第三章信道及信道容量

合集下载

与信道容量

与信道容量

Department of Communication China Ji Liang University
25
第 三 章 信 道 与 信 道 容 量
③ 具有归并性能的无噪信道
这种信道如下图所示。 这种信道如下图所示。 n>m,输入 的符号集个数大于输出 的符号集个数。 的符号集个数大于输出Y的符号集个数 ,输入X的符号集个数大于输出 的符号集个数。
2012-4-6
Department of Communication China Ji Liang University
24
第 三 章 信 道 与 信 道 容 量
信道疑义度 H(X/Y)=0, I(X;Y)= H(X) -H(X/Y)= H(X) 。 ,
信道容量为: 信道容量为:
2012-4-6
2012-4-6
Department of Communication China Ji Liang University
10
第 三 章 信 道 与 信 道 容 量
b)二进制对称信道 ) (简称为 BSC信道 ) 信道
0 输入 p 1-p 0 输出
p 1 1-p 1
二进制对称信道
2012-4-6
Department of Communication China Ji Liang University
2012-4-6
Department of Communication China Ji Liang University
26
第 三 章 信 道 与 信 道 容 量
信道噪声熵 H(Y/X)=0。 信道容量为:
2012-4-6
Department of Communication China Ji Liang University

第三章离散信道及其信道容量

第三章离散信道及其信道容量

0
0 1
不是一一对应,无扰有信息损失
1
(2)有扰信道 例3:
a1
0.9
X
0.1
a2
0.2 0.8
b1
Y
b2
0.9 0.1 [P] 0.2 0.8 有扰有信息损失,干扰严重
例4:
a1
X
a2
1/2 1/2 1/2 1/2
b1
Y
b2
1/ 2 1 / 2 [P] 1/ 2 1 / 2
P yi xi P xi yi
即E{log x} ≤log{E(X)}
即E{log x} ≤log{E(X)}
I(X
;Y
)
X
Y
P(x,
y)
log
P( x)P( y) P(x, y)
log
XY
P(x,
y)
P( x)P( y) P(x, y)
log1
0
∴ I(X;Y) ≥ 0
∵ logx为∩ 型凸函数,只有当且仅当 p(x.y)=P(x)P(y),即x和Y统计独立时I(X;Y)=0
根据输入和输出信号的特点,信道可以分为: (1)离散信道。指输入和输出的随机变量的取值都 有是离散的信道。 (2)连续信道。指输入和输出的随机变量的取值都 是连续的信道。 (3)半离散半连续信道。输入变量是离散型的但相 应的输出变量是连续的信道,或者相反。 (4)波形信道。信道的输入和输出都是一些时间上 连续的随机信号。即信道输入和输出的随机变量的 取值是连续的,并且还随时间连续变化。一般用随 机过程来描述其输入和输出。
p( x1 ) 4
a2 1 4
a3 1 4
a4
1
4
1 P 1

课件:第三章信道及其容量

课件:第三章信道及其容量
第三章 信道及其容量
1
研究信道的目的是研究信道能传输的最大信息量, 即信道的最大传输能力。 1、如何描述在信道中传输的消息的信息量大小—— 平均互信息/信息传输率 2、信道的最大信息传输率是多少?——信道容量/ 传信能力
2
第三章 信道及其容量
3.1 信道的数学模型与分类 3.2 信道疑义度与平均互信息 3.3 离散无记忆的扩展信道 3.4 离散信道的信道容量 3.5 连续信道的信道容量 3.6 信源与信道的匹配 3.7 信道编码定理
效地折合成信道干扰,看成是由一个噪声源产生的,它将作用 于所传输的信号上。 a) 加性干扰:它是由外界原因产生的随机干扰,它与信道的
输入信号统计无关,因而信道的输出是输入和干扰的叠加。 【主要研究的干扰】 b) 乘性干扰:信道的输出信号可看成输入信号和某些随机参 量相乘的结果。
16
(6)根据信道有无记忆特性将信道分为: 无记忆信道 输出仅与当前输入有关,而与过去的输入和输 出无关。 有记忆信道 输出不仅与当前输入有关,而且与过去的输入 和输出有关。 本章的讨论基于无记忆、恒参、单用户离散信道,它是
|
x)
1 0
y f (x) y f (x)
其典型信道如下图所示:
22
(2)有干扰无记忆信道
该信道为实际常用信道,信道中存在干扰。 信道输入和输出符号之间不存在确定的对应关系,接收到Y后 不能完全消除对X的不确定性。信道输入和输出间的条件概率是一 般的概率分布。 信道任一时刻的输出符号只统计依赖于对应时刻的输入符号, 则这种信道称为无记忆信道,其条件概率满N 足
p(y | x) p(Y1, ,YN | X1, , XN )
条件概率p( y | x) 称为信道的传递概率或转移概率。 信道的数学模型可以用数学符号表示为:

