九年级数学教学反思及教学建议

合集下载

九年级数学教学反思及总结7篇

九年级数学教学反思及总结7篇

九年级数学教学反思及总结7篇九年级数学教学反思及总结(篇1)一年来,我继续担任九年级(2)班的数学教学,在教学期间认真备课、上课,及时批改作业,做好课后辅导工作,广泛涉猎各种知识,不断提高自己的业务水平,充实自己的头脑,形成比较完整的知识结构,严格要求学生,尊重学生,发扬教学民主,教育民主,使学生学有所得,学有所用,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。

下面我就这一学期工作做简单的总结。

一、要提高教学质量,关键是上好课。

为了上好课,我做了下面的工作:(1)课前准备:备好课。

认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。

根据学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。

考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。

(2)课堂上的情况。

组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练二、总复习工作要面向全体学生具体做法是:(一)教师的板书与学生的板演教师的板书应体现知识的发生过程,知识之间的纵横联系,对问题的解答要让学生看解题思路及学生参与情况,教师的板书布局要合理,层次要分明。

强化学生板演过程,让不同层次学生都有机会表现,因为学生板演可为教师提供反馈信息,如暴露知识上的缺欠,可弥补讲课中的不足,同时,学生板演中出现的优秀解题方法,为教师提供向学生学习的良好机会;另外也可以培养学生胆识,培养学生独立思考能力,促进记忆。

(二)注重学生解题中的错误分析在总复习中,学生在解题中出现错误是不可避免,教师针对错误进行系统分析是重要的,首先可以通过错误来发现教学中的不足,从而采取措施进行补救;错误从一个特定角度揭示了学生掌握知识的过程,是学生在学习中对所学知识不断尝试的结果,教师认真总结,可以成为学生知识宝库中的重要组成部分,使学生领略解决问题中的探索、调试过程,这对学生能力的培养会产生有益影响。

九年级数学的教学反思(精选9篇)

九年级数学的教学反思(精选9篇)

九年级数学的教学反思九年级数学的教学反思(精选9篇)身为一名到岗不久的人民教师,教学是我们的工作之一,借助教学反思可以快速提升我们的教学能力,写教学反思需要注意哪些格式呢?下面是小编整理的九年级数学的教学反思(精选9篇),欢迎大家分享。

九年级数学的教学反思1虽然我在以前的复习中,也是按照这样的复习思路进行,但对于圆这个内容的复习,我觉得还是有很多问题存在。

1、我直接提问:这一单元我们学习了什么?这样对学生来说比较抽象,因为这是一个图形的复习,而且在后面练习中又有一个画圆的操作题,所以应该先让学生画一个圆,然后根据这个圆,可以直观的复习圆各部分名称,这样效果会更好。

2、填空题和判断题部分,内容难度有点大,复习更应该关注中下游的学生,而且做完一些理论性的题目后,可以再让全班学生读一遍,更加深记忆。

3、图形计算题中,分为两部分,一个是计算圆的周长,一个是计算圆的面积,对于简单的直接计算周长和面积,学生是能够掌握,但对于稍难一点的周长,学生常会忘掉一部分,因此,在复习时,我应该提醒学生可以先勾画出周长,再详细计算。

而在面积的计算中,学生较容易出错的是圆环,圆环有三种情况:一种是知道内圆和外圆的半径或直径,第二种是知道内圆的半径或直径和环宽,第三种是知道外圆的半径或直径和环宽,而这三种情况我在图形计算时只出现了第一种,第二种情况是出现在解决问题中,对后进生来说比较难。

4、在解决问题部分,我设计了三道题,分别是求横截面面积、圆环面积和综合题,习题难度也有一点偏高。

综上反思,我觉得圆的复习这个内容应该分为两课时比较适宜,第一课时是理论复习和基础题的复习,而第二课时再安排一些中等难度和高难度的习题,这样会更适合全班学生。

九年级数学的教学反思2教学方法与教材处理:我选用引导发现法和直观演示法。

让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验——观察——猜想——证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。

九年级数学教学反思(通用6篇)

九年级数学教学反思(通用6篇)

