浅谈电缆交联技术
浅谈高压直流交联聚乙烯电缆应用

浅谈高压直流交联聚乙烯电缆应用介绍了高压直流电缆的发展历史、运行中存在的问题以及目前国内外对交联聚乙烯(XLPE)高压直流电缆的研究现状,提出了国内发展XLPE高压直流电缆的建议。
标签:高压直流电缆;XLPE;空间电荷;温度梯度;绝缘诊断为了降低温室效应对气候的影响,全世界正在大规模发展绿色能源,开发太阳能、风能和潮汐发电等。
直流输电可以把风力发电、潮汐发电、太阳能发电等具有不稳定的电源与电力系统联接起来而不会影响电网的电能质量水平。
众所周知,高压直流输电线路成本低、损耗小、没有无功功率、连接方便、容易控制和调节,在长距离输电中已被广泛采用。
另外,直流电力电缆绝缘的工作电场强度高、绝缘厚度薄、电缆外径小、重量轻、制造安装容易、载流量大、没有交流磁场、有环保方面的优势。
因此直流高压输电电缆作为直流输电系统中不可或缺的一部分,是高压输电中的重要课题。
1高压直流电缆的发展和应用1.1直流输电的发展最早的直流输电工程可追溯到1882年,德国用单台直流发电机发电,通过57km架空线从巴伐利亚州的米斯巴赫镇向巴伐利亚州首府慕尼黑市的国际展览会送电。
早期的高压直流输电不用换流,由瑞士工程师RenéThury首先开发,其基本原理是利用直流发电机串联获得高电压,利用这种技术的第一项工程是1889年意大利的GorzenteRiver-Genoa直流输电工程。
1972年,在加拿大伊尔河建成了世界上第一个采用晶闸管换流的直流工程。
截至2011年,世界上已经投入运行的采用晶闸管换流的高压直流输电工程共92项,其中纯架空线路27项、纯电缆线路15项、架空线和电缆混合线路17项、背靠背直流工程33项。
这其中包括我国1987年投运的浙江舟山直流输电工程、1989年投运的葛洲坝-南桥直流输电工程、2001年投运的天生桥-广州直流输电工程、2002年投运的嵊泗直流输电工程、2003年投运的三峡-常州直流输电工程、2004年投运的贵州-广东Ⅰ回直流输电工程和三峡-广东直流输电工程、2005年投运的灵宝背靠背工程、2006年投运的三峡-上海直流输电工程、2007年投运的贵州-广东Ⅱ回直流输电工程、2010年投运的云南-广东直流输电工程和向家坝-上海直流输电工程。
电缆交联知识点

电缆交联知识点电缆交联是一种常见的电缆连接技术,它可以将两根电缆连接在一起,使其具有持久的电气和机械连接。
本文将介绍电缆交联的基本原理、工作流程以及注意事项。
1.基本原理电缆交联是通过在电缆两端使用热缩套管或冷缩套管等材料,将两根电缆连接在一起。
热缩套管是一种热塑性材料,当受热后,会收缩并与电缆紧密结合,形成一个坚固的连接。
冷缩套管则是一种热固性材料,通过外力使其收缩并固定在电缆上,以实现连接。
2.工作流程电缆交联的工作流程如下:(1)准备工作:在进行电缆交联之前,首先需要对电缆进行清洁和修剪。
确保电缆表面无灰尘、油脂等污染物,并修剪电缆两端的外皮,以便与套管完全贴合。
(2)选择套管:根据电缆的直径和材质,选择适合的套管。
套管的长度应略长于电缆两端的暴露部分,以确保完全覆盖。
(3)套管安装:将套管套在电缆两端,确保套管完全贴合电缆表面。
对于热缩套管,使用火焰枪或热风枪对套管进行加热,使其收缩并与电缆固定。
