(完整版)智能控制-考试题(附答案)

合集下载

智能控制试卷及答案

智能控制试卷及答案

智能控制试卷及答案一、试卷一、选择题(每题2分,共20分)1. 下列哪项不是智能控制的主要类型?A. 人工智能控制B. 模糊控制C. 神经网络控制D. 逻辑控制2. 以下哪种控制方法适用于处理具有不确定性、非线性和时变性等特点的复杂系统?A. PID控制B. 模糊控制C. 串级控制D. 比例控制3. 神经网络控制的核心思想是利用神经网络实现控制规律的映射,以下哪种神经网络模型适用于动态系统的控制?A. BP神经网络B. RBF神经网络C. 感知器D. Hopfield神经网络4. 模糊控制中,模糊逻辑推理的核心部分是?A. 模糊集合B. 模糊规则C. 模糊推理D. 解模糊5. 以下哪种方法不属于智能控制系统的建模方法?A. 基于模型的建模B. 基于数据的建模C. 基于知识的建模D. 基于经验的建模二、填空题(每题2分,共20分)6. 智能控制的理论基础包括________、________和________。

7. 模糊控制的基本环节包括________、________、________和________。

8. 神经网络控制的主要特点有________、________、________和________。

9. 智能控制系统的主要性能指标包括________、________、________和________。

10. 智能控制技术在工业生产、________、________和________等领域有广泛应用。

三、判断题(每题2分,共10分)11. 模糊控制适用于处理具有确定性、线性和时不变性等特点的复杂系统。

()12. 神经网络控制具有较强的自学习和自适应能力。

()13. 智能控制系统不需要考虑系统的稳定性和鲁棒性。

()14. 智能控制技术在无人驾驶、智能家居等领域具有广泛应用前景。

()15. 模糊控制的核心思想是利用模糊逻辑进行推理和决策。

()四、简答题(每题10分,共30分)16. 简述模糊控制的基本原理。

(完整版)智能控制题目及解答

(完整版)智能控制题目及解答

智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点.4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能.1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。

智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。

智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。

是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。

2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。

(2)人—机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。

(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务.3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。

在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。

在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。

智能控制复习题-参考答案

智能控制复习题-参考答案

(书本 P 13)上海第二工业大学《智能控制系统》练习卷一、填空题1、机器智能是把信息进行组织 、并 把它转换成知识 的过程。

2、智能控制方法比传统的控制方法更能适应对象的 时变性 、 非线性 和 不确定性 。

3、智能控制中的三元论指的是: 人工智能 、 自动控制 和 运筹学 。

4、从 工程控制角度看,智能控制三个基本要素是: 归纳 、 集注 、 组合操作 。

(这道题有点疑问,大家找找资料)5、生物神经元经抽象化后,得到的人工神经元模型,它有三个基本要素 连接权值 、 求和函数 和 激发函数 。

6、神 经网络的结构按照神经元连接方式可分成 层状 和 网状 。

7、定义一个语言变量需要定义 4 个方面的内容: 定义变量名称 、 定义变量的论域 、 定义变量的语言 、 定义每个模糊集合的隶属函数 。

8、� = 0.2 + 0.3 + 0.4 + 0.9,则 A0.2={x1, x2, x3, x4},A0.4={ x3, x4} ,A0.9={ x4 }�1�2�3 �49、假设论域为 5 个人的体重分别为 110kg 、95kg 、85kg 、78kg 、65kg ,他们 的体重对于“肥胖”的模糊概念的隶属度分别为 0.95、0.88、0.8、0.72、0. 5。

试用:(1) Zadeh 表示法表示模糊集“肥胖” 答:肥胖=0. 95 +0. 88 +0. 8 +0. 72 +0. 5 11095857865(2)序偶表示法表示模糊集“ 肥胖”答:肥胖={(110,0.95), (95,0.88)(85,0.8)(78,0.72)(65,0.5)} (或 肥胖={0.95, ,0.88,0.8,0.72,0.5})10、专家系统的核心部分是: 知识库子系统 、 推理子系统 。

11、在专家系统中,解释器是专家系统与用户间的人-机接口。

12、人工神经网络常见的激发函数或作用函数有:阈值型函数、饱和型函数、和双曲函数(此外还有S 型函数,高斯函数等)。

智能控制考试题及答案

智能控制考试题及答案

智能控制技术考试题及答案《智能控制技术》考试试题A《智能控制》课程考试试题A参考答案一、填空题(1) OPEN (2) 最有希望 (3) 置换 (4) 互补文字 (5) 知识库(6) 推理机 (7) 硬件 (8) 软件 (9) 智能 (10) 傅京孙(11) 萨里迪斯 (12) 蔡自兴 (13) 组织级 (14) 协调级(15) 执行级 (16) 递阶控制系统 (17) 专家控制系统(18) 模糊控制系统 (19) 神经控制系统 (20) 学习控制系统二、选择题1、D2、A3、C4、B5、D6、B7、A8、D9、A 10、D三、问答题1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。

