高中数学教材知识点回顾

合集下载

高中数学知识点归纳

高中数学知识点归纳

高中数学知识点归纳一、集合与函数概念。

1. 集合。

- 集合的定义:一些元素组成的总体。

- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。

- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。

- 真子集:A⊆ B且A≠ B,则A⊂neqq B。

- 集合相等:A = B当且仅当A⊆ B且B⊆ A。

- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B ={xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。

- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。

二、基本初等函数(Ⅰ)1. 指数函数。

- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。

- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。

高中数学课本知识点全总结

高中数学课本知识点全总结

高中数学课本知识点全总结一、函数1. 函数的概念和性质(1)函数的定义函数是一个或多个自变量与一个因变量之间的有序对的集合(2)定义域、值域和对应关系函数f的定义域D是自变量x的取值范围,值域R是因变量y的取值范围(3)函数的对应关系若对于每个x∈D,都有唯一的y与之对应,则称y是x的值(4)奇函数和偶函数奇函数:f(-x) = -f(x)偶函数:f(-x) = f(x)(5)初等函数初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数等2. 函数的图像和性质(1)函数的图像和图像的性质函数y=f(x)的图像是平面直角坐标系内点(x, f(x))的集合(2)函数的单调性(3)函数的奇偶性(4)函数的周期性(5)函数的最值和极值3. 函数的运算(1)函数的加减(2)函数的乘除(3)复合函数(4)反函数4. 函数的应用(1)建立方程和解方程(2)函数的图像和问题的联系(3)函数的应用实例二、三角函数1. 角度和弧度(1)角度和弧度的定义(2)角度与弧度的相互转换(3)角度制与弧度制2. 三角函数的定义(1)正弦函数(2)余弦函数(3)正切函数(4)余切函数(5)割函数(6)余割函数3. 三角函数的基本性质(1)周期性(2)奇偶性(3)函数值域和对应关系(4)三角函数之间的关系4. 三角函数的图像和性质(1)正弦函数的图像和性质(2)余弦函数的图像和性质(3)正切函数的图像和性质(4)余切函数的图像和性质(5)割函数的图像和性质(6)余割函数的图像和性质5. 三角函数的运算(1)三角函数的加减(2)三角函数的乘除(3)复合函数6. 三角函数的应用(1)三角函数的平面几何应用(2)三角函数的辐角和轴角(3)三角函数的应用实例三、导数1. 初等函数的导数(1)导数的定义(2)导数的计算(3)导数的性质(4)导数的应用2. 高阶导数(1)高阶导数的定义(2)高阶导数的计算(3)高阶导数的应用3. 函数的微分(1)微分的定义(2)微分形式的计算(3)微分的应用四、积分1. 定积分(1)定积分的定义(2)定积分的计算(3)定积分的性质(4)定积分的应用2. 不定积分(1)不定积分的定义(2)不定积分的计算(3)不定积分的性质(4)不定积分的应用3. 微积分基本定理(1)微积分基本定理的表述(2)微积分基本定理的应用五、数列和数学归纳法1. 数列的概念和性质(1)数列的定义(2)等差数列(3)等比数列(4)数列的通项公式2. 数学归纳法(1)数学归纳法的三个步骤(2)等差数列和等比数列的数学归纳法证明(3)数学归纳法的应用六、排列组合和概率1. 排列和组合(1)排列的概念和计算(2)排列的性质(3)组合的概念和计算(4)组合的性质2. 概率的概念和性质(1)概率的定义(2)概率的计算(3)概率的性质(4)概率的应用七、向量1. 向量的概念和基本性质(1)向量的定义(2)向量的相等(3)向量的加减(4)数量积(点积)和向量积(叉积)2. 向量的坐标表示(1)向量的坐标形式(2)向量的数量积和向量积的坐标表示3. 向量的线性运算(1)向量的数量积和向量积的线性运算(2)向量的数量积和向量积的应用八、空间解析几何1. 空间直角坐标系和三维坐标(1)空间直角坐标系(2)三维坐标的表示2. 空间点、向量和向量的计算(1)空间点(2)向量的加减(3)数量积(点积)和向量积(叉积)3. 空间曲线和曲面的方程(1)直线(2)圆锥曲线(3)曲面4. 空间几何向量和坐标的应用(1)空间几何向量的运算(2)空间几何坐标的应用以上就是高中数学课本的知识点全总结,希望对学习数学的同学有所帮助。