对于冷缩套管,则需使用压接工具将其压紧并固定在电缆上。
(4)测试和验证:完成套管安装后,进行测试和验证,确保连接的可靠性和稳定性。
可以使用绝缘电阻测试仪等工具进行测试,检测连接处的绝缘电阻和电气性能。
3.注意事项在进行电缆交联时,需要注意以下事项:(1)安全措施:在进行电缆交联之前,确保工作场所安全,并戴好个人防护用品,如安全眼镜、手套等。
同时,使用火焰枪或热风枪等加热工具时要注意防火。
(2)选择合适的套管:根据电缆的直径和材质选择合适的套管,确保套管与电缆完全贴合。
如果套管过大或过小,可能会影响连接的可靠性。
(3)加热温度和时间控制:对于热缩套管,加热温度和时间要控制得当。
温度过高或加热时间过长可能导致套管变形或烧焦。
(4)绝缘测试:在完成套管安装后,进行绝缘测试是必要的。
绝缘电阻测试仪可以检测连接处的绝缘电阻,确保连接的质量。
总结:电缆交联是一种常见的电缆连接技术,通过使用热缩套管或冷缩套管等材料,将两根电缆连接在一起。
电缆交联工艺学

电缆交联工艺学使用材料的质量好坏,直接影响到电缆产品的质量,因而电缆的进展很大程度上取决于使用材料的进展。
电缆使用材料的品种多、数量大、从生产成本中看,材料费用约占百分之七十以上。
交联电缆使用的导体及绝缘材料要紧有铜、铝、交联聚乙烯料与内、外半导电料。
第一节导体用金属材料交联电缆导体使用的导体材料,首先务必具有良好的导电性能;第二,有良好的机械强度;第三,具有一定的防腐蚀能力;第四,在冷热状态下都具有良好的工艺性能;第五,在资源上能保证供应。
铜、铝等金属是常用的导体材料,铜的导电性能好,铝的导电性能与机械物理性能尽管不如铜,但其具有资源丰富,重量轻等特点,也已成为应用较广的导体材料。
一、铜、铝性能作为导体使用的铜、铝通常都用电解法制成,纯度很好,铝导体的纯度应在99.5%以上,铜导体的纯度应在99.9%以上。
钒、钛、锰等是电解铝中影响导电性能较大的杂质。
砷、铁、锑、锌等则是电解铜中影响导电性能较大的杂质。
标准中规定有这些含量的限量。
电解铜中含氧量在0.001%下列称之“无氧铜”。
1、铜、铝物理性能纯铜是玫瑰红色金属,表面生成氧化铜膜后呈紫红色,因此俗称之紫铜。
工作用纯铜与纯铝的物理性能见表2——1。
电缆用铜线锭化学成分务必符合国家标准(GB468——83)中关于特二号铜的规定见表2——2。
号铝、一号铝的规定,铝的化学成分见表2——3。
1、导电性好,仅次于银而居第二,如以铜的电导率为100%,银的电导率则为108.5%。
2、导热性好,仅次于银与金而居第三位,导热系数为银的73%。
3、塑性好,热加工时,首次压力加工量可达30%~40%。
4、耐腐蚀性好,它与盐酸或者稀硫酸作用甚微,铜在干燥的空气中具有较好的耐腐蚀性,但在潮湿空气中表面易生成有毒的铜绿。
5、机械性能好,有较高的炕拉与伸长率。
6、易焊接。
三、铝的要紧特点1、导电性能好。
仅次于银、铜、金。
而位于第四位,按相同体积比较,约为铜的60%~65%。
交联

交联电缆工艺性能简介一、概念交联电缆通常是指电缆的绝缘层采用交联材料。
最常用的材料为交联聚乙烯(XLPE)。
交联工艺过程是将线性分子结构的聚乙烯(PE)材料通过特定的加工方式,使其形成体型网状分线结构的交联聚乙烯。
