质数和合数,分解质因数
质数、合数和分解质因数

第一讲质数和合数例1 两个质数的和是39,这两个质数的积是多少?例2 数d是质数,且a+10、a+14的和也都是质数,数a是多少?例3 三个质数的和是80,这三个质数的积最大是多少?练习:1.在20个连续自然数中最多有多少个质数?最少有几个质数?2.两个质数的和是1995,这两个质数的乘积是多少?3.两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少?4.两个质数的和是40,求这两个质数的乘积最大是多少?5.两个质数的和是99,这两个质数的积是多少?第二讲分解质因数例1 三个连续自然数的乘积是120,求这三个数。
例2 小明是个中学生,他说:“这次考试,我的名次乘以我的年龄再乘以我的考试分数,结果是2910。
”你能算出小明的名次、年龄与他这次考试的分数吗?例3 学校举行跳绳比赛,取得前4名的同学恰好一个比一个大一岁,四人年龄的乘积是11880,这四个同学的年龄各是多少?例4 下面算式中,不同的字母代表不同的数字。
求这个算式。
例5 1512乘以自然数a得到一个平方数,求a的最小值。
例6 有三个自然数,它们的和是338,积是1986,求这三个数。
例7 有24盆花,分成几堆(至少分2堆),使每堆的盆数都相等,可以怎样分?例8 自然数151200的约数中有许多两位数,其中最大的是几?例9 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三个数的乘积是42560,求这三个自然数。
例10 有3个自然数a、b、c,已知a×b=6,b×c=15,a×c=10,贝a×b×c=?例11 用216元去买一种钢笔,正好将钱用完。
如果每支钢笔便宜1元,则可以多买3支钢笔,钱也正好用完。
共买了多少支钢笔?例12 将下面八个数平均分成两组,使这两组数各自的乘积相等。
例13 自然数1111155555是两个连续奇数的乘积,则这两个连续奇数的和是多少?例14 在射箭运动中,每射一箭的环数是O(脱靶)或者是不超过10的自然数,甲、乙两名运动员各射了5箭,每人5箭的环数的积都是1764,但甲的总环数比乙的总环数多4环,求甲、乙两人的总环数各是多少?练习:1.相邻两个自然数的乘积是756,这两个自然数分别是多少?2.下面算式中,不同的字母代表不同的数字,求这个算式中四个字母的和,3.三个自然数的和是160,三个自然数的积是32118,这三个数是哪几个数?4.自然数a乘以2376,正好是一个平方数,求a的最小值。
3.3:质数、合数、分解质因数教学案及巩固练习

3.3:质数、合数及分解质因数【学习目标】:1、理解质因数和分解质因数的意义。
2、会把一个合数分解质因数。
3、在探索发现的过程中体验成功的乐趣,增强自己学好数学的信心学习重点:理解质因数和分解质因数的意义。
【学习重难】:会用短除法分解质因数。
【学习方法】:学习方法:独立思考与小组交流相结合【知识点1】质数和合数一个数,如果只有1和它本身两个因数,这样的数叫做质数,也叫质数.一个数,如果除了1和它本身以外还有别的因数,这样的数叫合数.质因数是指:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,也叫做这个合数的质因数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数【考点分析】对于质数与合数的考查主要放在概念的理解上,主要以填空、选择的形式出现,一种是文字描述的形式出现,另一种是给定某数让你判别它是质数还是合数;而对于质因数考查的一般是判别给定的数是否为某数的质因数(或者说求某数的质因数),还有一种考法是对给定的数进行质因数的分解。
【典型例题】1、填空:在正整数中,既不是质数也不是合数的数是_____,既是质数又是偶数的数是______,最小的合数是分析:这类题目的解答中要记住特殊情况,针对上面的题目,我们得记住1既不是质数,也不是合数。
而2是唯一一个属于质数的偶数,且2是最小的质数。