九年级数学教学反思(通⽤6篇)九年级数学教学反思(通⽤6篇) 作为⼀名优秀的教师,我们的任务之⼀就是课堂教学,在写教学反思的时候可以反思⾃⼰的教学失误,教学反思应该怎么写才好呢?以下是⼩编为⼤家收集的九年级数学教学反思(通⽤6篇),欢迎阅读与收藏。

九年级数学教学反思篇1 ⼀、教育教学中的得: (⼀)能制定正确教学⽬标:平时教学中,不仅根据教学⼤纲的要求,更注重初三(4)班多数学⽣的学习基础、⽔平来制定教学⽬标。

根据我校实际情况,我把平时的教学⽬标要求定在中等偏下⽔平,重点内容适当提⾼,使较尖的学⽣能取得优秀成绩,对于基础太差的学⽣,对他们的复习⽬标只要求达到教学⼤纲的最基本的要求,强调熟记重要的概念、定理、公式等基础知识,并能掌握基础题的基本解法。

通过努⼒,使全班学⽣的数学成绩均有所提⾼。

(⼆)寓复习于平时教学过程中:为了完成初三两本书的教学任务,⼜要减轻学⽣在集中复习时间的负担,我把复习内容有计划地分散在平时学习中。

从初三开始教学就有⽬的地回顾总结。

复习了与初三知识相关联的初⼀、初⼆年级的重要数学知识,结合教材,因势利导进⾏复习。

如在讲特殊的三⾓函数值得计算时就出了⼀道这样的数学题,求|1—√3|+1—tan60°+(tan30°)°的值,这时就复习了绝对值、零次幂等基础知识。

平时在课堂复习、提问、⼩测验中有⽬的的检查复习初⼀、初⼆等知识点。

这样做能使初⼀、初⼆等已学过的重要知识反复在学⽣头脑中出现,可以减少遗忘率。

(三)编写切合学⽣实际的训练题:⽬前我校初三学⽣每⼈⼿中均有《⼀课⼀练》、《堂堂练》、《试题宝典》、《复习点要》等学习资料,这些资料中如《⼀课⼀练》和《复习点要》基础知识偏少,较难的题⽬偏多,解题⽅法着重技巧性⽽不突出基本思路和⽅法,总的情况是要求偏⾼、偏深,脱离学⽣的实际,也不符合中考的学习要求。

