reduced Cost
P1 0.000000 20.00000
D11 20.00000 0.000000
P2 0.000000 0.000000
D21 0.000000 0.000000
P3 0.000000 30.00000
D31 30.00000 0.000000
(3)目标函数:
maxz=3000*x1+2000*x2+2900*x3+21000*x4+1870*x5;
8*x1+2*x2+10*x3+12*x4+4*x5<=300;
10*x1+5*x2+8*x3+5*x4+4*x5<=400;

2011-2012第一学期《数学建模》选修课试题卷及答案

2011-2012第一学期《数学建模》选修课试题卷及答案

2011-2012第一学期《数学建模》选修课试题卷一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型指为了某种特定目的将原型的某一部分信息简化、压缩、提炼而构造成的原型替代物。

如地图、苯分子图.2.数学模型由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。

具体地说,数学模型也可以描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些简化假设后,运用适当的数学工具,得到的一个数学结构称之为数学模型.如概率的功利化定义.3.抽象模型通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓思维模型.如汽车司机对方向盘的操作.二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类.形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型、数学模型等。

2.数学建模的基本步骤1)建模准备:确立建模课题的过程;2)建模假设:根据建模的目的对原型进行抽象、简化。

有目的性原则、简明性原则、真实性原则和全面性原则;3)构造模型:在建模假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻划实际问题的数学模型.;4)模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;5)模型分析:根据建模的目的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。

;6)模型检验:模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,看它是否符合客观实际;7)模型应用:模型应用是数学建模的宗旨,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用.3.数学模型的作用数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题。

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

交巡警服务平台的设置与调度优化分析摘要本文综合应用了Floyd算法,匈牙利算法,用matlab计算出封锁全市的时间为1.2012小时。

并在下面给出了封锁计划。

为了得出封锁计划,首先根据附件2的数据将全市的道路图转为邻接矩阵,然后根据邻接矩阵采用Floyd算法计算出该城市任意两点间的最短距离。

然后从上述矩阵中找到各个交巡警平台到城市各个出口的最短距离,这个最短距离矩阵即可作为效益矩阵,然后运用匈牙利算法,得出分派矩阵。

根据分派矩阵即可制定出封锁计划:96-151,99-153,177-177,175-202,178-203,323-264,181-317, 325-325,328-328,386-332,322-362,100-387,379-418,483-483, 484-541,485-572。

除此以外,本人建议在编号为175的路口应该设置一个交巡警平台,这样可以大大减少封锁全市的时间,大约可减少50%。

关键词: Floyd算法匈牙利算法 matlab一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:警车的时速为60km/h, 现有突发事件,需要全市紧急封锁出入口,试求出全市所有的交巡警平台最快的封锁计划,一个出口仅需一个平台的警力即可封锁。

二、模型假设1、假设警察出警时的速度相同且不变均为60/km h 。

2、假设警察出警的地点都是平台处。

3、假设警察接到通知后同时出警,且不考虑路面交通状况。

三、符号说明及一些符号的详细解释A 存储全市图信息的邻接矩阵 D 任意两路口节点间的最短距离矩阵X 01-规划矩阵ij a ,i j 两路口节点标号之间直达的距离 ij d 从i 路口到j 路口的最短距离 ij b 从i 号平台到j 号出口的最短距离ij x 取0或1,1ij x =表示第i 号平台去封锁j 号出口在本文中经常用到,i j ,通常表示路口的编号,但是在ij d ,ij b ,ij x 不再表示这个意思,i 表示第i 个交巡警平台,交巡警平台的标号与附件中给的略有不同,如第21个交巡警平台为附件中的标号为93的交巡警平台,本文的标号是按照程序的数据读取顺序来标注的,在此声明;j 表示第j 个出口,如:第5个出口对应于附件中的路口编号为203的出口。

2011大学生数学建模AB全部答案

2011大学生数学建模AB全部答案

题目B题交巡警服务平台的设置与调度摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

由警车的数目m,将全区划分成m个均匀的分区,从每个分区的中心点出发,找到最近的道路节点,作为警车的初始位置,由Floyd算法算出每辆警车3分钟或2分钟行驶路程范围内的节点。

考虑区域调整的概率大小和方向不同会影响调整结果,本文利用模拟退火算法构造出迁移几率函数,用迁移方向函数决定分区的调整方向。

计算能满足D1的最小车辆数,即为该区应该配置的最小警车数目,用MATLAB计算,得到局部最优解为13辆。

在选取巡逻显著性指标时,本文考虑了两个方面的指标:一是全面性,即所有警车走过的街道节点数占总街道节点数的比例,用两者之比来评价;二是均匀性,即所有警车经过每个节点数的次数偏离平均经过次数的程度,用方差值来大小评价。

问题三:为简化问题,假设所有警车在同一时刻,大致向同一方向巡逻,运动状态分为四种:向左,向右,向上,向下,记录每个时刻,警车经过的节点和能够赶去处理事故的点,最后汇总计算得相应的评价指标。

在考虑巡逻规律隐蔽性要求时,文本将巡逻路线进行随机处理,方向是不确定的,采用算法2进行计算,得出相应巡逻显著指标,当车辆数减少到10辆或巡逻速度变大时,用算法2计算巡逻方案和对应的参数,结果见附录所示。

本文最后还考虑到4个额外因素,给出每个影响因素的解决方案。

关键词:模拟退火算法;Floyd算法;离散化一问题的重述110警车在街道上巡逻,既能够对违法犯罪分子起到震慑作用,降低犯罪率,又能够增加市民的安全感,同时也加快了接处警时间,提高了反应时效,为社会和谐提供了有力的保障。