4是最小的合数(背会)2、39、47、57、83中为质数的有()(A) 39,47 (B) 47,57 (C)57,83 (D)47,83分析:对于这类题目我们可以根据数的特征来进行判断。
3、下列说法中正确的是()(A)自然数包括质数和合数两类 (B)不存在最小的质数(C)1既不是质数,也不是合数(D)2是最小的合数分析:记住1这个特殊情况。
4、两个质数相乘的积一定是()(A)奇数(B)偶数(C)质数(D)合数分析:用排除法,其中对于D选项,如果有两个质数相乘所得来的数,除了含有这两个质数作它的因数外,至少还有1。
质数和合数分解质因数

范围和要求
1.知识点范围 A 质数、合数的概念 B 判断一个数是质数还是合数的方 法 C 掌握分解质因数的方法
范围和要求
2.要求 A 理解质数、合数的意义 B 熟练地掌握判断一些常见数是质数, 还是合数的方 法 C 熟悉20以内的质数,会查质数表 D 初步掌握用短除法分解质因数的方法 E 知道因数、质因数与分解质因数间的联系与区别
例题:把下面各数分解质因数,并分别写 出它们所有的约数。
分解质因数 15 18 20 约 数
15=3 5
1、3、5、15
18=2 3 3 1、2、3、6、9、18 20=2 2 5 1、2、4、5、10、20
小结
质数、因数、质因数、分解质因数
一个数除了1和它本身,不再有别的约数,这个数 叫做质数。它是1个独立存在的数。比如17是质数,因 为它只有1和17两个约数。
知识点精讲
一、质数和合数
1 的约数: 1
5 的约数: 1、5 12 的约数: 1、2、3、4、6、12 16 的约数: 1、2、4、8、16 17 的约数: 1、17 21 的约数: 1、3、7、21 25 的约数: 1、5、25 29 的约数: 1、29 32 的约数: 1、2、4、8、16、32 36 的约数: 1、2、3、4、6、9、12、18、36 37 的约数: 1、37
× (×
(
(
所有的合数都是偶数吗?
所有的偶数都是合数吗?
×
×
)
)
知识点精讲
二、分解质因数
6 2 3 28 4 7 2 2 6= 2 3 7
28= 2 2 7
每个合数都可以写成几个质数相乘的形式。 其中每个质数都是这个合数的因数,叫做质因 数。 把一个合数用质因数相乘的形式表示出来, 叫做分解质因数。
第3讲:质数、合数及分解质因数讲解及习题

第3讲:质数、合数及分解质因数(数学:老师)【知识点1】质数和合数一个数,如果只有1和它本身两个因数,这样的数叫做质数,也叫质数.一个数,如果除了1和它本身以外还有别的因数,这样的数叫合数.质因数是指:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数【考点分析】对于质数与合数的考查主要放在概念的理解上,主要以填空、选择的形式出现,一种是文字描述的形式出现,另一种是给定某数让你判别它是质数还是合数;而对于质因数考查的一般是判别给定的数是否为某数的质因数(或者说求某数的质因数),还有一种考法是对给定的数进行质因数的分解。
【典型例题】1、填空:在正整数中,既不是质数也不是合数的数是_____,既是质数又是偶数的数是______分析:这类题目的解答中要记住特殊情况,针对上面的题目,我们得记住1既不是质数,也不是合数。
而2是唯一一个属于质数的偶数,且2是最小的质数。
2、39、47、57、83中为质数的有()(A) 39,47 (B) 47,57 (C)57,83 (D)47,83分析:对于这类题目我们可以根据数的特征来进行判断。
3、下列说法中正确的是()(A)自然数包括质数和合数两类 (B)不存在最小的质数(C)1既不是质数,也不是合数(D)2是最小的合数分析:记住1这个特殊情况。
4、两个质数相乘的积一定是()(A)奇数(B)偶数(C)质数(D)合数分析:用排除法,其中对于D选项,如果有两个质数相乘所得来的数,除了含有这两个质数作它的因数外,至少还有1。
所以得数肯定不能为质数。
