废水处理常规分析控制指标

合集下载

废水处理常规分析控制指标

废水处理常规分析控制指标

废水处理常规分析控制指标废水处理是为了减少或去除废水中的有害污染物,使其能够达到环境保护标准后进行排放或回用。

为了确保废水处理的效果和稳定性,需要进行常规分析控制。

以下是一些常见的废水处理常规分析控制指标。

1.pH值:pH值是衡量溶液酸碱性的指标。

废水的pH值常常会受到工业生产过程的影响,高酸或高碱废水都具有一定的危害性。

因此,控制废水的pH值在适当的范围内是很重要的。

2.悬浮物:悬浮物是指废水中悬浮的固体颗粒,如沉淀物、颗粒物等。

通过对废水中悬浮物的监测,可以评估废水的浊度和固体悬浮物的含量,从而确定废水的处理效果。

3.生化需氧量(BOD):BOD是指废水中有机物被生物氧化的能力,其值反映了废水中有机物的含量。

通过监测BOD的变化,可以判断废水中有机物的降解程度和污染程度。

4.化学需氧量(COD):COD是指废水中可氧化的有机物和无机物总体的含量,是评估废水中有机污染物含量的指标。

COD值高意味着废水中有机物的含量较高,处理难度也相应增大。

5.总悬浮物(TSS):TSS是指废水中的总悬浮物的质量。

通过监测TSS的变化,可以判断废水中可悬浮的固体颗粒或物质的含量。

6.总氮(TN)和总磷(TP):TN和TP是废水中的主要营养物质,它们是导致水体富营养化的主要原因之一、通过监测TN和TP的浓度,可以评估废水中的营养物质含量,并根据需要采取相应的处理措施。

7.重金属:废水中常常含有一些重金属,如铜、氰化物、铅、镉等,它们具有毒性和潜在的生态风险。

监测重金属的浓度有助于评估废水中重金属的排放情况和对环境的潜在影响。

8.溶解氧(DO):溶解氧是水体中支持生物生长和维持水生态系统的关键物质。

废水中溶解氧的含量通常较低,可以通过监测溶解氧的浓度来评估水体的氧化还原能力。

9.毒性:废水中可能存在一些有毒物质,如有机化合物、氯化物、硫化物等。

通过毒性测定,可以评估废水对环境和生物的潜在危害性。

以上仅列举了一些常见的废水处理常规分析控制指标。

污水主要控制指标

污水主要控制指标

污水处理关键参数控制(1)B0D5 生物化学需氧量(biochemical oxygen dema nd )的简写,表示在 20C下,5d微生物氧化分解有机物所消耗水中溶解氧量。

第一阶段为碳化( C-BOD),第二阶段为消化(N-BOD)。

BOD的意义:a、生物能氧化分解的有机物量; b、反映污水和水体的污染程度;c、判定处理厂效果;d、用于处理厂设计;e、污水处理管理指标;f、排放标准指标; g、水体水质标准指标。

(2)COD Mn /CODCr化学需氧量(chemical oxygen dema nd )的简写,表示氧化剂有KMnO4 和K2Cr2O7。

COD测定简便快速,不受水质限制,可以测定含有生物有毒的工业废水,是BOD的代替指标。

也可以看作还原物的量。

CODCr可近似看作总有机物量,CODCr-BOD差值表示污水中难被微生物分解的有机物,用BOD/CODCr比值表示污水的可生化性,当BOD/CODC O0.3时,认为污水的可生化性较好;当 BOD/CODCr V 0.3时,认为污水的可生化性较差,不宜采用生物处理法。

(3)S S悬浮物质(suspended soild)简写,水中悬浮物测定用 2mm的筛通过,并且用孔径为1卩m的玻璃纤维滤纸截留的物质为 SS交替物质在滤液(溶解性物质)和截留悬浮物中均含有,但大多数认为胶体物质和悬浮物质一样被滤纸截留。

(4)TS蒸发残留物(total solid )简写,水样经蒸发烘干后的残留量,在105- 110C下将水样蒸发至干时所残余的固体物质总量。

溶解性物质量等于蒸发残留物减去悬浮物质量。

(5)灼烧碱量(VTS)(VSS 蒸发残留物或悬浮物质在 600C± 25C经30min高温挥发的物质,表示有机物量(前者为VTS,后者为VSS,蒸发残留物灼烧减量的差称为灼烧残渣,表示无机物部分。