(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。

(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。

(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。

传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。

人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。

人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平──智能控制发展。

智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。

(2) 智能控制的核心在高层控制,即组织级。

高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。

智能控制考试题及答案

智能控制考试题及答案

智能控制技术考试题及答案《智能控制技术》考试试题 A《智能控制》课程考试试题 A 参考答案(1) OPEN (2) 最有希翼(3) 置换(4) 互补文字(5) 知识库(6) 推理机(7) 硬件(8) 软件(9) 智能(10) 傅京孙(11) 萨里迪斯(12) 蔡自兴(13) 组织级(14) 协调级(15) 执行级(16) 递阶控制系统(17) 专家控制系统(18) 含糊控制系统(19) 神经控制系统(20) 学习控制系统1 、D2 、A3 、C4 、B5 、D6、B7、A8、D9、A 10、D1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不彻底性等,普通无法获得精确的数学模型。

(2) 研究这种系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。

(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。

(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。

传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开辟与应用计算机科学与工程的最新成果。

人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。

人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平——智能控制发展。

智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不彻底性、含糊性或者不确定性以及不存在已知算法的过程,并以知识进行推理, 以启示式策略和智能算法来引导求解过程。

(2) 智能控制的核心在高层控制, 即组织级。

高层控制的任务在于对实际环境或者过程进行组织, 即决策和规划,实现广义问题求解。

智能控制系统考核试卷

智能控制系统考核试卷
A.传感器
B.控制器
C.执行器
D.能源系统
2.下列哪种不属于智能控制系统的基本功能?()
A.监测
B.判断
C.控制
D.传输数据
3.在智能控制系统中,PID控制属于以下哪一类控制?()
A.线性控制
B.非线性控制
C.离散控制
D.模糊控制
4.关于智能控制系统,以下哪项描述是正确的?()
A.智能控制系统是完全自动化的系统
A.数据清洗
B.数据融合
C.数据分析
D.数据可视化
20.以下哪些是智能控制系统在教育、医疗等领域的应用?()
A.自动化教学系统
B.机器人辅助手术
C.智能医疗诊断
D.以上都是
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.在智能控制系统中,PID控制器由_______、_______和_______三个部分组成。
1.智能控制系统通常包含以下哪些基本组成部分?()
A.传感器
B.控制器
C.执行器
D.数据库
2.智能控制系统的功能特点包括以下哪些?()
A.自适应性
B.自学习性
C.自组织性
D.完全自动化
3.以下哪些属于智能控制系统的常见控制策略?()
A.反馈控制
B.前馈控制
C.模糊控制
D.遗传算法
4.智能控制系统在设计时需要考虑以下哪些因素?()
B.智能控制系统不需要人工干预
C.智能控制系统可以完全替代人工
D.智能控制系统适用于所有领域
5.以下哪种传感器通常用于智能控制系统中的温度监测?()
A.光电传感器
B.压力传感器
C.温度传感器

(完整版)智能控制习题参考答案

(完整版)智能控制习题参考答案

1.递阶智能控制系统的主要结构特点有哪些。

答:递阶智能控制是在研究早期学习控制系统的基础上,从工程控制论角度总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。

递阶智能控制系统是由三个基本控制级(组织级、协调级、执行级)构成的。

如下所示:1. 组织级组织级代表控制系统的主导思想,并由人工智能起控制作用。

根据贮存在长期存储交换单元内的本原数据集合,组织器能够组织绝对动作、一般任务和规则的序列。

其结构如下:2.协调级协调级是组织级和执行级间的接口,承上启下,并由人工智能和运筹学共同作用。

协调级借助于产生一个适当的子任务序列来执行原指令,处理实时信息。

它是由不同的协调器组成,每个协调器由计算机来实现。

下图是一个协调级结构的候选框图。

该结构在横向上能够通过分配器实现各协调器之间的数据共享。

3. 执行级执行级是递阶智能控制的最底层,要求具有较高的精度但较低的智能;它按控制论进行控制,对相关过程执行适当的控制作用。

其结构模型如下:2.信息特征,获取方式,分层方式有哪些?答:一、信息的特征1,空间性:空间星系的主要特征是确定和不确定的(模糊)、全空间和子空间、同步和非同步、同类型和不同类型、数字的和非数字的信息,比传统系统更为复杂的多源多维信息。