5、根据要求填空:在1,2,9,21,43,51,59,64这八个数中,(1)是奇数又是质数的数是();(2)是奇数不是质数的数是();(3)是质数而不是奇数的数是();(4)是合数而不是偶数的数是();(5)是合数而不是奇数的数是().6 、在14=2×7中,2和7都是14的( )。
分解质因数顺口溜

分解质因数顺口溜分解质因数是小学数学中的重要知识点之一,通过对数字的质因数分解可以计算它的最大公约数、最小公倍数等问题。
为了帮助同学们更好地掌握分解质因数,以下是一篇关于分解质因数顺口溜的文章。
一、什么是质数和合数?在分解质因数之前,我们需要先知道什么是质数和合数。
1. 质数:只能被1和它本身整除的数,例如2、3、5、7、11、13等。
2. 合数:除了1和它本身外,还有其他因数的数,例如4、6、8、9、10、12等。
二、分解质因数的基本步骤分解质因数的基本步骤是:先将数字分解成质数的乘积,再将这些质数按从小到大的顺序排列。
以12为例,它可以分解为2*2*3。
这里我们先找到它的质因数2,由于12可以被2整除,因此我们将12除以2得到6。
接着,我们再将6继续除以2,得到3。
此时,3是一个质数,同时也是12的因数。
因此,12可以表示为2*2*3。
三、分解质因数的顺口溜接下来,我们来说说分解质因数的顺口溜:质数是生成数,合数可分解。
先看能否被2,再看能否被3,再看5或7,或11或13,到最后若不能分,则那就是个质啦!意思是说,分解质因数时,先判断所分解的数字是否是质数或合数。
如果是质数,则它就是一个质因数。
如果是合数,则尝试把它分解成两个因数,再对这两个因数分别进行质因数分解。
首先,我们尝试用2除以这个数,看是否能够整除。
如果可以,就把这个数除以2,保留商作为新的数,并继续尝试用2除以这个数。
如果这个数不能被2整除,就尝试用3除以这个数,以此类推。
当最后得到的数已经是一个质数时,就把这个质数加入到分解结果中即可。
四、总结分解质因数是小学数学的重要知识点之一,通过掌握这一技巧,我们可以更好地解决一些数论问题。
希望本篇文章中提供的顺口溜可以帮助同学们更好地记忆分解质因数的方法,从而更好地掌握这一知识点。
分解质因数

知识链接: 1、约数和倍数:如果a÷b=c(a、b、c都是整数b≠0),则
a 是b的倍数,b是a的约数; 2、质数和合数:( 非0并且不包含1的数)
(1)质数:只有1和本身这两个约数; (2)合数:除了1和本身还有其他约数; 3、质因数:如果一个质数是某个数a的约数,
这个质数就是a的质因数; 4、分解质因数:把一个合数用质因数相乘的形式表示; 5、幂:几个相同的数相乘,如:a5 =a×a×a×a×a; 6、100以内的25个质数:
例2、将72分解质因数
解 72=2×36 =2×2×18 =2×2×2×9 =2×2×2×3×3 =23×32
拓展练习:自然数m和n,n= m+1,
m和n的最大公约数是( 1 ),最小 公倍数是( mn )。
例3、四个连续自然数的积为5040,求这四个数。
解 5040=24×32×5×7 =7×8×9×10
6+1=7(个) (3+1)×(2+1)=12(个)
(4)1200
(2)81
1200=24×3×52
81=34
(4+1)×(1+1)×(2+1)=30
4+1=5(个) (个)
求约数个数公式
指数加1连成积
拓展练习:
把A分解质因数是A=a×b×c (a,b,c均为质数),
A的因数有( 8 )个。
例8、求下列各数全部约数的和。
⑦所有的质数都能写成比它本身小的两
个质数相加的形式。(× )[ 2、3 ]
⑧所有的合数都可以写成比它本身小的
两个数相乘的形式。(√ )[
]
例1、写出4的倍数和72的约数。
解:4 的倍数有:4、8、12、16、20……(无穷多个) 72的约数有:1、2、3、4、6、8、9、12、18、24、
质数与合数 分解质因数
质数与合数分解质因数知识要点:自然数(不包括0)按照因数个数的不同可以分为三类:1、质数、合数。
把一个合数分解成几个质数相乘的形式叫做分解质因数,这几个质数叫做这个合数的质因数。