高中数学课本重点归纳总结

高中数学课本重点归纳总结

高中数学课本重点归纳总结数学作为一门理科学科,在高中阶段占据着重要的地位。

它不仅是培养学生逻辑思维和解决问题能力的重要学科,也是继续深造理工类专业的基础。

为了帮助学生更好地掌握和总结高中数学的重点知识,以下是对高中数学课本重点的归纳总结。

一、函数与方程1. 一次函数一次函数表达式为y=ax+b,其中a为斜率,b为截距。

重点掌握直线的斜率和截距的含义以及如何画出该函数的图像。

2. 二次函数二次函数表达式为y=ax²+bx+c,其中a、b、c为常数,a≠0。

重点理解二次函数的开口方向和顶点,并掌握二次函数与一次函数之间的关系。

3. 指数函数指数函数表达式为y=a^x,其中a为底数,x为指数。

重点了解指数的性质、指数函数的图像和指数函数与对数函数之间的互逆性。

4. 对数函数对数函数表达式为y=logₐx,其中a为底数,x为真数。

重点理解对数的性质、对数函数的图像和对数函数与指数函数之间的关系。

5. 三角函数三角函数包括正弦函数、余弦函数和正切函数。

重点了解三角函数的定义、三角函数的周期性和三角函数之间的等价性。

二、平面几何1. 角的概念角是由两条射线共同起点组成的图形,重点理解角的度量、角的大小和角的种类。

2. 三角形三角形是由三条边和三个内角组成的图形,重点掌握三角形的性质、三角形的分类和三角形的面积计算方法。

3. 四边形四边形是由四条边和四个内角组成的图形,重点了解平行四边形、矩形、正方形、菱形和梯形的性质,并能够计算它们的面积和周长。

4. 圆和圆的性质圆是由平面上任意一点到另一点距离相等的点的轨迹,重点掌握圆的性质、圆的周长和面积的计算公式。

5. 相似三角形和三角形的判定相似三角形是指对应角相等,对应边成比例的三角形,重点理解相似三角形的性质和相似三角形的判定条件。

三、立体几何1. 空间几何体的表示和性质包括点、直线、平面、空间凸多面体等的表示方法和基本性质,重点掌握平行关系的判定条件。

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。

掌握实数的分类和复数的基本概念。

1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。

包括因式分解、公式法解方程、分式方程的解法等。

1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。

理解不等式的性质和解不等式的一般步骤。

1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。

了解函数的极限和连续性概念。

1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。

掌握无穷等比数列的和的计算方法。

1.6 排列组合与概率排列、组合的基本概念和公式。

概率的定义、性质及计算方法。

理解条件概率和独立事件的概念。

二、几何与测量2.1 平面几何点、线、面的基本性质。

掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。

2.2 空间几何空间直线和平面的位置关系。

柱面、锥面、旋转体等常见立体图形的性质和计算。

2.3 解析几何坐标系的建立和应用。

通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。

2.4 三角学三角比的概念、三角函数的定义和性质。

掌握正弦定理、余弦定理及其在解三角形中的应用。

2.5 向量向量的基本概念、线性运算、数量积和向量积。

理解向量在几何和代数中的应用。

三、统计与概率3.1 统计基本概念数据的收集、整理和描述。

理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。

3.2 概率分布离散型随机变量和连续型随机变量的概念。

熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。

3.3 抽样与估计抽样方法、样本容量的确定。

参数估计的基本概念和方法,包括点估计和区间估计。

3.4 假设检验假设检验的基本思想和步骤。

理解显著性水平、第一类错误和第二类错误的概念。

高中数学分章节全部知识点(含拓展内容)全面细致总结(必修必备版)

高中数学分章节全部知识点(含拓展内容)全面细致总结(必修必备版)

第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集∅【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(20)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:yxo(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2⇔②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q=②02x a->,则()M f p =xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q =②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2024年高中数学知识点全总结范文(6篇)

2024年高中数学知识点全总结范文(6篇)