第三章 信道模型和信道容量

第三章 信道模型和信道容量

这是可知疑义度H(X/Y)=0,平均交互信息量达到最大值 I(X,Y)=H(X),C=logr。从平均意义上讲,这种信道可以把信源 的信息全部传递道信宿。这种每列只有一个非0元素的信道也 是一种无噪声信道,称为无噪声信道。
确定信道
这类信道的转移概率等于1或者等于0, 每一列的元素可有一个或多个1,可知其 噪声熵H(Y/X)=0,此时的平均交互信息 量达到最大值。
离散信道
X
P(Y/X)
Y
离散信道分类: 无干扰信道 有干扰无记忆信道 有干扰有记忆信道
离散信道三种表达方式
概率空间描述 X={a1,a2,……ar} P(Y/X)={p(bj/ai)}
j=1,2,……s) Y={b1,b2,……bs} 0≤p(bj/ai)≤1
(i=1,2,……r;
转移矩阵描述
信道组合
串联信道 并联信道
4.4 时间离散的无记忆连续 信道
可加噪声信道
P(y|x)=p(y-x)=p(z)
Hc (Y | X ) Hc (Z ) I (X ;Y ) Hc (Y ) Hc (Z )
可加噪声信道
高斯噪声信道
I
(X
;Y
)
H
(Y
)
Hc
(X
)
1 2
log(1
2 x 2 z
)
例已知一个二元信源连接一个二元信道, 如图给出。X={x1,x2}, [p(xi)]={1/2,1/2}
求I(X;Y),H(X,Y),H(X/Y),和H(Y/X)。
信道容量
C max R max I (X ;Y )bit / 符号
PX
PX
1
Ct
max PX
Rt

信息论基础第3章离散信道及其信道容量

信息论基础第3章离散信道及其信道容量
也就是说,通过信息处理后,一般只会增加信息的 损失,最多保持原来获得的信息,不可能比原来获得的 信息有所增加。一旦失掉了信息,用任何处理手段也不 可能再恢复丢失的信息,因此也称为信息不增性原理。
《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配

第3章信道容量

第3章信道容量

其信道容量
C max I ( X ;Y ) max H ( Y ) log m
p ( xi ) p ( xi )
达到此类信道的信道容量的概率分布是使信道输出分布为 等概分布的输入分布。
8
离散无噪信道(总结)
对于无噪信道,求信道容量C的问题,已经 从求I(X;Y)的极值问题退化为求H(Y)或H(X)的 极值问题。
H(X/Y)称为损失熵,即信道疑义度。表示信源符号通过有噪 信道传输后引起的信息量的损失。 因为H(X/Y)=H(X)-I(X;Y) 损失熵等于信源X所含有的信息量减去信道输出端接收到符号 集Y之后平均每个符号所获得的关于输入集X的信息量。 H(Y/X)称为噪声熵,反映了信道中噪声源的不确定性。 因为H(Y/X)=H(Y)-I(X;Y)
i 1 j 1 n n
p( x i ) H ni
i 1
n
H ni p( y j / x i ) log p( y j / x i ) 由 于 信 道 的 对 称 性 , 一 每行 都 是 同 一 集 合 诸素 元的 不 同 排 列 。
其信道容量
C max I ( X ;Y ) max H ( X ) log n
p ( xi ) p ( xi )
6
3.具有归并性能的无噪信道(确定信道)
确定信道的一个输出对应着多个 互不相交的输入,如右图所示。
信道矩阵中每行中只有一非零元 素,即已知X后,Y不再有任何 不确定度。故噪声熵H(Y/X)=0
11
强对称信道的几个特性
强对称信道是对称信道的一个特例;
输入符号数与输出符号数相等; 信道中总的错误概率为p,对称地平均分配给 n-1个输出符号,n为输入符号的个数; 均匀信道中不仅各行之和为1,而且各列之和也 为1。 一般信道各列之和不一定等于1