现给出某城市内一区域,其道路数据和地图数据已知,该区域内三个重点部位的坐标分别为:(5112,4806),(9126, 4266),(7434 ,1332)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城市学院2010-2011学年第二学期《数学建模》课程
考试试题(开卷)
年级:09级 专业:机械1班 学号:20940501115 姓名:李明泽
1. 游泳队员分配问题
某游泳队拟选用 甲,乙,丙,丁四名游泳队员组成一个4*100m 混合泳接力队,参加今年的锦标赛。

他们的100m 自由泳,蛙泳,蝶泳,仰泳的成绩如下表所示。

问 甲,乙,丙,丁 四名队员各自游什么姿势,才最有可能取得最好成绩。

请建立数学模型,并写出用Lingo 软件的求解程序。

解:引入0-1变量Xij ,若选择队员i 参加泳姿j 的比赛,记Xij=1,否则记Xij=0根据组成接力队的要求,Xij 应该满足两个约束条件:
第一, 每人最多且只能入选4种泳姿之一,即对于i=1234;应有Xij=1;
第二, 每种泳姿必须有一人且只能有一人入选,即对于j=1234;应有Xij=1
当队员i 入选泳姿j 是,CijXij 表示他的成绩,否则CijXij=0。

于是接力赛成绩可表示为Z=∑∑==414
1j i CijXij ,这就是改问题的目标函数。

综上,这个问题的0-1规划模型可写作
Min Z= Z=∑∑==4141j i CijXij ;S .t .∑=41j Xjy =1,i=1,2,3,4; ∑=41
i Xjy =1,i=1,2,3,4
将题目给数据代入这一模型,并输入LIGDO :
Min =56*x11+74*x12+61*x13+63*x14
+63*x21+69*x22+65*x23+71*x24
+57*x31+77*x32+63*x33+67*x34
+55*x41+76*x42+62*x43+62*x44;
x11+x12+x13+x14=1;
x21+x22+x23+x24=1;
x31+x32+x33+x34=1;
x41+x42+x43+x44=1;
x11+x21+x31+x41=1;
x12+x22+x32+x42=1;
x13+x23+x33+x43=1;
x14+x24+x34+x44=1;
@bin(x11);
@bin(x12);
@bin(x13);
@bin(x14);
@bin(x21);
@bin(x22);
@bin(x23);
@bin(x24);
@bin(x31);
@bin(x32);
@bin(x33);
@bin(x34);
@bin(x41);
@bin(x42);
@bin(x43);
@bin(x44);
求解可以得到最优解如下:
2.钢筋切割问题
设某种规格的钢筋原材料每根长10m,求解如下优化问题:
1) 现需要该种钢筋长度为4m的28根,长度为1.8m的33根,问至少需要购买原材料几根?如何切割?
2) 如需要该种钢筋长度为4m的28根,长度为1.8m的33根,长度为3.6m的79根,长度为2.4m的46根,问至少需要购买原材料几根?如何切割(可以考虑切割模式不超过3种)?
请建立数学模型,对上述问题进行求解并写出用Lingo软件的求解程序。

(1)解:分析可以得到如下表3种切割模式:
一切割后原料钢管的总根数最少为目标,则有
Min Z=x1+x2+x3;
根绝要求,约束条件为:
2x1+x2>=28;
X1+3x2+5x3>=33;
将上面的构成的整数线性规划正型输入LINDO如下:
Min =x1+x2+x3;;
2x1+x2>=28;
X1+3x2+5x3>=33;
@gin(x1);
@gin(x2);
@gin(x3);
求解可以得到最优解如下:
(2)解:记Xi表示第种模式切割的原料钢管的根数;(i=1,2,3)
设所使用的第i切割模式下每根原料钢管生产1.8m,.4m,3.6m,4m的钢管数量分别为r1i,r2i,r3i,r4i;由于原料钢管的总根数不可能少于(1.8*33+2.4*46+3.6*79+4*28)/10=57。

所以
将上面的构成的整数线性规划正型输入LINDO如下:
min=x1+x2+x3;
x1*r11+x2*r12+x3*r13>=33;
x1*r21+x2*r22+x3*r23>=46;
x1*r31+x2*r32+x3*r33>=79;
x1*r41+x2*r42+x3*r43>=28;
1.8*r11+
2.4*r21+
3.6*r31+4*r41<=10;
1.8*r12+
2.4*r22+
3.6*r32+4*r42<=10;
1.8*r13+
2.4*r23+
3.6*r33+4*r43<=10;
1.8*r11+
2.4*r21+
3.6*r31+4*r41>8.2;
1.8*r12+
2.4*r22+
3.6*r32+4*r42>8.2;
1.8*r13+
2.4*r23+
3.6*r33+4*r43>8.2; x1+x2+x3>=57;
x1+x2+x3<=64;
x1>=x2;
x2>=x3;
@gin(x1);
@gin(x2);
@gin(x3);
@gin(r11);
@gin(r12);
@gin(r13);
@gin(r21);
@gin(r22);
@gin(r23);
@gin(r31);
@gin(r32);
@gin(r33);
@gin(r41);
@gin(r42);
@gin(r43);
求解可以得到最优解如下:
3、谈谈你对学习《数学模型》课程的体会和认识
通过这学期数学模型的学习,我感触良多,它所教会我的不单单是一些数学方面的理论知识,更多的是综合能力的培养,锻炼和提高。

是数学与生活紧密地结合在一起。

我学会了解决简单的数学建模问题。

也锻炼了自己的逻辑推理能力和分析能力。

我相信这对于我以后是有很大帮助的。

相关文档
最新文档