2024年高中数学知识点全总结范文____年高中数学知识点全总结一、数与数量关系1. 数的读法与写法:整数、小数、分数、百分数、科学记数法等表示方法。

2. 数的比较:正数、负数、绝对值及其大小比较。

3. 数的运算:四则运算、混合运算、加减法与乘除法的顺序、括号法则等。

4. 数的应用:单位换算、图表分析、综合应用等。

二、代数与函数1. 代数式与方程式:变量、系数、项、次、多项式、因式分解、方程的解等。

2. 线性方程组:二元一次方程、三元一次方程、解方程的加减消元法等。

3. 一次函数与二次函数:函数的概念、定义域、值域、图像、性质、解析式、最值、函数的应用等。

4. 不等式与绝对值:一元一次不等式、一元一次绝对值不等式、一元二次不等式、二元一次不等式等。

5. 幂与指数:零次幂、整数幂、分数指数、指数运算规则、指数函数等。

6. 对数与指数方程:对数的概念、性质、换底公式、指数方程、对数方程的解法等。

三、几何与空间1. 平面几何:点、线、面的概念、性质与判定、相交关系、平行关系、相似关系等。

2. 空间几何:立体图形的概念、性质与判定、平行关系、相似关系、投影、截面等。

3. 解析几何:点、坐标系、坐标、直线的解析式、方程、性质、与平面图形的关系等。

4. 三角学:角的概念、度量、三角函数、三角恒等式、解三角形、航海问题、三角函数的应用等。

5. 向量与坐标变换:向量的概念、运算、线性组合、向量三角形、点、线、面的坐标变换等。

四、函数与导数1. 函数的定义域和值域:函数的基本概念、函数图像、函数表达式、定义域、值域等。

2. 图像与性质:奇偶性、增减性、最值、对称点、与坐标轴的交点、图像的平移、伸缩和翻转等。

3. 极限与连续:函数的极限、极限的性质、连续函数、间断点、分段函数等。

4. 导数与微分:导数的定义、导数的计算、导数的意义、导数的应用、微分的概念等。

5. 函数的应用:函数的增长性、凹凸性、最值、优化问题、导数在几何中的应用等。

高中数学知识点总结完整版

高中数学知识点总结完整版

高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。

在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)
⑤ 中, .
⑥零(负)指数幂的底数不能为零.
⑦若 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知 的定义域为 ,其复合函数 的定义域应由不等式 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
(7)已知集合 有 个元素,则它有 个子集,它有 个真子集,它有 个非空子集,它有 非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集
名称
记号
意义
性质
示意图
交集

(1)
(2)
(3)
并集

(1)
(2)
(3)
补集
1 2
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数、圆锥曲线
高考相关考点:
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
注意:对于集合 与区间 ,前者 可以大于或等于 ,而后者必须
,(前者可以不成立,为空集;而后者必须成立).
(3)求函数的定义域时,一般遵循以下原则:
① 是整式时,定义域是全体实数.
② 是分式函数时,定义域是使分母不为零的一切实数.
③ 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学教材知识点回顾老师的话:同学们,临近高考,你们还需要在数学上下什么功夫,老师告诉你,回到课本中去翻开课本,可以重温学习的历程,回忆学习的情节,知识因此被激活,联想由此而产生。

课本是高考命题的依据,在课本的基础上组合加工和发展。

离开书本的复习是无源之水,那么如何运用课本呢?不是简单的重复,你们应做到以下6点1、在复习每一专题时,必须联系课本中的相应部分。

不仅要弄懂课本提供的知识和方法,还要弄清定理、公式的推导过程和例题的求解过程,揭示例、习题之间的联系及变换2、在解高考训练题时,如果遇到障碍,应有查阅课本的习惯,通过课本查明我们在知识和方法上的缺陷,尽可能把问题回归为课本中的例题和习题3、在复习训练的过程中,我们会积累很多解题经验和方法,其中不少是规律性的东西,要注意从课本中探寻这些经验、方法和规律的依据4、注意在复习的各个环节,既要以课本为出发点,又要不断丰富课本的内涵,揭示课本内涵与高考命题之间的联系5、关于解题的表达方式,应以课本为标准。

很多复习资料中关键步骤的省略、符号的滥用、语言的随意性和图解法的泛化等,都是不可取的,就通过课本来规范6、注意通过对课本题目改变设问方式、增加或减少变动因素和必要的引申、推广来扩大题目的训练功能。