一般是用“短除法”逐级将一个合数分解成质数相乘的形式。
例1、判断103,437是质数还是合数?例2、有4名同学参加夏令营,他们的年龄恰好一个比一个大1岁。
且他们的年龄乘积是17160,你们知道他们分别是多少岁吗?例3、把7、14、20、21、28、30这六个数分成两组,每组三个数相乘,使它们的积相等,使它们的积相等,应如何分?例4、不计算,48×925×38×435的积末几位是连续的0?例5、已知1176×a=b4,a,b是自然数,求a的最小值。
例6、王老师带领全班同学去植树,同学们正好平均分成了三组。
结果师生每人植的树一样多,他们一共植了1073棵。
求平均每人植树多少棵?(1)你能判断出277,493是质数还是合数?(2)三个连续奇数的乘积是1287,则这三个数的和是多少?(3)将21、30、65、126、143、169、275分成两组,使两组数的积相等。
(4)不计算,判断一下,24×34×475×60×925的积的末尾共有几个连续的0?(5)84×300×365×(),要使这个连乘积的最后5个数字都是0,在括号里最小应填什么数?(6)张老师把全班同学平均分成了两组,并和全体同学一起为学校搬运新课桌。
已知老师和同学每人搬的张数相同,共搬111张桌子。
求这个班有多少名学生?(7)1×2×3×4×5×……×2005×2006积的末尾一共有多少个零?(8)一盒棋子共有96粒,如果不一次拿出,也不一粒一粒地拿出,但每次拿出的粒数要相同,最后一次正好拿完。
五年级奥数专题 质数、合数、分解质因数(学生版)
学科培优数学“质数、合数、分解质因数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。
质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。
质数本身的无规律性也是一个研究质数结构的难点。
在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。
分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。
知识梳理一、质数与合数的基本概念1.质数:一个数除了1和它本身没有其他的约数,这个数就称为一个质数,也叫做素数2.合数:一个数除了1和它本身还有其他的约数,这个数就称为一个合数3.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数二、质数和合数的一些性质和常用结论1. 0和1既不是质数也不是合数,因此,我们可以说,自然数可以分成三部分,即,0和1,质数,合数。
2. 最小的质数是2,最小的合数是4。
3. 常用的100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,8 9,97其中2是唯一的偶数,5是唯一个位上数字是5的数,其余的数字个位只为1,3,7,94. 部分特殊数的分解:=⨯1000173137=⨯=⨯⨯1111141271=⨯100171113111337=⨯⨯=⨯⨯⨯⨯200733223=⨯⨯⨯1998233337199535719=⨯⨯⨯+==⨯⨯10101371337 2008222251=⨯⨯⨯200720084015511735. 质数的判定方法判断一个数是否是质数,可以采用“连续小质数试除法”。
例如:判断251是否是质数,可以从最小的质数2开始依次除251,直到所得的商比除数小为止,可以断定251是质数。
251÷2=125...1, 251÷3=83...2, 251÷5=50...1, 251÷7=35...6, (251)17=14…13,此时除数17>商14,由此说明251是质数。
五年级数学下册试题因数和倍数重难点讲解(质数和合数、分解质因数)+答案
