高考数学100个高频考点

合集下载

高考数学100个高频考点

高考数学100个高频考点

高考数学100个高频考点1.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;2.四种命题的形式及相互关系:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

3.函数的性质(1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=-②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。

(4)函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.4.二次函数的解析式的三种形式 ①一般式f (x )=ax 2+bx +c (a ≠0); ②顶点式f (x )=a (x -h )2+k (a ≠0); ③零点式f (x )=a (x -x 1)(x -x 2)(a ≠0)。

5.设x 1,x 2∈[a ,b ],x 1≠x 2 那么⇔>--⇔>--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是增函数;⇔<--⇔<--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是减函数。

高考数学考点大全总结概括

高考数学考点大全总结概括

高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

高考数学108个知识点

高考数学108个知识点

高考数学108个知识点数学作为高考科目之一,对于广大考生来说是一道相当重要的门槛。

高考数学试卷中涵盖了大量的知识点,考生需要深入了解和掌握这些知识点,才能在考试中取得好成绩。

在这篇文章中,我们将细致地梳理高考数学的108个知识点,并给出相应的解析和例题。

一. 代数与函数1. 复数与复数基本运算:复数的概念与表示方法,复数的四则运算。

2. 幂的运算:定义、性质及应用,实指数幂与零指数幂。

3. 根式与分式的性质:根式的概念与性质,分式的概念与性质。

4. 分式的四则运算:分式的加减乘除,简化分式。

5. 线性方程组与解的性质:线性方程组的定义、解的存在唯一性以及解的性质。

6. 二次函数与一元二次方程:二次函数的概念、性质以及图像,一元二次方程的定义解的判别式。

二. 三角函数7. 角的概念与运算:弧度制与角度制的转换,三角函数的概念、性质以及应用。

8. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像、性质以及周期性。

9. 三角函数的基本关系式:正弦函数、余弦函数、正切函数之间的基本关系。

10. 三角函数的合并与拆分:任意两个三角函数的合并与拆分。

11. 三角函数的方程与恒等式:三角方程的定义、基础解法以及特解法。

三. 解析几何12. 平面直角坐标系与平面向量:平面直角坐标系的概念、性质以及应用,平面向量的概念、基本运算以及性质。

13. 直线与圆的方程:直线的方程、性质以及相关定理,圆的方程、性质以及相关定理。

14. 二次曲线的方程:椭圆、双曲线、抛物线的方程、性质以及相关定理。

15. 空间几何与立体几何:空间直角坐标系的概念、性质以及应用,空间向量的概念、基本运算以及性质。

四. 数量关系16. 空间图形的投影与旋转:平行投影、垂直投影、投影的比例与相似性,图形绕一定轴线的旋转。

17. 总和与平均数:总和与平均数的概念、计算方法以及应用。

18. 线性规划:线性规划的定义、基本模型以及解法。

19. 组合与排列:组合与排列的定义、性质以及计算方法。

高考数学高频考点99个

高考数学高频考点99个

高考数学高频考点99个果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密, 布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发, 威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿, 出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的, 景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。

高考数学常考的100个基础知识点

高考数学常考的100个基础知识点

高考数学常考的100个基础知识点
一、数据处理
1、用直线和曲线表示简单的函数关系;
2、求方程的根,包括一元二次方程、一元三次方程;
3、极限的概念及求极限的方法;
4、利用大致数量关系求微分;
5、抽样定理及其推广;
二、几何
1、角的三种度数制;
2、角平分线的性质;
3、对称中心及其对称性;
4、多边形几何关系;
5、曲线的斜率;
6、空间几何关系;
7、证明的方法;
三、排列组合数
1、概念及其性质;
2、组合数的运算;
3、二项式定理及其推广;
4、抽屉原理;
5、幂集的运算;
四、计算
1、分数的运算;
2、两次方程的求解;
3、直角坐标系的使用;
4、根式的运算及其化简;
5、三次根式的求解;
6、不等式的解法;
7、指数函数及其运用;
五、三角函数
1、三角函数的基本性质;
2、正弦定理及其运用;
3、余弦定理及其换元;
4、正切定理及其反函数;
5、正余弦的平面坐标表示;
六、统计
1、概率的概念及性质;
2、离散随机变量的计算;
3、独立性及独立性的性质;
4、条件概率与期望;
5、相关与相关系数;
七、函数
1、函数的定义及其性质;
2、函数的图形表示;
3、函数的单调性;
4、函数的综合应用;
5、函数的最值及其导数;
八、数列
1、数列的极限及性质;
2、常用数列的求和;
3、等差、等比数列的性质;
4、数列的通项公式;。