因此平时在备课中我注意重点备好学⽣的练习及复习训练题。

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

21.2 解一元二次方程21.2.2 公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程 (一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274x x -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭, 2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=,112x =+212x =-2. 用配方法解一元二次方程的步骤?(出示课件3) 学生口答:化:把原方程化成 x 2+px +q = 0 的形式. 移项:把常数项移到方程的右边,如x 2+px =-q. 配方:方程两边都加上一次项系数一半的平方. x 2+px +(2p )2=-q +(2p)2 开方:根据平方根的意义,方程两边开平方. (x+2p )2=-q +(2p )2 求解:解一元一次方程. 定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知 探究一 公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5) 学生答:ax 2+bx +c=0(a ≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c. 二次项系数化为1,得x 2+b a x=-ca. 配方,得x 2+b a x+2()2b a =-ca+2()2b a ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?谈谈你的看法. 师生共同完善认知:(出示课件7)20,40,≠>a a当240,-b ac ≥.2b x a +=±x 1=-b+√b 2-4ac 2a , x 2=-b -√b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a ,b ,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac ≥0时,将a ,b ,c 代入式子x=2b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0; (出示课件9) 学生思考后,共同解答如下: 解:∵a=1,b=-4,c=-7, ∴b 2-4ac=(-4)2-4×1×(-7)=44>0.=x∴12=+x 22=-x(2)2x 2x+1=0;(出示课件10) 教师问:这里的a 、b 、c 的值分别是什么?解:2, 1.==-=a b c224(4210.△=-=--⨯⨯=b ac则方程有两个相等的实数根:122==-=-=b x x a(3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --= 1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根46.10±===x12464611,.10105+-====-x x(4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=ac b △方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac >0时,一元二次方程有两个不相等的实数根; ⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根; ⑶当∆=b 2-4ac <0时,一元二次方程没有的实数根. 教师问:用公式法解一元二次方程的步骤是什么? 学生思考后,共同总结如下:(出示课件14) 用公式法解一元二次方程的一般步骤: 1.将方程化成一般形式,并写出a ,b ,c 的值. 2.求出 ∆ 的值.3. (1)当 ∆ >0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答. 解:a=3, b=-6, c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.=x1=x 2=x探究二 一元二次方程的根的情况 出示课件16:用公式法解下列方程:(1)x 2+x -1=0;(2)x 2-+3=0;(3)2x 2-2x +1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗? ⑴x 2+2x -8=0; ⑵x 2=4x -4; ⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解. 师生共同总结如下:(出示课件18) 一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac >0 时,有两个不等的实数根:12,;x x ==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a -== (3)当b 2-4ac<0时,没有实数根.一般的,式子 b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1 不解方程,判断下列方程根的情况: (1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x ²-2mx+4(m-1)=0. 师生共同讨论解答如下: 解:⑴a =﹣1,b=,c =﹣6, ∵△= b 2-4ac=24-4×(﹣1)×(-6)=0. ∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4 ,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3 ,c=1,∵△= b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m ,c=4(m-1),∵△= b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D ⑵D出示课件23:例2 m 为何值时,关于x 的一元二次方程 2x 2-(4m+1)x+2m 2-1=0:(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?学生思考后,教师板演解题过程: 解:a=2,b=-(4m+1),c=2m 2-1,b 2-4ac=〔-(4m+1)〕2-4×2(2m 2-1)=8m+9.(1)若方程有两个不相等的实数根,则b 2-4ac >0,即8m+9>0,∴m >98-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=98-;(3)若方程没有实数根,则b2-4ac <0即8m+9<0, ∴m <98-.∴当m >98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m <98-时,方程没有实数根.出示课件24:m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b 2−4ac=[−(m −1)]2−4[−3(m+3)] =m 2+10m+37 =m 2+10m+52−52+37 =(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0, ∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根. (三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <12.解方程x 2﹣2x ﹣1=0.3.方程x 2-4x +4=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等 的实根,则k 的取值范围是( )A.k>-1B.k>-1且k ≠ 0C.k<1D.k<1且k ≠05.已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.参考答案: 1.D2.解:a=1,b=﹣2,c=﹣1, △=b 2﹣4ac=4+4=8>0, 所以方程有两个不相等的实数根,2x 12±===±1211x x ==-3.B4.B5.证明:∵没有实数根,∴ 4-4(1-m)<0, ∴m<0.对于方程 x 2+mx =1-2m ,即. ,∵,∴△>0.∴x 2+mx =1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。

九年级数学教师教学反思 九年级数学教学反思(优质10篇)

九年级数学教师教学反思 九年级数学教学反思(优质10篇)

九年级数学教师教学反思九年级数学教学反思(优质10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、工作计划、活动方案、规章制度、心得体会、演讲致辞、观后感、读后感、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, work plans, activity plans, rules and regulations, personal experiences, speeches, reflections, reading reviews, essay summaries, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!九年级数学教师教学反思九年级数学教学反思(优质10篇)在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。

九年级数学教学反思10篇

九年级数学教学反思10篇

九年级数学教学反思10篇九年级数学教学反思(一):在九年级毕业班的总复中,教学时间紧迫,任务繁重,要求高,学生对曾经学过的知识已经遗忘。

为了提高数学总复的质量和效益,每位毕业班数学教师都必须面对这个问题。

今年这个学期比往年更长,计划安排两个月进行第一轮复。

在进行第一轮复之前,我有以下几点认识:1.第一轮复的目的是要过三关:(1)过记忆关。

必须准确记住所有重要的知识、公式、定理等,没有准确无误的记忆,就不可能有好的结果。

(2)过基本方法关。

如:待定系数法求函数解析式;用勾股定理和三角函数来解直角三角形。

(3)过基本技能关。

如:给你一个题,你找到了它的解题方法,也就是明白了用什么办法,这时就说明具备了解这个题的技能。

在这一阶段的教学中,将书中的资料进行归纳整理、组合,使之构成知识结构。

代数部分可以分为:实数、代数式、方程、不等式、函数、概率、统计初步等;几何部分可以分为:几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。