数学学科专属辅导讲义学员姓名教师姓名班主任上课日期上课时间年级课时教学内容因数与倍数2教学目标1、理解掌握质数和合数2、学会分解质因数教学重难点1、理解掌握质数和合数2、学会分解质因数教学内容1、理解掌握2、3、5的倍数的特征1、把55个橘子分给甲、乙、丙三人,甲得到的橘子数是乙的2 倍,且甲、乙得到的橘子数都比丙多,丙得到的橘子数比10 多,则甲、乙、丙三人各得多少个?2、一个数加3是5的倍数,减去3是6的倍数,这个数最小是多少?【课前导入1】写出3、5、7、8、10、12、13、15这7个数的所有因数观察以上数的因数,他们有什么特点。
总结:像2、3、5这几个数,只有1和它本身两个因数,这样的数叫作质数,也称为素数;像6,8、9这几个数,除了1和它本身还有别的因数,也就是有两个以上因数,这样的数叫作合数。
练习1:(1)质数只有( )个因数,合数至少有( )个因数。
(2) 自然数中,最小的质数是( ),最小的合数是( )。
(3) 比10小的数里,质数有( )个,合数有( )个。
(4) 20的因数有( ),其中是质数的有( )。
问题1:1是质数还是合数?说说想法。
问题2:可以将大于O的自然数还可以按什么分类,分成几类?问题3:按质数和合数的分类和偶数、奇数的分类比较,有什么不同?总结:20以内的质数是:2、3、5、7、1 1、1 3、1 7、19。
质数不都是奇数,因为2是质数。
【课前导入2】请把5和28分别写成两个数相乘的形式。
77=53+17+7再任取一个奇数461,那么461=449+7+5也是三个素数之和.461还可以写成257+199+5仍然是三个素数之和.这样,我就发现:任何大于5的奇数都是三个素数之和.1、30的所有因数有( )A.1、2、3、5和10B. 2、3、5、10和15C. 1、2、3、5、6、10、15和302、当两个数互质时,它们的最大公因数是( )。
A. 1B. 2C. 无法确定3、把20分解质因数应该写成()A. 20=1×2×2×5B. 2×2×5=20C. 20=2×2×54、14和28的公倍数()。
第十二讲 质数、合数、分解质因数
-159-第十二讲质数、合数、分解质因数知识导航:自然数可以根据它们的因数个数分为质数和合数。
1.质数:一个数如果只有1和它本身两个因数,这个数叫做质数。
例:2=1×2,5=1×5,13=1×13…像这些数都是质数。
2.合数:一个数如果除了1和它本身外,还有别的因数,这个数叫做合数。
例:12=1×12=2×6=3×4,36=1×36=2×18=3×12=4×9=6×6…像这些数都是合数。
特别注意1既不是质数也不是合数。
注意:质数与合数是根据一个数的因数的个数定义的。
3.分解质因数:指的就是把一个合数用几个质数乘积的形式表示出来。
例:15=3×5,24=2×2×2×3…这就是分解质因数。
注意1:分解质因数是解决数论最有效最直接的途径;注意2:100以内的质数2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97共25个。
4.唯一分解定理:N=a 1p1×a 2p2×…×a n pn(a 1、a 2…a n 均为N 的不同质因数)那么N 的因数个数n=(1+p1)×(1+p2)×…(1+pn)5.互质数的概念和特征互质数:公因数只有1的两个数叫做互质数。
互质数的特征:(1)1和任何数都是互质数。
(2)两个不相等的质数一定是互质数。
(3)相邻的两个自然数一定是互质数。
第一关:必须会例1.两个质数的和是99,这两个质数的乘积是多少?解析:奇数+奇数=偶数,奇数+偶数=奇数。
两个质数的和是奇数,所以,一定有一个质数是偶数,偶数中只有2是质数。
解:99=2+9797×2=194答:这两个质数的乘积是194。
我试试:1、两个质数的和是39,求这两个质数的积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:数学教学内容:质数和合数,分解质因数呈现目标【知识要点归纳】1.质数和合数(1)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
如7和11都是质数。