2,复杂性:复杂生产制造过程的信息往往是一类具有大滞后、多模态、时变性、强干扰性等特性的复杂被控对象,要求系统具有下层的实时性和上层的多因素综合判断决策能力,以保证现场设备局部的稳定运行和在复杂多变的各种不确定因素存在的动态环境下,获得整个系统的综合指标最优。

3,污染性:复杂生产制造过程的信息都会受到污染,但在不同层次的信息受干扰程度不同,层次较低的信号受污染程度较大。

二、获取方式信息主要是通过传感器获得,但经过传感器后要经过一定的处理来得到有效的信息,具体处理方法如下:1,选取特征变量可分为选择特征变量和抽取特征变量。

选择特征变量直接从采集样本的全体原始工艺参数中选择一部分作为特征变量。

智能控制技术期末考试试题

智能控制技术期末考试试题

智能控制技术期末考试试题# 智能控制技术期末考试试题## 一、选择题(每题2分,共20分)1. 智能控制系统的基本特征不包括以下哪一项?A. 自学习能力B. 鲁棒性C. 单一控制策略D. 适应性2. 模糊控制理论的提出者是:A. 瓦迪姆·瓦迪莫维奇·诺维科夫B. 罗纳德·费舍尔C. 洛特菲·A·扎德D. 阿尔伯特·爱因斯坦3. 下列哪项不是智能控制技术的应用领域?A. 机器人技术B. 航空航天C. 传统农业D. 智能制造4. 神经网络在智能控制中的主要作用是:A. 增强系统稳定性B. 实现模式识别C. 减少系统成本D. 提高系统响应速度5. 遗传算法在智能控制中的应用主要用于:A. 优化控制参数B. 实现自适应控制C. 增强系统的鲁棒性D. 进行模式识别## 二、简答题(每题10分,共20分)1. 简述智能控制技术与传统控制技术的主要区别。

2. 解释模糊控制的基本原理,并举例说明其在实际中的应用。

## 三、计算题(每题15分,共30分)1. 假设有一个简单的模糊控制器,其输入变量为温度(T)和湿度(H),输出变量为风扇速度(F)。

给出以下模糊规则:- 如果T是高且H是低,则F是高。

- 如果T是中且H是中,则F是中。

- 如果T是低且H是高,则F是低。

- 请根据上述规则,给出一个模糊控制表,并计算当T=28℃,H=70%时的风扇速度。

2. 考虑一个简单的神经网络,输入层有3个神经元,隐藏层有4个神经元,输出层有1个神经元。

已知输入向量为\[ x = [0.5, 0.2, 0.7] \],隐藏层和输出层的权重矩阵分别为:\[ W_h = \begin{bmatrix} 0.1 & 0.3 & 0.2 \\ 0.4 & 0.1 &0.6 \\ 0.5 & 0.7 & 0.8 \\ 0.9 & 0.5 & 0.3 \end{bmatrix} \]\[ W_o = \begin{bmatrix} 0.2 & 0.4 & 0.1 & 0.3\end{bmatrix} \]假设隐藏层和输出层的激活函数都是Sigmoid函数,计算输出值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《智能控制》考试试题试题1:针对某工业过程被控对象:0.520()(101)(21)s G s e s s -=++,试分别设计常规PID 算法控制器、模糊控制器、模糊自适应PID 控制器,计算模糊控制的决策表,并进行如下仿真研究及分析:1. 比较当被控对象参数变化、结构变化时,四者的性能;2. 研究改善Fuzzy 控制器动、静态性能的方法。

解:常规PID 、模糊控制、Fuzzy 自适应PID 控制、混合型FuzzyPID 控制器设计 错误!未找到引用源。

. 常规PID 调节器PID 控制器也就是比例、积分、微分控制器,是一种最基本的控制方式。

它是根据给定值()r t 与实际输出值()y t 构成控制偏差()e t ,从而针对控制偏差进行比例、积分、微分调节的一种方法,其连续形式为:01()()[()()]t p d i de t u t K e t e t dt T T dt=++⎰ (1.1) 式中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。