第三章 信道和信道容量

第三章  信道和信道容量

I(X;Y):接收到Y前、后关于的平均不确定性 的消除 ;或发送X前、后关于Y的平
均不确定性的消除。
可见:熵只是平均不确定性的描述,而不确定性 的消除(两熵之差)才等于接收端所获得的信息 量。获得的信息量不能和不确定性混为一谈。
第三章 信道和信道容量
关于信道容量: 研究:信道中平均每个符号所能传送的信息量,
有损失,是无噪有损信 道,也称确定信道,即: 损失熵:H(X/Y) ≠ 0; 噪声熵:H(Y/X) = 0, I(X;Y)=H(Y)=H(X)-H(X/Y) <H(X)
第三章 信道和信道容量
信道容量仍是最大熵问题(最大H(Y)):
C=max H(Y)=log s bit/符号
P(X)
(设Y有s个符号)
不相交的子集mk,由mk组成的矩阵[P]k是对称矩阵 (具有可排列的性质),则称此信道为准对称信道, 其信道容量:
r为输入符号集个数 即信道矩阵行数 准对称信道中的 行元素 第k个子矩阵 中行元素之和
第k个子矩阵 中列元素之和
第三章 信道和信道容量
例3-1:二元对称删除 信道如图,计算信道容量。
例3-2:准对称信道的信道矩阵为: P(y/x)= 0.5 0.3 0.2 0.3 0.5 0.2 当输入概率分布为p(x1)=ɑ,p(x2)=1-ɑ
且:p=0时,信道无干扰; P=1/2时,信道干扰最为严重。
第三章 信道和信道容量
二、二元删除信道
难以区分原发送信号时,不硬性
判断0或1,而作删除处理。 删除信道中,p=q时,则为 对称删除信道。 三、Z信道 信道特性:0错成1的概率为0, 1错成0有一定可能。
1
0 1 0
p
1-p
1
第三章 信道和信道容量