(2)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,如:9和12都是合数。
①1既不是质数,也不是合数。
②自然数除了1,其他的数不是质数就是合数。
③自然数是无限的,因此质数和合数也都是无限的。
(3)判断一个数是合数还是质数的方法。
先找各数的约数,再根据质数和合数的意义去判断。
判断一个数是不是质数,还可以查质数表,凡是质数表中有的数就是质数。
2.分解质因数(1)质因数的意义。
每个合数都可以写成几个质因数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
(2)分解质因数的意义。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
如:6=2×3,24=2×2×2×3。
(3)分解质因数的方法。
①分解质因数时,通常用短除法。
短除法是除法的简化。
如:②用短除法分解质因数,除数一定要用质数,应按照质数从小到大的顺序,看被除数能被哪个质数整除,就用这个质数去除,直到除得的商也是质数为止。
如:用短除法把180分解质因数:名师点拨【典型范例剖析】例1 一个正方形的面积是1225平方厘米,这个正方形的边长是多少厘米?分析:因为正方形的面积是“边长乘以边长”,将1225分解质因数,再把质因数分成相同的两组,就可以求出这个正方形的边长。
解:把1225分解质因数:1225=5×5×7×7变形为:1225=(5×7)×(5×7)=35×35因此,这个正方形的边长为:35厘米。
答:这个正方形的边长为35厘米。
例2 在10—150中找出两个自然数,使它们的积等于77与195的积。
这两个数是多少?分析:根据题意,先把77与195分解质因数,再分别找出其中几个质因数相乘的积在100—150之间的两个自然数。
解:把77与195的积分解质因数:77×195=3×5×7×11×13=(3×5×7)×(11×13)=105×143答:这两个数分别是105和143。
【解题技巧指点】1.在质数和合数的问题上,容易出现如下错误判断。
(1)所有的奇数都是质数。
这个说法显然是错误的。
因为象9、5、21等都是奇数,但它们却是合数,因此,奇数不一定是质数。
(2)所有的偶数都是合数。
这种说法也不对。
因为2这个数是偶数,但它就不是合数而是质数。
(3)自然数中除了质数都是合数。
这种说法也不对,因为自然数中,1既不是质数,也不是合数。
正确的说法是:自然数中,除0.1以外,不是质数就是合数。
2.分解质因数时要注意以下几点:(1)连乘式中不能出现合数,因数必须都是质数。
如:错误:36=2×3×6(6是合数)正确:36=2×2×3×3(2)连乘式中不能出现1,因为1不是质数。
如:错误:12=2×2×3×1正确:12=2×2×3(3)合数用质数连乘的形式表示,不能写成乘法算式。
如:2×2×2×3=24是错误的写法。
【课本难题解答】练习十三第17题分析:用1、5、6在三个数字可以组6个三位数。
判断哪些数含有质因数3,又含有质因数5和哪些数含有质因数2又含有质因数3时,要先把每个数分解质因数。
解:用1、5、6可以排列成下面6个三位数:156、165、516、561、615、651。
其中165和615既含有质因数3,又含有质因数5;156和516既含有质因数2,又含有质因数3。
练习十三第18题分析:因为3、5、7三个质数相乘就超过100了,所以三个不同的质数不能都大于3。
这样100以内是3个不同质数的乘积的数有:2×3×5=30,2×3×7=42,2×3×11=66,2×5×7=70,即30、42、66、70这四个数。
解:有30、42、66、70这四个数。
能力拓展【发散思维导训】导一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,写出这样的两位数。
分析:两位质数有11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,显然,交换个位与十位上的数字,所得的两位数仍是质数的有9个数。