PID 控制器三个校正环节中p K ,i T 和d T 这三个参数直接影响控制效果的好坏,所以要取得较好的控制效果,就必须合理地选择控制器的参数。

Ziegler 和Nichols 提出的临界比例度法是一种非常著名的工程整定方法。

通过实验由经验公式得到控制器的近似最优整定参数,用来确定被控对象的动态特性的两个参数:临界增益u K 和临界振荡周期u T 。

用临界比例度法整定PID 参数如下:表1.1 临界比例度法参数整定公式51015202530354000.20.40.60.811.21.41.61.8Time(s)y (t )051015202530354000.511.5Time(s)y (t )PID 0.6u K 0.5u T 0.125u T据以上分析,通过多次整定,当 1.168p K =时系统出现等幅振荡,从而临界增益 1.168u K =,再从等幅振荡曲线中近似的测量出临界振荡周期 5.384u T =,最后再根据表1.1中的PID 参数整定公式求出:0.701, 2.692,0.673p i d K T T ===,从而求得:比例系数0.701p K =,积分系数/0.260i p i K K T ==,微分系数0.472d p d K K T ==。

基此,可搭建如图1.1所示的PID 控制系统Simulink 仿真模型,仿真得到系统阶跃响应曲线如图1.2(a )所示。

图1.1 PID 控制系统Simulink 仿真模型图1.2(a )(b) 临界比例度法整定的系统阶跃响应曲线错误!未找到引用源。

. 模糊控制器由于模糊控制采用了模糊似人推理机制,所以其控制机理较传统的PID 控制更加接近于人工智能。

一般地,一个完整的模糊控制系统结构如图1.3所示。

下面基于MATLAB 模糊逻辑工具箱设计模糊控制器。

图1.3 模糊控制器的基本结构1)论域及隶属度函数的建立若取E 、EC 、U 的论域均为{}6,5,4,3,2,1,0,1,2,3,4,5,6------,其模糊子集都为{NB ,NM ,NS ,ZO ,PS ,PM ,PB}。

在MATLAB 中键入命令FUZZY ,进入模糊逻辑编辑窗口FIS Editor 。

建立E 、EC 、U 的隶属度函数,有三角形、高斯形、梯形等11种可供选择,在此选常用的三角形(trimf )隶属度函数。

图1.4为E 、EC 、U 的隶属度函数。

图1.4 E 、EC 、U 的隶属度函数2)模糊控制规则及决策方法控制规则是对专家理论知识与实践经验的总结,共有49条模糊控制规则,如表1.2所示。

在Rules Editor 窗口中输入这49条控制规则,例如:if E is NB and EC is NS then U is NB 。

表1.2 模糊控制规则表 UENB NM NSZO PS PM PB ECNB NB NBNB NB NM NS ZONM NB NB NM NM NS ZO ZONS NB NM NM NS ZO ZO ZOZO NM NS NS ZO PS PS PMPS ZO ZO ZO PS PM PM PBPM ZO ZO PS PM PM PB PBPB ZO PS PM PB PB PB PB模糊决策一般采用Mamdani(min-max)决策法。

解模糊有重心法、等分法、最大隶属度平均法等5种可供选择,在此采用重心法(centroid)。

根据以上规则和方法,设计出模糊控制器的输出与输入的关系曲面图,即得出模糊规则是一种非线性控制。

基此,可搭建如图1.5所示的模糊控制系统Simulink仿真模型,通过模糊控制器模块,可以和包含模糊控制器的fis文件联系起来,还可以随时改变输入输出论域,隶属度函数以及模糊规则,方便仿真和调试。

经过多次整定,选取误差E、误差变化率EC的量化因子及控制量U的比例因子分别为:0.5,0.1,0.6e ec uk k k===,仿真得到系统阶跃响应曲线如图1.6所示。

图1.5 模糊控制系统Simulink仿真模型05101520253035400.20.40.60.811.21.4T ime(s)y(t)图1.6 模糊控制系统阶跃响应曲线从图1.6可以看出,单纯的模糊控制器相当于非线性的PD控制,无积分作用,其调节不能做到无静差。

在仿真过程中发现,量化因子、比例因子的大小对模糊控制器控制性能的影响很大,也许还存在一组最优量化因子和比例因子,能使系统获得更好的响应特性。

错误!未找到引用源。

. Fuzzy自适应PID控制器由于常规PID控制在稳定阶段有良好的响应性能,于是采用Fuzzy+PID控制方法,构成FuzzyPID控制系统。

其结构框图如图1.7所示。

图1.7 Fuzzy控制+PID控制在Matlab/Simulink环境下,转换由开关模块“switch”实现,“switch” 模块中的Threshold整定值(即误差整定值)设置为0.01。