通信课件信道及信道容量

通信课件信道及信道容量
基本内容
• 信道的基本概念 • 信道数学模型:调制、编码信道模型 • 恒参信道特性及其对信号传输的影响 • 随参信道特性及其对信号传输的影响 • 分集接收技术 • Shannon信道容量公式
1
信道的基本概念
• 信道:信号通道,必不可少 • 影响通信系统可靠性能的两个主要因素:噪声和信道传输特性的
不理想。
• 由于多径使得确定的载波信号Acosω0t变成了包络和相位都受 到调制的窄带信号,衰落信号。从时域来看,多径时延扩散; 从频域来看,频率展宽
15
随参信道对信号传输的影响(续2)
• 时变多径信道
R(t)
t 时域:瑞利衰落(快衰落)
f0 频域:频率弥散
16
随参信道对信号传输的影响例举
• 以两条路径且衰减恒定为例
3
信道数学模型
• 反映信道输出和输入之间的关系。 • 调制信道模型:传输已调信号,关心的是信号的失真
情况及噪声对信号的影响。已调信号的瞬时值是连续 变化的,故也称调制信道为连续信号,甚至称为信道 。 • 编码信道模型:输出输入都是数字信号→数字序列变 换,离散或数字信道。包含调制信道→依赖于调制信 道的性能,噪声的干扰体现在误码上,关心的是误码 率而不是信号失真情况→使用转移概率来描述。
ui (t)cos[0t i (t)] ui (t) cos i (t) cosot ui (t) sin i (t) sin ot
X c (t) cosot X s (t) cosot V (t) cos[ot (t)]
V(t) Xc2(t) Xs2(t)
(t) arctg(Xc (t) Xs (t))
2
N
(bit/s)
Shannon公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 )有干扰无记忆信道: 每个信道输出只与当前输入信号之间有转移概率关系,而 与其它时刻的输入输出信号无关。
这种情况下,不需要矢量形式,只要分析单个符号的转 移概率p(yi/xi)即可。
①离散无记忆信道(DMC) ②二进制对称信道(BSC)
15
《信息论与编码》
①离散无记忆信道 (DMC): 输入和输出信号的符号数大于 2但为有限值,即 ,
《信息论与编码》
第3章 信道和信道容量
1
《信息论与编码》
主要内容 3.1信道的基本概念 3.2离散单个符号信道及其容量 3.3离散序列信道及其容量 3.4连续信道及其容量 3.5信源与信道的匹配
2
《信息论与编码》
3.1 信道分类和表示参数 重点:信道矩阵
3
《信息论与编码》
信道中存在的干扰使输出信号与输入信号之间没有固定的函 数关系,只有统计依赖的关系。因此可以通过研究分析输入 输出信号的统计关系来研究信道。 一、信道的分类 1、根据用户数量分为 ① 单用户信道:只有一个输入端和一个输出端,信息单向 传输。 ② 多用户信道:输入端和输出端至少有一方存在两个以上 的用户,信息双向传输。 2、根据信道输入端和输出端的关系分为 ① 无反馈信道:输出端对输入端没有影响。 ② 反馈信道:输出信号通过一定的途径反馈到输入端,致 使输入端信号发生变化。
17
《信息论与编码》
三、离散输入、连续输出信道 信道输入符号选自一个有限的、离散的输入符号集 X∈{a1,a2,… ,an},而信道输出Y∈{-∞,+∞},这种信道模 型就称为离散时间无记忆信道。它的特性由离散输入X、 连续输出Y以及一组条件概率密度函数 来决定。
这类信道中最重要的就是加性高斯白噪声(AWGN)信道
Y=X+G
式中,G 是一个零均值,方差为σ2的高斯随机变量。 当 X=ai给定后,Y是一个均值为ai,方差为σ2的高斯随机变量。
18
《信息论与编码》
四、波形信道
当信道输入和输出都是随机过程{x(t)}和{y(t)} 时,该信 道就称为波形信道,在实际模拟通信系统中,信道都是波 形信道。 如果波形信道为频宽受限信道,在有限的观察时间内, 输入和输出的随机过程可以化为L个时间离散,取值连续的 平稳随机序列。 这样,波形信道化为多维连续信道,信道转移概率密度 函数为
p( x) p( x)
式中假设输出信源Y的符号共有s个符号,所以等概率分布时 信源熵H(Y)最大。而且一定能找到一种输入分布使输出 符号Y达到等概分布。
36
《信息论与编码》
三、对称DMC信道
1、定义:如果转移概率矩阵P的每一行包含同样元素,则 为输入对称矩阵;如果转移概率矩阵P的每一列包含同样元 素,则为输出对称矩阵;如果输入输出都对称,则为对称 DMC信道。 例 如:
H(X/Y)
有噪无损信道
无噪有损信道
34
• 综合上述三种情况,若严格区分的话,凡损失熵等 于零的信道称为无损信道;凡噪声熵等于零的信道 称为无噪信道,而前面讨论的一一对应的无噪信道 则为无噪无损信道。 • 对于无损信道,其信息传输率R就是输入信源X输 出第个符号携带的信息量(信源熵H(X)),所 以其信道容量为
噪声分为两类:加性噪声和乘性噪声,分析较多的是加性噪声信道 ( 噪声与信号是相加的关系,通常相互独立。) 单符号加性噪声信道可以表示为 :
x(t)是带限信号,y(t)是输出值,n(t)是加性噪声过程的一个样本函数
说 明: 条件熵Hc(Y/X)是由于噪声引起的,它等于噪声信源的熵Hc(n) 。 所以称条件熵Hc(Y/X)为噪声熵。
6
《信息论与编码》
二、离散信道的信道参数
1、基本离散信道(单符号离散信道) 输入输出信号都是取值离散的单个随机变量,可用 信道转移概率 来描述。其中
并满足:
信道转移概率:条件概率 为信道输出。
其中,ai为信道输入,bj
7
《信息论与编码》
单符号离散信道可以用图形描述如下
8
《信息论与编码》
信道矩阵的每一行之和必定等于1。
29
例:二进制对称信道
• 设p(0)=1/2时,
p(0 / 0) 1 , p(0 /1) , p(1 / 0) , p(1 /1) 1
则C I ( X ; Y ) H ( X ) H ( X / Y ) 1 (1 ) log(1 ) log (bit / 符号) 即二进制对称信道的C 1 H ( )(bit / 符号)
26
《信息论与编码》
3、信道容量C
1)理论基础:对于固定的信道,平均互信息I ( X ; Y ) 是信源概率分布P ( x ) 的上凸函数。也就是说,存在一个使 某一特定信道的平均互信息达到极大值的信源分布,该极大 值可以用来表述信道传送信息的最大能力,即信道容量。
27
《信息论与编码》
2)信道容量的定义 对于某特定信道,可找到某种信源的概率分布p(ai),使 得 I(X;Y)达到最大。
② 如果分析性能的理论极限,则多采用离散输入、连续输 出信道模型。
③ 如果设计和分析数字调制器和解调器的性能,则可采用 波形信道模型。 因为本书后面的内容主要讨论编码和译码,所以DMC 信道模型使用最多。
23
《信息论与编码》
作 业:
3-1
24
《信息论与编码》
3.2 离散单个符号信道及其容量
一、 几个定义
是错误传递概率,H ( )是关于的熵函数
30
《信息论与编码》
二、无干扰离散信道的信道容量
1、无噪无损信道:输入输出一一对应,信道矩阵为单位 阵.疑义度 H ( X/Y ) =0,噪声熵 H ( Y/X ) =0
31
《信息论与编码》
2、无噪有损信道(确定信道):
H(X/Y)>0,H(Y/X)=0 信道输出端接收到某个bj后不能判定是哪个输入符号ai