(6)总氮、有机氮、氨氮、亚硝酸盐氮、硝酸盐氮氮在自然界以各种形态进行着循环转换。

污水处理指标

污水处理指标

污水处理指标引言概述:污水处理是保护环境和人类健康的重要措施。

为了确保污水处理的有效性,我们需要依靠一系列的指标来评估处理过程的效果。

本文将详细介绍污水处理的五个主要指标,包括污水流量、COD(化学需氧量)、BOD(生化需氧量)、氨氮和总磷。

一、污水流量:1.1 测量方法:污水流量是指单位时间内通过污水处理厂的污水量。

常用的测量方法有流量计、涡街流量计和超声波流量计等。

1.2 重要性:污水流量是评估污水处理系统运行状况的重要指标,能够反映出污水处理厂的处理能力和负荷情况。

1.3 影响因素:污水流量受到人口数量、工业生产水平、气候变化等因素的影响,需要根据实际情况进行监测和调整。

二、COD(化学需氧量):2.1 定义:COD是指在酸性条件下,氧化剂氧化有机物所需的化学氧量。

2.2 测量方法:常用的测量方法有高温消解法、光度法和滴定法等。

2.3 指标意义:COD是评估污水中有机物含量的重要指标,能够反映出废水的污染程度和处理效果。

三、BOD(生化需氧量):3.1 定义:BOD是指在一定时间内,微生物在酸性条件下生物氧化有机物所需的氧量。

3.2 测量方法:常用的测量方法有生物化学需氧量法和溶解氧消耗法等。

3.3 指标意义:BOD是评估污水中有机物生物降解能力的重要指标,能够反映出废水中可被微生物降解的有机物含量。

四、氨氮:4.1 定义:氨氮是指污水中溶解态氨氮和游离态氨氮的总和。

4.2 测量方法:常用的测量方法有分光光度法、电极法和纳氏法等。

4.3 指标意义:氨氮是评估污水中氨氮含量的重要指标,能够反映出废水中氨氮的来源和处理效果。

五、总磷:5.1 定义:总磷是指污水中无机磷和有机磷的总和。

5.2 测量方法:常用的测量方法有分光光度法、原子吸收光谱法和化学沉淀法等。

5.3 指标意义:总磷是评估污水中磷含量的重要指标,能够反映出废水中磷的来源和处理效果。

结论:污水处理指标是评估污水处理系统运行效果的重要依据。

20个污水处理关键参数控制指标

20个污水处理关键参数控制指标

20个污水处理关键参数控制指标一、BOD5生物化学需氧量表示在20℃下,5d微生物氧化分解有机物所消耗水中溶解氧量。

第一阶段为碳化(C-BOD),第二阶段为消化(N-BOD)。

BOD的意义:1、生物能氧化分解的有机物量;2、反映污水和水体的污染程度;3、判定处理厂效果;4、用于处理厂设计;5、污水处理管理指标;6、排放标准指标;7、水体水质标准指标。

二、CODMn /CODCr化学需氧量表示氧化剂有KMnO4和K2Cr2O7。

COD测定简便快速,不受水质限制,可以测定含有生物有毒的工业废水,是BOD的代替指标。

也可以看作还原物的量。

CODCr可近似看作总有机物量,CODCr-BOD差值表示污水中难被微生物分解的有机物,用BOD/CODCr比值表示污水的可生化性,当BOD/CODCr≥0.3时,认为污水的可生化性较好;当BOD/CODCr<0.3时,认为污水的可生化性较差,不宜采用生物处理法。

三、SS悬浮物质水中悬浮物测定用2mm的筛通过,并且用孔径为1μm的玻璃纤维滤纸截留的物质为SS。

交替物质在滤液(溶解性物质)和截留悬浮物中均含有,但大多数认为胶体物质和悬浮物质一样被滤纸截留。

四、TS蒸发残留物水样经蒸发烘干后的残留量,在105-110℃下将水样蒸发至干时所残余的固体物质总量。

溶解性物质量等于蒸发残留物减去悬浮物质量。

五、灼烧碱量(VTS)(VSS)蒸发残留物或悬浮物质在600℃±25℃经30min高温挥发的物质,表示有机物量(前者为VTS,后者为VSS),蒸发残留物灼烧减量的差称为灼烧残渣,表示无机物部分。

六、总氮、有机氮、氨氮、亚硝酸盐氮、硝酸盐氮氮在自然界以各种形态进行着循环转换。

有机氮如蛋白质水解为氨基酸,在微生物作用下分解为氨氮,氨氮在硝化细菌作用下转化为亚硝酸盐氮(NO2-)和硝酸盐氮(NO3-);另外,NO2-和NO3-在厌氧条件下在脱氮菌(反硝化细菌)作用下转化为N2。