对系统进行仿真,可得响应曲线波形如图1.8所示。

图1.8 Fuzzy控制+PID控制波形从图1.8中可以看出系统稳定时间很短仅约为3,存在的静差约为0.06,输出最大约为0.94,无超调量。

Ⅳ. 采用Fuzzy +PID复合控制器由以上两个仿真可知,采用Fuzzy控制可以极大地改善系统超调和稳定时间,但是其稳态性能有所下降,稳态精度明显不如常规PID控制。

利用Fuzzy控制+精确积分控制方法,由于常规Fuzzy控制缺少积分环节而存在稳态误差,故可以通过Fuzzy控制+精确积分的方法改善系统的稳态性能,即混合型FuzzyPID控制器,这样可以使系统成为无差模糊控制系统。

其结构框图如图1.9所示。

图1.9Fuzzy控制+精确积分控制k ,其余参数不变。

对系统进行仿真,可得响应曲线波取精确积分系数0.029i形如图1.10所示。

图1.10 Fuzzy-PID波形从图1.10中可以看出系统稳定时间比较短约为5,存在的静差仅有0.02,输出最大约为0.98,超调量约为3.06%。

保持所设计的控制器参数不变,当被控对象的参数或模型结构变化(例如T=0.15)时,PID和Fuzzy控制器的性能分析31) 当被控对象的参数发生变化A.当系统k值由原来的15变化为30时,其余参数不变,各种控制方式的系统阶跃响应如图1.11所示。

T由原来的7.5变化为15时,其余参数不变,各种控制方式的系统阶B.当1跃响应如图1.12所示。

T由原来的0.75变化为1.5时,其余参数不变,各种控制方式的系统C.当2阶跃响应如图1.13所示。

(1)模糊控制决策表的计算当利用MATLAB模糊逻辑工具箱设计好模糊控制器后,还应该计算相应的模糊控制决策表,即关系矩阵。

这里利用MATLAB工具箱中的readfis和evalfis 函数,计算上述模糊控制器的决策表,编写的M文件如下:a = readfis('fuzzy1.fis');for i = -6 : 6for j = -6 : 6u(i+7,j+7) = evalfis([i,j],a);endend运行该程序,可得到模糊控制决策表为如下一13*13矩阵:u =Columns 1 through 8-5.3723 -5.2527 -5.3723 -5.2527 -5.3723 -4.2674 -3.9992 -1.9992-5.2527 -5.2527 -5.2527 -4.2674 -4.2674 -3.2733 -3.0000 -1.9991-5.3723 -5.2527 -5.3723 -4.2674 -3.9992 -3.0000 -2.0008 -1.0007-5.2527 -4.2674 -4.2674 -4.2674 -3.9984 -3.0000 -2.0016 -1.0007-5.3723 -4.2674 -3.9992 -3.9984 -3.9992 -3.0000 -2.0008 -1.0007-5.2527 -4.2674 -3.9984 -3.0000 -3.0000 -1.9991 -1.0007 0.0000-5.3723 -4.2674 -3.9992 -3.0000 -2.0008 -1.0007 -0.0000 1.0007-4.2674 -3.2733 -3.0000 -1.9991 -1.0007 0.0000 1.0007 1.9991 -3.9992 -3.0000 -2.0008 -1.0007 -0.0000 1.0007 2.0008 3.0000 -3.0000 -1.9991 -1.0007 -1.0007 0.0000 1.0007 2.0016 3.0000 -2.0008 -1.0007 -0.0000 0.0000 -0.0000 1.0007 2.0008 3.0000 -1.0007 -1.0007 0.0000 0.0000 0.0000 1.9991 3.0000 3.2733 -0.0000 0.0000 -0.0000 0.0000 -0.0000 1.9992 3.9992 4.2674 Columns 9 through 13-0.0000 0.0000 -0.0000 0.0000 -0.00000.0000 0.0000 0.0000 1.0007 1.0007-0.0000 0.0000 -0.0000 1.0007 2.00080.0000 1.0007 1.0007 1.9991 3.0000-0.0000 1.0007 2.0008 3.0000 3.99921.0007 1.9991 3.0000 3.2733 4.26742.00083.0000 3.99924.26745.37233.0000 3.0000 3.99844.26745.25273.9992 3.9984 3.99924.26745.37233.99844.2674 4.2674 4.26745.25273.99924.26745.3723 5.2527 5.37234.2674 4.26745.2527 5.2527 5.25275.3723 5.2527 5.3723 5.2527 5.3723在MATLAB 命令窗口(Command Window )里输入 gensurf(a),可以得到模(2)四种方案的控制性能研究错误!未找到引用源。

相关文档
最新文档