二、干扰离散信道的信道容量 三、对称DMC信道 四、准对称DMC信道 五、 一般DMC信道 六、串联信道的信道容量
重点: 无干扰信道、对称信道和准对称信道的信道容量
25
《信息论与编码》
一、几个定义
1、信息传输率R:信道中平均每个符号所能传送的信息量 2、信息传输速率Rt:信道中单位时间平均传送的信息量, 即收信者在单位时间内接收到的信息量。单位:bit/秒
5
《信息论与编码》
5、根据信道参数与时间的关系分为 ①离散信道:输入输出信号在时间、幅度上均为离散。 ②连续信道:信号幅度连续、时间离散。 ③半离散半连续信道:输入输出信号中一个离散、一个连续。 ④波形信道:在时间和幅度上均连续,一般可以用随机过 程来表示。限时限频的随机过程可以分解为离散的随机 序列,所以波形信道可以被分解为离散信道、连续信道 和半离散半连续信道。
C max{I ( X ; Y )}(bit / 符号)
p( x)
注:对于特定的信道,信道容量是个定值,但是在传输信 息时信道能否提供其最大传输能力,则取决于输入端的概 率分布。一般相应的输入概率分布称为最佳输入分布。
28
若平均传输一个符号需要t秒钟,则信道单位时间内 平均传输的最大信息量为: 1 CT max{I ( X ; Y )}(bit / 秒) t p( x) 即信道传输速率。 信道容量C已与输入信源的概率分布无关,它只是 信道传输概率的函数,只与信道的统计特性有关。 所以,信道容量是完全描述信道特性的参量,是信 道能够传输的最大信息量。
10
《信息论与编码》
1 )无干扰(噪声)信道:已知信道输入X就知道信道输出Y。
① 无噪无损信道: 疑义度H(X/Y)=0,噪声熵H(Y/X)=0
②/X)= 0 ③ 有噪无损信道(严格意义上,不能称为无噪声信道):
疑义度H(X/Y)= 0,噪声熵H(Y/X)〉0
其中:
19
《信息论与编码》
如果多维连续信道的转移概率密度函数满足
这样的信道称为连续无记忆信道即在任一时刻输出变 量只与对应时刻的输入变量有关,与以前时刻的输入输出 都无关。 一般情况下,上式不能满足,也就是连续信道任一时 刻的输出变量与以前时刻的输入输出有关,则称为连续有 记忆信道。
20
《信息论与编码》
p11 p 21 P pn1
p12 p22 pn 2
p1m p2 m pnm
②二进制对称信道(BSC):输入和输出信号的符号数都 是2,即X∈A={0,1}和Y∈B={0,1}的对称信道。
1-p 0 p p 0
p 1 p P p 1 p
1
1 1-p
16
《信息论与编码》
3)有干扰有记忆信道:每个信道输出不但与当前输入信号 之间有转移概率关系,而且与其它时刻的输入输出信号也 有关。 在实际的数字信道中,当信道特性不理想,存在码间干 扰时,输出信号不但与当前的输入信号有关,还与以前的 输入信号有关。常用的处理方法有两种: ①将记忆很强的L个符号当作矢量符号,各矢量符号之 间认为无记忆。这时会引入误差,L越大,误差越小。 ②将转移概率看作记忆长度有限的马尔科夫链的形式, 这种处理方法很复杂,通常取一阶时稍简单。
21
《信息论与编码》
加性多维连续信道中,输入矢量、输出矢量和噪 声矢量的关系表示为:
以后主要讨论加性信道,噪声源则主要是加性高 斯白噪声。
22
《信息论与编码》
五、信道模型的选取
在分析问题时选用何种信道模型完全取决于分析者的目的
① 如果感兴趣的是设计和分析编码器和译码器的性能,常 采用DMC信道模型或其简化形式BSC信道模型。
37
• 若输入符号和输出符号个数相同,都等于r,且信道矩 阵为 p p
p p P r 1 p r 1 r 1 p p r 1 p p r 1 r 1 其中p p 1
相关文档
最新文档