每个单元复完之后都要进行卷检测,并重视补缺工作。

第一轮复的基本宗旨是:知识系统化(知识树),练专题化。

2.第一轮复应该注意的几个问题,必须扎扎实实地夯实基础。

1)根据往年中考,有些基础题是课本上的原题型或改编变式题,必须深入研究教材,绝不能脱离课本。

2)不要搞题海战术,要精讲精练,举一反三、触类旁通。

超多的练是相对而言的,它不是盲目的大量,也不是盲目的练。

而是有针对性的、典型性、层次性、切中要害的强化练。

3)每一天要批改检查学生完成的作业,并及时反馈。

对于作业、练、测验中的问题,采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反馈、矫正和强化,有利于大面积提高教学质量。

4)注重思想教育,不断激发学生学好数学的自信心,并创造条件,让学困生体验成功。

九年级数学教学反思(二):在一学期的教学中,我总感到有许多不足和需要思考的地方。

从多次考试中发现一个严重的问题,许多学生对于比较基本的题目掌握不够扎实,对于一些常见的题目出现了各种各样的错误。

2024年人教版九年级数学上册教案及教学反思第21章21.2.3 因式分解法

2024年人教版九年级数学上册教案及教学反思第21章21.2.3 因式分解法

21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=± 50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。

九年级数学教学反思(优秀5篇)

九年级数学教学反思(优秀5篇)

初三数学教师的教学反思篇一这节课是学生首次接触到有关角的运算问题,几何入门教学很关键,学生在答题时,往往延续小学一贯的作风,只有数据的运算过程,而对角的名称却忽略不写,只看重结果而对解题过程不考虑,于是,针对这些情况,我反复演示了典型例题的解题方法,有关角度计算题的书写格写,过后再让学生去做,学生却总也难以灵活的应用。

这种情况,教师在解题教学中经常会遇到。

为什么会产生这种情况?通过谈话,调查得知,其根本原因在于:以单纯的模仿,诵记为主获得的解题方法,因为缺少过程知识的支撑,难以迁移到新情境中去。

这里的过程知识是指个体在自己的解题活动中获得的一些只可意会、不可言传的潜在个性化的知识。

其中既有成功的体会,也有失败的感受。

由于这种过程知识融入了个体特定解题活动场景中的特定心理体验,对解题者本人而言是鲜活的,有生气的。

因此,在教学中要善加引导和利用,帮助学生恰当表征过程知识,要充分调动学生学习的主动积极性,启发学生将那些难以说清的过程知识用一些特殊的符号,如概念图式、关系网、线路图等形象地表征出来,以丰富学生的解题“知识库”,如果对学生的过程知识给以足够的重视和鼓励,学生会自然生成一种成就感,满足感,也就容易意识到:1.解题应该是自己的活动,自己发掘和利用智慧潜能,大胆地做出猜想,再创造,只要是自己付出的,就应当是有所收获的,没有绝对意义上的解题失败者。

2.自己形成的解题思路,就应当有与之相应的合理性解释,敢于承担起为之辩护的责任,成为一个有主见的解决问题者。

而不应人云我云或者等待老师讲解,摆脱对老师的信赖性。

3.解题同伴(包括老师)并无过人之处,大家不过是各自在自己所走的路上创造属于自己的过程知识。

总之,在解题教学中,适当的板书,演示是要的,但不能一味地强调学生千遍一律。

要让每个学生都有机会展示自己的思路、解题方法、训练、发展他们的高层次思维能力,有效地形成主动学习的意识和自主判断的能力,不断培养学生的自主学习意识,教学效果就一定能事半功倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学教学总结
尊敬的各位领导、各位老师:
大家下午好!
新学期开学伊始,我们九年级的全体老师相聚一堂探讨教学中的得与失,一起分享教育工作带来的苦与乐,我作为一名九年级的班主任和数学老师深感责任重大。

紧张忙碌的九年级上学期的工作已经结束了,回想上学期的教学工作虽有所得,但仍存在很多不足之处,为总结经验,吸取教训更好的开展下学期的工作,我对半年来的工作做一简要总结:
一、存在的问题和不足:
存在客观原因:
1、学生数学基础较差,多数学生没有形成有效的数学思想,不能用数学思维来思考问题,解题时靠经验,靠记忆,导致有时一道题做过几遍了,考试的时候照样不会做。