现行课本一般是常规解答题,应从选择、填空、探索等题型功能上进行思考,并从背景、现实、来源等方面加以解释第一章:集合与简易逻辑1.元素与集合的关系: .(P4)2.德摩根公式: .3.包含关系: (P7)4.容斥原理: (P23)5.集合12{,,,}n a a a 的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子集有 个.6.真值表 (P27)7.常见结论的否定形式8.9.充要条件(P34)(1)充分条件:若p q ⇒,则p 是q 的 条件. q 是p 的 条件(2)必要条件:若q p ⇒,则p 是q 的 条件. q 是p 的 条件(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 的 条件.(4)p 是q 的充分不必要条件等价于q 的 条件是p第二章 函数1.二次函数的解析式的三种形式(1)一般式 ; (2)顶点式 ;(3)两根式 .2.解连不等式()N f x M <<常有以下转化形式: ⇔ ;3.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于4.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下: (1)当a>0时,若[]q p ab x ,2∈-=,则其最值是 ; 若[]q p ab x ,2∉-=,则其最值是 ,. (2)当a<0时,若[]q p ab x ,2∈-=,则其最值是 ; 若[]q p a b x ,2∉-=,则其最值是 ,. 5.一元二次方程的实根分布11.定区间上含参数的二次不等式恒成立的条件依据:(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是 .(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≤(t 为参数)恒成立的充要条件是 .(3)42()0(0)f x ax bx c a =++>>恒成立的充要条件是 .16.函数的单调性(P57)(1)设[]2121,,x x b a x x ≠∈⋅那么)(x f 在区间],[b a 上是增函数的充要条件是 ;)(x f 在区间],[b a 上是减函数的充要条件是 .(2)设函数)(x f y =在某个区间内可导,如果 ,则)(x f 为增函数;如果 ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +是 函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是 函数.18.奇偶函数的图象特征奇函数的图象关于 对称,偶函数的图象关于 对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是 函数;如果一个函数图象关于y 轴对称,那么这个函数是 函数.19.若函数)(x f y =是偶函数,则 ;若函数)(a x f y +=是偶函数,则 ,并且()y f x =关于 对称.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是 ;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线 对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点 对称;若)()(a x f x f +-=,则函数)(x f y =为周期为 的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔多项式函数()P x 是偶函数⇔ .23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称等价于(2)函数()y f x =的图象关于直线2a b x m+=对称等价于 24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线 对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线 对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数 的图象; 若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线 的图象.26.(P60)互为反函数的两个函数的关系:_________________)(⇔=b a f .27.若函数)(b kx f y +=存在反函数,则其反函数为 ,并不是1()y f kx b -=+,而函数1()y f kx b -=+是 的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,具有性质: .(2)指数函数()xf x a =,具有性质: . (3)对数函数()log a f x x =,具有性质: .(4)余弦函数()cos f x x =,正弦函数()sin g x x =,具有性质 :,29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期 ;(2)()()f x a f x +=-或)0)(()(1)(≠=+x f x f a x f 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期 ; (3)1(),(()1)1()f x a f x f x +=≠-,则)(x f 的周期 ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<, 则)(x f 的周期 ;(5)()()()f x a f x f x a +=--,则)(x f 的周期 .30.分数指数幂: (P64)31.根式的性质:32.有理指数幂的运算性质:33.指数式与对数式的互化式: .(P76)34.对数的换底公式:35.对数的四则运算法则: .(P77)36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则若)(x f 的值域为R ,则 .【对于0=a 的情形,需要单独检验.】第三章 数列一、数列的分类1、 (P106)数列的定义:数列是按一定的次序排列的列数,在函数意义下,数列是定义域为 的函数f(n)当自变量n 以1开始依次取自然数时所对应的一列函数值f(1),f(2),…f(n),通常用a n 代替f(n),于是数列的一般形式为a 1,a 2…a n 简记{a n },其中a n 是数列{a n }的第n 项。

2、 (P106)数列的通项公式:一个数列{a n }的第n 项a n 与项数n 之间的函数关系,如果可以用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的 。

3、 (P109)递推公式:4、 (P107)数列的分类:a) 按照项数是有限还是无限来分: 。

b) 按照项与项之间的大小关系来分: 。

c) 按照任何一项的绝对值是否都小于某一正数来分:5、S n 与a n 的关系:常见的题型有:二、等差数列的概念:1、 等差数列:(1) (P111)一般地,如果一个数列从第2项起, ,这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为 。

(2) (P112)等差数列的通项公式: ,a n =a m +(n-m)d (其中n与m 的大小关系不确定),也可得d=1n a a 1n --(n ≠1)或d=mn a a m n -- (n ≠m)由于a n =a 1+(n-1)d ,可整理为a n = ,如果d=0,a n 是常数;如果d ≠0,a n 是n 的一次函数式,那么公差不为0的等差数列的图象是(3) 等差数列的增减性:d>0⇔{a n }为 数列;d<0⇔{a n }为 数列;d=0⇔{a n }为 数列。

(4) (P115)等差数列的求和公式:(由倒序相加法推得)s n =✹ 由于s n =na 1+2)1n (n d ,可整理得s n = ,设A=2d ,B=a 1-2d ,上式可写成s n = ,当A ≠0(即d ≠0)时,s n 是关于n 的二次函数(其中常数项为0),那么(n ,s n )在二次函数y=Ax 2+Bx 的图象上,因此,当d ≠0时,数列s 1,s 2,s 3…s n 的图象为 。

✹ 注意①上面的数列s 1,s 2,s 3…s n 不为等差数列{a n };②由二次函数的性质可以得出结论:当d>0时s n 有最 值;当d<0时,s n 有最 值;③数列{a n }为等差数列的充要条件是前n 项和 ;④显然若数列{a n }的前n 项和y=An 2+Bn+C (C ≠0)不是等差数列,而是✹ 一个等差数列,只有五个基本元素,a 1,a n ,d ,n ,s n 知道其中任意三个元素,通过解方程(组)均可求出另外二个元素,即“知三求二”。

相关文档
最新文档