高考数学100个常考高频考点PDF

高考数学100个常考高频考点PDF
空杯心态+归零心态
小明老师预祝同学们高考顺利
构造一:设 an k an1 an 是等比数列 构造二:由 an kan 1 b an 1 kan b ,相减整理: 等比数列 ⑤ 广义叠加法:形如: an kan1 f n ( k 为常数,且 k 1 , n N , n 2 )或
an 1 an k an an1 式 an an 1
an1 kan g n ( k 为常数,且 k 1 , n N )
构造一: an kan1 f n 再叠加;
a an an 1 f n b bn1 g n n 1 n ,令 bn n n ,转化成 n n k k k k
1 x1 y2 x2 y1 2
9、 常用名称和术语:坡角、仰角、俯角、方位角、方向角
空杯心态+归零心态
小明老师预祝同学们高考顺利
二、数列部分 10、
S1 n 1 an 与 S n 的关系: an Sn Sn 1 n 2
11、 等差数列: ①定义: an an 1 d ( n N , n 2 )或 an 1 an d ( n N ) ②等差数列的通项公式及其变形:
小明老师预祝同学们高考顺利
高考数学·常考高频考点
一、三角函数部分 1、 同角三角函数的基本关系: sin 2 cos2 1 、 2、 两角和与差的正弦、余弦、正切公式:
sin tan 、 tan cot 1 cos
sin sin cos cos sin cos cos cos
③S ④S
abc ( R 为△ ABC 外接圆半径) 4R 1 a b c r ( r 为△ ABC 内切圆半径) 2

高考数学必考知识点归纳全

高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。

以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。

- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。

- 函数的表示:函数的图象、函数的解析式。

二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。

- 幂运算:幂的运算法则、根式。

- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。

三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。

- 绝对值不等式:绝对值的定义、绝对值不等式的解法。

四、数列- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、极限的运算。

五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

六、解析几何- 直线:直线的方程、直线的位置关系。

- 圆:圆的方程、圆与直线的位置关系。

- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。

七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。

八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。

- 统计初步:数据的收集、整理、描述。

九、导数与微分- 导数的概念:导数的定义、几何意义。

- 基本导数公式:常见函数的导数公式。

- 微分的概念:微分的定义、微分的应用。

十、积分与应用- 不定积分:不定积分的概念、基本积分公式。

- 定积分:定积分的概念、定积分的计算方法。

- 积分的应用:面积、体积、物理量等的计算。

十一、复数- 复数的概念:复数的定义、复数的运算。

- 复数的几何表示:复平面、复数的模和辐角。

十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。

高考数学知识点大全

高考数学知识点大全

高考数学知识点大全一、集合与常用逻辑用语。

1. 集合。

- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。

- 集合间的关系:子集、真子集、相等集合的定义与判断。

- 集合的运算:交集、并集、补集的定义、性质及运算规律。

例如:A∩B={xx∈ A且x∈ B},A∪ B = {xx∈ A或x∈ B}。

2. 常用逻辑用语。

- 命题:命题的概念,真命题、假命题的判断。

- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系,互为逆否命题的真假性相同。

- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充分必要条件。

- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义及命题真假的判断。

例如:p∧ q为真当且仅当p,q都为真;p∨ q为真当且仅当p,q至少一个为真;¬ p与p真假相反。

二、函数。

1. 函数的概念。

- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。

- 函数的三要素:定义域、值域、对应关系。

求函数定义域的常见情况,如分式分母不为零,偶次根式被开方数非负等。

- 函数的表示方法:解析法、图象法、列表法。

2. 函数的基本性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1 < x_2时,有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