使得长期允许工作混充由70℃提高到90℃(或更高),短路允许温度由140℃提高到250℃(或更高),在保持其原有优良电气性能的前提下,大大地提高了实际使用性能(耐老化、机械性能)。
二、交联工艺方式目前电缆行业生产交联电缆的工艺方式分为三类:第一类过氧化物化学交联,包括饱合蒸气交联、惰性气体交联、熔盐交联、硅油交联,国内均采用第二种即干法化学交联;第二类硅烷化学交联;第三类辐照交联。
1、惰性气体交联¬¬¬――干法化学交联采用加入过氧化合物交联剂的聚乙烯绝缘材料,通过三层共挤完成导体屏蔽层――绝缘层――绝缘屏蔽层的挤出后,连续均匀地通过充满高温、高压氮气的密封交联管完成交联过程。
传热媒体为氮气(惰性气体),交联聚乙烯电气性能优良、生产范围可达500KV级。
2、硅烷化学交联――温水交联采用加入硅烷交联剂的聚乙烯绝缘材料,通过1+2的挤出方式完成异体屏蔽层――绝缘层――绝缘屏蔽层的挤出后,将已冷却装盘的绝缘线芯浸入85-95℃热水中进行水解交联,由于湿法交联会影响绝缘层中的含水量。
一般最高电压等级仅达10KV。
3、辐照交联――物理交联采用经过改性的聚乙烯绝缘料,通过1+2的挤出方式完成异体屏蔽层――绝缘层――绝缘屏蔽层的挤出后,将冷却后的绝缘线芯,均匀通过高能电子加速器的辐照扫描窗口完成交联过程。
辐照交联电缆料中不加入交联剂,在交联时是由高能电子加速器产生的高能电子束有效穿透绝缘层,通过能量转换产生交联反应的,因为电子带有很高的能量,而且均匀地穿过绝缘层,所以形成的交联键结合能量高,稳定性好。
表现出的物理性能为,耐热性能优于化学交联电缆。
但由于受加速器能量级的限制(一般不超过3.0Mev电子束有效穿透厚度为10mm以下,考虑几何因数,生产电缆的电压等级仅能达到10KV,优势在6KV以下。
交联电缆的介绍及优缺点

种交联电缆的介绍及优缺点2008-05-20 15:46交联电缆工艺性能简介一、概念交联电缆通常是指电缆的绝缘层采用交联材料。
最常用的材料为交联聚乙烯(XLPE)。
交联工艺过程是将线性分子结构的聚乙烯(PE)材料通过特定的加工方式,使其形成体型网状分线结构的交联聚乙烯。
使得长期允许工作混充由700C提高到900C(或更高),短路允许温度由1400C提高到2500C(或更高),在保持其原有优良电气性能的前提下,大大地提高了实际使用性能。
二、交联工艺方式目前电缆行业生产交联电缆的工艺方式分为三类:第一类过氧化物化学交联,包括饱合蒸气交联、惰性气体交联、熔盐交联、硅油交联,国内均采用第二种即干法化学交联;第二类硅烷化学交联;第三类辐照交联。
1、惰性气体交联――干法化学交联采用加入过氧化合物交联剂的聚乙烯绝缘材料,通过三层共挤完成导体屏蔽层――绝缘层――绝缘屏蔽层的挤出后,连续均匀地通过充满高温、高压氮气的密封交联管完成交联过程。
传热媒体为氮气(惰性气体),交联聚乙烯电气性能优良、生产范围可达500KV级。
2、硅烷化学交联――温水交联采用加入硅烷交联剂的聚乙烯绝缘材料,通过1+2的挤出方式完成异体屏蔽层――绝缘层――绝缘屏蔽层的挤出后,将已冷却装盘的绝缘线芯浸入85-950C热水中进行水解交联,由于湿法交联会影响绝缘层中的含水量。
一般最高电压等级仅达10KV。