解:这样的两位数有11、13、17、31、37、71、73、79、97。
训1 A是小于10的一个质数,A+40是质数,A+80也是质数人是多少?训2 A和 B都是质数,A+B小于100且是 7的倍数,如果 A+B又是奇数,那么A×B是多少?【作业优化设计】1.填空。
(1)一个数(),这样的数叫做质数。
(2)一个数(),这样的数叫做合数。
(3)20以内的质数有()。
(4)把一个合数(),叫做分解质因数。
(5)一个数既是18的约数,又是18的倍数,把它写成两个质数相加的形式是( )或()。
(6)最小的合数是(),最小的质数是(),既是偶数又是质数的数(),即是奇数又是合数的数最小是()。
(7)10以内所有质数的积减去最小的三位数,差是()。
(8)20以内差为1的两个合数有( )和( ),( )和( ),( )和( ),( )和( )四对。
(9)一个两位数质数,它个位上的数与十位上的数交换位置后,仍是一个质数。
这样的数有()。
(10)把下面两个数写成几个质数和的形式:15=( )+( )20=( )十( )=( )+( )2.判断。
(对的打“√”,错的打“×”)(1)自然数不是质数就是合数。
( )(2)所有的质数都是奇数,所有的合数都是偶数。
( )(3)把24分解质因数可以写成 24=1×2×2×2×3。
( )(4)两个数的全部质因数相同,这两个数一定相同。
( )(5)只有两个约数的数,一定是质数。
( )(6)两个自然数的和一定是合数,两个质数的和一定是偶数。
( )(7)2和5都是质因数。
( )(8)1是自然数,但它不是质数,也不是合数。
( )(9)合数有3个约数。
( )(10)质数只有两个约数。
( )3.按要求写数。
(1)一个四位数,个位上的数既不是质数也不是合数,十位上的数既是质数又是偶数,百位上的数是最小的合数,千位上的数既是奇数又是合数,这个四位数是()。
(2)能同时被3、5整除的最小的三位数是()。
(3)两个质数和为18,积是65,这两个质数是( )和()。
4.选择题。
(1)把36分解质因数可以写成()。
①36=4×9 ②36=1×2×3×2×3③36=2×3×2×3(2)因为210=2×3×5×7,所以说( )。
①210有四个不同的约数②210有四个不同的质数③210有四个不同的质因数(3)下面各式中属于分解质因数的是()。
①42=2×3×7 ②12=3×4③54=2×3×3×3×1 ④2×2×5=20(4)最小的质数乘以最小的合数,积是()。
①4 ②6 ③8 ④10(5)自然数按约数的个数分,可以分为()。
①质数和合数②奇数和偶数③质数、合数和0 ④质数、合数和1(6)质数与质数的积是()。
①合数②质数③可能是质数、可能是合数。
(7)9和7叫63的( )。
①因数②质因数③质数(8)a是质数、b是合数,下列说法正确的是()。
①a有1个约数而b有3个约数。
②a有2个约数而b不止一个约数。
③a至少有两个约数而b至少有三个约数。
④a至多有两个约数而b至多有三个约数。
(9)37×( )的积是质数。
①1 ②可以是1,也可以是别的数③质数5.用短除法把下列各数分解质因数。
120 14 132 1001 273快乐大本营完成下面的算式。
参考答案1.(1)只有1和它本身两个约数(2)除了1和它本身两个约数外,还有别的约数(3)2 3 5 7 11 13 17 19 (4)分解成质数连乘的形式(5)11+7 13+5 (6)4 2 2 9 (7)2000 (8)8和9 14和15 15和16 9和10 (9)11 13 17 37 79 (10)15=2+13 20=17+3=13+72.(1)×(2)×(3)×(4)√(5)√(6)×(7)×(8)√(9)×(10)√3.(1)9421 (2)105 (3)13和54.(1)③(2)③(3)①(4)③(5)④(6)①(7)①(8)②(9)①5.略快乐大本营1 1 2× 2 33 3 62 2 42 5 7 6。