判断函数单调性的方法有定义法、导数法等。

- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)=f(x)(偶函数)或f(-x)= - f(x)(奇函数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学100个高频考点1.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;2.四种命题的形式及相互关系:原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

3.函数的性质(1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=-②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。

(4)函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.4.二次函数的解析式的三种形式 ①一般式f (x )=ax 2+bx +c (a ≠0); ②顶点式f (x )=a (x -h )2+k (a ≠0); ③零点式f (x )=a (x -x 1)(x -x 2)(a ≠0)。

5.设x 1,x 2∈[a ,b ],x 1≠x 2 那么⇔>--⇔>--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是增函数;⇔<--⇔<--0)()(0)]()()[(21212121x x x f x f x f x f x x f (x )在[a ,b ]上是减函数。

设函数y = f (x )在某个区间内可导,如果f ′(x ) > 0 ,则f (x ) 为增函数;如果f ′(x ) <0 ,则f (x ) 为减函数。

6.函数y = f (x ) 的图象的对称性: ① 函数y = f (x ) 的图象关于直线x = a 对称⇔ f (a +x )= f (a -x )⇔f (2a -x )= f (x )。

7.两个函数图象的对称性:(1)函数y = f (x )与函数y = f (-x )的图象关于直线x = 0(即y 轴)对称。

(2)函数y = f (x ) 和y = f -1 (x ) 的图象关于直线y =x 对称。

8.分数指数幂nmnm aa1=-(a >0,m ,n ∈N*,且n >1)。

分数指数幂nm nm a1a=-(a >0,m ,n ∈N*,且n >1)。

9.log a N=b ⇔a b =N (a >0,a ≠1,N>0) 10.对数的换底公式a N N m m a log log log =,推论b mnb a n a m log log =11.⎩⎨⎧≥-==-2111n s s n s a n n n ,,− ≥( 数列{ a n } 的前n 项的和为S n =a 1+a 2 +…+a n )。

(注意此公式第 2 行顺推与逆推的应用,这是递推数列的常用公式,可以达到不同的目的)12.等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d (n ∈N *)*其前n 项和公式n d a n d d n n na a a n S n n )21(22)1(2)(1211-+=-+=+=13.等比数列的通项公式)(·1*11N n q qa q a a nn n ∈=-=; 其前n 项的和公式⎪⎩⎪⎨⎧=≠--=1,1,1)1(11q na q q q a S n n 或⎪⎩⎪⎨⎧=≠--=1,1,1)11q na q q q a a S n n n(小心:解答题利用错位相减法时要特别注意讨论q=1的情况) 14.同角三角函数的基本关系式 s i n 2θ+ cos 2θ=1,tan θ=1cot ·tan ,cos sin =θ⋅θθθ15.和角与差角公式s i n (α±β)=s i n αcos β±cos αs i n β; cos (α±β)=cos αcos βμs i n αs i n β; tan (α±β)βαβ±α=tan tan 1tan tan μ。

α-α=β-αβ+α22sin sin )sin()sin((平方正弦公式);cos (α+β)cos (α−β)=cos2α−s i n2β(平方余弦公式);)sin(cos sin 22ϕ+α+=α+αb a b a (辅助角ϕ所在象限由点(a ,b )的象限决定,abtan =ϕ)。

(建议利用ϕ的正弦和余弦来确定其位于哪个象限,这样比较好理解) 16.二倍角公式s i n 2α = 2s i n α·cos α。

α-α=α⋅α-=-α=α-α=α22222tan 1tan 22tan sin 211cos 2sin cos 2cos 。

17.三角函数的周期公式 函数y =s i n (ωx +ϕ),x ∈R 及函数y = cos (ωx +ϕ),x∈R (A ,ω,ϕ为常数,且A ≠0,ω>0)的周期ωπ=2T ;函数)x tan(y ϕ+ω=,Z k 2k x ∈π+π≠,(A ,ω,ϕ为常数,且A ≠0,0>ω)的周期ωπ=T 。

(注意ω小于0的函数周期的求法)18.正弦定理R 2Csin cB sin b A sin a ===。

(学会利用后面的2R ) 19.余弦定理a 2=b 2+c 2−2bc cosA ;b 2=c 2+a 2−2ca cosB ;c 2=a 2+b 2−2ab cosC 。