3、辐照交联――物理交联采用经过改性的聚乙烯绝缘料,通过1+2的挤出方式完成异体屏蔽层――绝缘层――绝缘屏蔽层的挤出后,将冷却后的绝缘线芯,均匀通过高能电子加速器的辐照扫描窗口完成交联过程。
辐照交联电缆料中不加入交联剂,在交联时是由高能电子加速器产生的高能电子束有效穿透绝缘层,通过能量转换产生交联反应的,因为电子带有很高的能量,而且均匀地穿过绝缘层,所以形成的交联键结合能量高,稳定性好。
表现出的物理性能为,耐热性能优于化学交联电缆。
但由于受加速器能量级的限制(一般不超过3.0Mev电子束有效穿透厚度为10mm以下,考虑几何因数,生产电缆的电压等级仅能达到10KV,优势在6KV以下。
交联聚乙烯绝缘电缆交联工艺介绍及应用

交联聚乙烯绝缘电缆交联工艺介绍及应用交联聚乙烯绝缘电缆是一种高压电力电缆,具有较高的耐热性、耐电压、耐电化学腐蚀性和机械强度。
它广泛应用于各个领域,如城市供电网络、石油化工、冶金、煤炭等领域,以满足生产和生活的需要。
在这篇论文中,我们将介绍交联聚乙烯绝缘电缆的交联工艺及应用。
交联聚乙烯绝缘电缆交联工艺交联聚乙烯绝缘电缆的交联工艺是将聚乙烯绝缘层加热至一定温度,使其发生化学反应并产生交联,从而使聚乙烯形成三维网络结构,提高其性能。
通常交联方法有两种:1.辐照交联:在实验室或生产现场中采用电子或γ射线进行辐照交联。
该方法交联速度快,但需要较高的能量和投资成本。
2.热交联:将电缆在一定的温度下加热,使其自身产生化学反应,从而进行交联。
该方法简单、省时省力,且在许多现场应用中具有广泛的适用性。
目前,在电缆行业中,热交联更为普遍使用。
它通常分为两种:1.潜沸法:将绝缘层的温度加热至170-180℃,然后浸泡在高压水中,使水液化,进而产生蒸汽,根据蒸汽逐渐递进的原理,使聚乙烯绝缘层进行交联。
与辐照交联相比,交联产生的能量较小,但需要使用大量水资源。
2.干燥热交联:将绝缘层在特殊的热空气中进行干燥,使其发生化学交联反应。
此方法用于大批量生产,在交联过程中产生的烟尘易于处理,但生产过程中会有一定的空气污染。
应用交联聚乙烯绝缘电缆是目前电缆行业中应用较为广泛的一种高压电力电缆,主要用于输电、变电站及工厂等场合。
交联聚乙烯绝缘电缆的优点:1. 耐热性优良:能承受高温、高湿、高海拔及强辐射等特殊环境;2. 耐电压高:在高电压下仍能保持稳定的功能性能;3. 机械强度高:具有较好的抗拉、抗压、抗弯曲和抗振动的性能特点;4. 耐电化学腐蚀性能良好:在很多强腐蚀介质和化学试剂等物质中仍能很好地保持电缆性能。
以上优点使其在石油化工、冶金、煤炭等行业具有广泛应用。
结论交联聚乙烯绝缘电缆是一种高质量、高性能的电缆,具有较强的耐用性和经济性。
电缆交联辐照

电缆交联辐照
电缆交联辐照是一种信号传播技术,是将一种可以发射和接收电磁波的信号源(如天线)和接收器(如探测器)用电缆相连的一种技术。
这种技术使用一个平板(对称的一端接受,另一端发射,形成电缆交联)将电磁波进行聚合和交联,从而可以将信号沿电缆传播,而不受环境因素的影响。
另外,电缆交联辐照技术延伸了传统电波调制方式,可以使电缆进行更大范围的空间变化,从而实现信号的远距离传播。
它可以把信号超越普通电缆传输长度的范围,使电缆传输技术的使用更加便捷高效。