2、学生成绩两极分化严重,部分学生数学偏科,特别是一部分优秀生的数学偏科,如上学期开学后的诊断性考试中,一班前15名同学中有8名同学、二班有9名同学成绩不及格。

存在的主观原因:
1、备课中只注重备课标备教材备教法,忽视了备学生备学情的环节,只注重了三维目标的前两个目标,而忽视了情感态度价值观的落实。

造成了部分数学成绩较差的同学对数学学习越来越没有兴趣,进而出现厌学的结果。

2、过分的追求课堂的完整性,按照自己的经验备课,把课前备好的内容尽可能全讲给学生,有时因为时间关系,没有留给学生分析思考探究的时间,老师包办太多,学生的主体地位没有得到全方位的落实。

3、患得患失,因为学生计算能力和思维能力差,在课堂上不敢放手让学生算和思考,这样就陷入了一种恶性循环;学生眼高手低,有时会却算不出来,有时既不会算,也不会想,从而分析问题和解决问题的能力,特别是计算能力没有实质性的提高。

久而久之,造成了学生学习缺乏主动性,对老师依赖心太严重;缺乏刻苦钻研的精神和毅力,大都见到难题和陌生题就怕,等老师讲。

4、作业设置的不够科学合理,只注重作业的量,对质的要求有所放松。

表现为作业量偏大难度偏高,这样使学生只能机械地应付大量的作业甚至抄作业,而没有时间来思考、理解和反思。

导致学习效率严重下降。

当然这个问题是也不仅仅是数学学科的问题。

5、作业的检查力度不够,过分的依赖学习组长的检查,导致部分同学作业不认真对待,应付了事。

作业的批改针对性较差,只注重了学生普遍存在的共性问题的纠正解答,对个别学生出现的问题没有及时找学生指导解答。

二、下一步的工作方法和措施:
1、备课时注重三维目标的全面发展,要在学生学习兴趣上下功夫,充分调动学生学习数学的兴趣,树立数学学困生的学习的信心。

2、不过分追求教学内容的多和广,以课标要求最基本的知识和技能为主,切实落实学生的主体地位,以启发引导学生思维为主,给学生充分的思考探究时间,并注重数学思想方法的渗透和解题规律的总结。

3、布置科学合理的作业。

适当减少作业量,减轻学生的负担,不让学生成为作业题的奴隶。

解放学生的双手而武装学生的大脑,让学生成为思考探究的主人。

在作业题目的筛选上下功夫,把每个学习小组的学生按照学习成绩的优、中、差再分为A、B、C三个小组,分层布置作业,真正做到量体裁衣,
切合每个学生实际,坚决剔除繁,杂、难的题目,让每个学生都做到跳一跳,能摘到。

4、加大作业检查力度,采取小组内互查和课代表老师抽查相结合的检查方式。

对作业认真的同学及时给予表扬,对存在问题的同学先由小组内互助解决,对于存在的共性问题由课代表汇总老师集中讲解点评。

5、加大后进生辅导力度。

针对高中升学群中数学偏科的同学,利用课间、饭后等课外时间进行个别辅导,采取一天一个知识点、一个典型例题的办循序渐进的提高成绩。

三、对下一步综合复习的几点建议:
1、进一步落实集体备课制度,加强备课组内的团结协作。

一个人的力量是有限的,集体的力量才是无穷的。

只有团结协作,才能优势互补,事半功倍。

每周安排一节集体备课时间,两个校区的老师聚在一起进行集体备课,要做到统一进度,统一测试,轮流命题。

2、精选资料和习题。

九年级复习的关键是精选题目,精讲精练,建议采用学案教学的方法分课前热身、知识点梳理、巩固提高、直击中考等环节梳理出每一单元的复习学案。

这时,单靠个人力量是远远不够的,只有依靠集体的力量,大家通力协作,分工合作,才能真正做到事半功倍。

以上是我一些不成熟读的想法,有不当之处,敬请各位领导老师批评指正。

最后祝各位老师在新的学年身体健康,家庭幸福,工作顺利,万事如意!。

相关文档
最新文档