(注意其变形公式) 20.面积定理(1)c b a ch 21bh 21ah 21S ===(c b a h h h 、、分别表示a 、b 、c 边上的高)。

(2)B sin ca 21A sin bc 21C sin ab 21S ===。

21.三角形内角和定理 在△ABC 中,有)B A (22C 22B A 22C )B A (C C B A +-π=⇔+-π=⇔+-π=⇔π=++。

(很多与三角形有关的恒等变形或者纯粹解三角形的题目中会用到这些关系) 22.平面两点间的距离公式212212)()(||y y x x AB AB AB d BA -+-=→⋅→=→=,(A (11y x ,),B (22y x ,))。

23.向量的平行与垂直 设)()(2211y x b y x a ,,,==,且b ≠0,则0)0(0//21211221=+⇔=⋅⇔≠⊥=-⇔λ=⇔y y x x b a a b a y x y x a b b a24.线段的定比分公式 设)()()(222111y x P y x P y x P ,,,,,是线段P 1P 2的分点,λ是实数,且→→λ=21PP P P ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x (这个公式很重要,不要记错!)25.三角形的重心坐标公式△ABC 三个顶点的坐标分别为)()(2211y x B y x A ,、,、)(33y x C ,,则△ABC 的重心的坐标是)33(321321y y y x x x G ++++,。

26.点的平移公式→+→=→⇔⎩⎨⎧-=-=⇔⎩⎨⎧+=+=''''''PP OP OP ky y hx x k y y h x x (图形F 上的任意一点P(x ,y )在平移后图形'F 上的对应点为)''('y x P ,,且→'PP 的坐标为(h ,k ))。

(要注意区别新坐标、旧坐标,区别新方程和旧方程,不要混淆,解答题务必要体现以上公式的使用过程,关键步骤不要省) 27.常用不等式:(1)a ,b ∈R ⇒a 2+b 2≥2ab (当且仅当a =b 时取“=”号)。

(2)a ,b ∈R+ab2ba ≥+⇒(当且仅当a =b 时取“=”号)。

(3)a 3+b 3+c 3≥3abc (a >0,b >0,c >0)。

(4)柯西不等式R d c b a bd ac d c b a ∈+≥++,,,,22222)())((。

(建议:了解一下,尝试用向量数量积的方法证明之) (5)||||||||||b a b a b a +≤+≤-28.极值定理 已知x ,y 都是正数,则有(1)如果积xy 是定值p ,那么当x =y 时和x +y 有最小值p 2; (2)如果和x +y 是定值s ,那么当x =y 时积xy 有最大值2s 41。

29.一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2−4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2 + bx + c 异号,则其解集在两根之间。

简言之:同号两根之外,异号两根之间。

)(0)(21121x x x x x x x <<-⇔<<;1x x <,或)(0))((21212x x x x x x x x <>--⇔>(这类问题一般可以借助于韦达定理或者结合图象特点寻找约束条件就可以解决问题)30.含有绝对值的不等式当a > 0时,有a x a a x a x <<-⇔<⇔<22|| a x a x a x >⇔>⇔>22||或a x -<。

31.无理不等式(1)⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(x g x f x g x f x g x f(2)⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 (3)⎪⎩⎪⎨⎧<>≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f 32.指数不等式与对数不等式 (1)当a >1时,)()()()(x g x f a a x g x f >⇔>;⎪⎩⎪⎨⎧>>>⇔>)()(0)(0)()(log )(log x g x f x g x f x g x f a a(2)当0<a <1时,)()()()(x g x f a a x g x f <⇔>;⎪⎩⎪⎨⎧<>>⇔>)()(0)(0)()(log )(log x g x f x g x f x g x f a a33.斜率公式 ))()((2221111212y x P y x P x x y y k ,、,--=(很多代数问题可以利用这个公式转化为几何问题,简化解题过程,这是数型结合思想的重要体现) 34.直线的四种方程(1)点斜式 )(11x x k y y -=-(直线l 过点)y x (P 111,,且斜率为k )。

相关文档
最新文档