电缆交联辐照是一种绝缘电缆系统,可以保护电缆不受外部干扰,并避免电缆之间的滞后信号。
它可以帮助传输复杂信号,而且可以把信号传输到具有难以通过传统电缆传输的棘手位置。
电缆交联辐照还具有良好的信号稳定性和穿透性,可以节省大量成本。
电缆交联辐照的应用十分广泛,其常见的应用领域包括:通信、穿戴设备、医学、军事技术和航空航天科学等。
可以用来解决常见的传输问题,特别是在对复杂信号传输要求较高的环境中。
例如,电缆交联辐照可以在航空航天和太空探测等领域,用于传输高速数据和精确定位信息;在医学行业,它可以用于传输复杂的信号,如心电图和脑电图等;在通信领域,它可以用于传播语音和视频信号,以及实时、长距离的数据传输。
电缆交联辐照的技术正在不断发展,将给我们的工作和生活带
来更多的便利。
未来,随着技术的发展,电缆交联辐照将发挥更大的作用,并加强其在行业、教育、科研等领域的应用。
浅谈电缆交联技术

电缆交联技术上世纪50年代,世界上第一根交联聚乙烯绝缘电缆在美国问世,此后,以其电气性能优异、传输容量大、机械性能高、结构轻便、附件简单等优点在其他各国得以快速发展。
我国发展相对较晚,约在80年代末,但发展迅速,目前,我国许多厂家已具有500KV 超高压生产能力。
交联聚乙绝缘电缆的产生,结束了油浸纸绝缘时代,并在逐步取代聚氯乙烯绝缘电缆。
交联聚乙烯绝缘电缆的优越性能源与聚乙烯材料分子链结构的变化。
低密度聚乙烯分子链成线状,但带有很多甲基支链;中密度聚乙烯分子链成线状带有较少的甲基支链;高密度聚乙烯分子链也成线状但不带甲基支链。
这些聚乙烯在物理或化学交联剂作用下,分子链由线形变成网状结构,使聚乙烯由热塑性材料变成热固性材料,即聚乙烯交联聚乙烯,从而提高了聚乙烯的电气性能、机械性能、耐老化性等,这就是交联聚乙烯电缆的交联机理。
20多年来,为提高产品质量,人们对聚乙烯交联技术的研究从未间断过,形成了多种交联方式,按其交联实质和交联介质的不同可概括为两类:一、物理交联;二、化学交联。
详细分类见下图。
在交联电缆产生初期,人们主要采用饱和蒸汽加热的方法使聚乙烯交联,但在实践中发现,此法中制品在高温高压下要与水气接触,材料内部将吸收较多的水分,冷却时过饱和水析出,形成大量的微小气孔,在较高电压下容易发生水树击穿;另外,饱和蒸汽温度与蒸汽压力有关,压力大温度高,但在高蒸汽压力下,温度随压力上升而增加的速率显著降低,这就决定了此法交联温度不是很高,继而限制了交联速度。
由于上述原因饱和蒸汽交联一般用于10KV 及以下电缆的生产。
惰性气体保护热辐射交联方法的产生在很大程度上取代了饱和蒸汽交联,但并没完全取代,目前450/750V及以下橡皮绝缘电缆还大多采用这一方法。
惰性气体保护热辐射交联方法又称为干法交联,是当前生产500KV及以下塑料绝缘电缆最常用、最普遍的方法,该方法克服了饱和蒸汽交联的所有缺点,并在惰性气体的压力下还能使制品表面致密、防止氧化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆交联技术
上世纪50年代,世界上第一根交联聚乙烯绝缘电缆在美国问世,此后,以其电气性能优异、传输容量大、机械性能高、结构轻便、附件简单等优点在其他各国得以快速发展。
我国发展相对较晚,约在80年代末,但发展迅速,目前,我国许多厂家已具有500KV 超高压生产能力。
交联聚乙绝缘电缆的产生,结束了油浸纸绝缘时代,并在逐步取代聚氯乙烯绝缘电缆。
交联聚乙烯绝缘电缆的优越性能源与聚乙烯材料分子链结构的变化。
低密度聚乙烯分子链成线状,但带有很多甲基支链;中密度聚乙烯分子链成线状带有较少的甲基支链;高密度聚乙烯分子链也成线状但不带甲基支链。
这些聚乙烯在物理或化学交联剂作用下,分子链由线形变成网状结构,使聚乙烯由热塑性材料变成热固性材料,即聚乙烯
交联聚乙烯,从而提高了聚乙烯的电气性能、机械性能、耐老化性等,这就是交联聚乙烯电缆的交联机理。
20多年来,为提高产品质量,人们对聚乙烯交联技术的研究从未间断过,形成了多种交联方式,按其交联实质和交联介质的不同可概括为两类:一、物理交联;二、化学交联。
详细分类见下图。
在交联电缆产生初期,人们主要采用饱和蒸汽加热的方法使聚乙烯交联,但在实践中发现,此法中制品在高温高压下要与水气接触,材料内部将吸收较多的水分,冷却时过饱和水析出,形成大量的微小气孔,在较高电压下容易发生水树击穿;另外,饱和蒸汽温度与蒸汽压力有关,压力大温度高,但在高蒸汽压力下,温度随压力上升而增加的速率显著降低,这就决定了此法交联温度不是很高,继而限制了交联速度。
由于上述原因饱和蒸汽交联一般用于10KV 及以下电缆的生产。
惰性气体保护热辐射交联方法的产生在很大程度上取代了饱和蒸汽交联,但并没完全取代,目前450/750V及以下橡皮绝缘电缆还大多采用这一方法。
惰性气体保护热辐射交联方法又称为干法交联,是当前生产500KV及以下塑料绝缘电缆最常用、最普遍的方法,该方法克服了饱和蒸汽交联的所有缺点,并在惰性气体的压力下还能使制品表面致密、防止氧化。
硅烷交联又称为温水交联或低温交联,电缆在70℃~90℃的温水中交联,绝缘中的交联剂—硅烷在吸水后,线形结构反应生成网状结构。
目前主要用在10KV及以下交联电缆的生产中。
物理交联又称为辐照交联,分为电子辐射和γ射线交联两种方法。
(1)电子辐射交联,利用电子加速器配合束下辐照装置,采用高能电子束(一般能量仔1.0~3.0MeV之间)对电线电缆绝缘层进行照射,引发高分子材料产生自由基,形成C-C交联键,生成三维网状结构。
(2)γ射线交联由于剂量率低,照射过程中无法穿透线缆的芯线,所以,目前只是在热塑性材料的交联中有应用,而电线电缆生产中一般不采用γ射线交联。
物理交联电线电缆的交联度随着辐照剂量的增加而增加,通过控制加速器及束下设备的运行参数,可以获得重复性非常好的交联度值。
同时,由于物理交联是在常温常压下交联,辐照过程中不存在高压力和高温度,不需要加水或加热,交联中没有水和气体生成,因此,长期使用中不会发生水树、电树等影响电线电缆寿命的老化,不存在电线电缆内部结构变动或熔化或降低电线电缆的拉断力,但由于受电子加速器能量以及束下设备的限制,物理交联一般适用于10KV以下630㎜2以内的电线电缆的生产。
熔盐交联、硅油交联和长承模交联技术在国内使用较少。
随着我国经济高速稳定的增长,国际经济技术交流的加快,其他各行业对线缆的要求越来越高,不但要求阻燃、耐火,还要求燃烧时具有低烟无氯等性能,同时出口的产品还要符合进口国严格、苛刻的安全指标,这就促使我们在电缆交联技术等方面不断前进,不断攻克国际贸易技术壁垒。