污水处理厂常见指标的异常分析及控制方法

污水处理厂常见指标的异常分析及控制方法

污水处理厂常见指标的异常分析及控制方法化学需氧量(COD)是衡量污水中有机物污染程度的参数,其异常可能导致工艺效果下降。

当COD出现异常时,应进行以下分析和控制方法:1.分析:首先应检查污水进水COD的实际情况,了解进水质量的变化。

进一步分析各处理单元中池液的COD具体情况,找出造成异常的具体原因。

2.控制方法:可采取措施如增加曝气时间、增加曝气量、调整曝气方式等以提高氧化效果;增加活性污泥量、调整污泥沉降速度等以改善沉淀效果;合理调整进水量,保持稳定COD进水质量。

氨氮(NH3-N)是污水中常见的有毒物质,其异常浓度可能导致生态环境破坏、生物毒性增加等问题。

当NH3-N出现异常时,应进行以下分析和控制方法:1.分析:首先应检查进水NH3-N浓度的实际情况,了解进水质量的变化。

进一步分析各处理单元中池液的NH3-N具体情况,找出造成异常的具体原因。

2.控制方法:可采取增加曝气时间、增加曝气量、调整曝气方式等措施以增加氨氧化细菌的活动;增加生物填料以增大生物膜面积和生物量;增加硝化培养液的投加量等。

总磷(TP)是污水处理中的一项重要指标,其异常可能导致富营养化问题。

当TP出现异常时,应进行以下分析和控制方法:1.分析:检查进水TP浓度的变化,了解进水质量的状况。

进一步分析各处理单元中池液的TP浓度变化情况,找出造成异常的原因。

2.控制方法:可采取增加生物长时间接触氧化池(BLOT)曝气时间、增加曝气量、增加池体搅拌等措施,提高池液中磷酸盐的氧化和沉淀效果;增加化学沉淀剂的投加量,加强磷的化学沉淀过程。

氧化还原电位(ORP)是污水处理过程中反映氧化还原反应强弱的重要指标,其异常可能导致处理效果下降。

当ORP出现异常时,应进行以下分析和控制方法:1.分析:对各处理单元中的ORP进行详细分析,了解异常原因及其可能的产生路径。

在此基础上,分析进水中ORP的实际情况,了解进水质量的变化。

2.控制方法:根据ORP的数据变化情况,调整曝气时间、曝气量、曝气方式等以提高氧化还原反应效果;增加化学药剂投加量等。

废水处理常规分析控制指标

废水处理常规分析控制指标

废水处理常规分析控制指标1. 引言废水处理是指对生产或生活废水进行处理,使其达到环境排放标准的过程。

在废水处理过程中,对废水进行常规分析是非常重要的,通过常规分析可以掌握废水的基本情况,为后续处理工作提供依据。

本文将介绍废水处理中常见的分析控制指标。

2. pH值pH值是评价废水酸碱性的重要指标,不同废水具有不同的pH值。

pH值的变化会影响废水中有机物的解离和沉淀反应,直接影响废水处理效果。

一般来说,废水处理过程中pH值应控制在特定范围内,以保证后续处理工艺的正常运行。

3. 溶解氧(DO)溶解氧是评价水体中溶解氧气量的指标,在废水中溶解氧量的变化与生物氧化作用有关。

合理控制溶解氧的含量可以促进污水中微生物的生长和有机物的分解,提高处理效果。

过高或过低的溶解氧含量都会对废水处理造成不利影响。

4. 生化需氧量(BOD)生化需氧量是评价废水中有机物含量的重要指标,也是评价废水对水体生物承受力的指标之一。

高BOD值会导致水体缺氧,影响水生生物生存,因此在废水处理中应严格控制BOD值。

5. 化学需氧量(COD)化学需氧量是指废水中氧化还原物质完全氧化所需的氧的量,是评价废水中有机物和无机物氧化性的指标。

控制废水中的COD含量可以减少对水体的污染,保护环境。

6. 总氮和氨氮总氮和氨氮是评价废水中氮含量的重要指标,氮是植物生长的必需元素,但过多的氮会引起水体富营养化,导致水体富营养化现象,影响水质。

因此,在废水处理中需要控制氮的排放。

7. 总磷总磷是评价废水中磷含量的指标,磷是生物生长的必需元素,在水体中过多的磷会引起水体富营养化,导致水华和藻类大量繁殖,影响水质。

控制废水中的总磷含量对水体保护至关重要。

8. 悬浮物悬浮物是指废水中悬浮的固体颗粒,高悬浮物浓度会导致水体浑浊,影响水的透明度。

在废水处理中需要通过沉淀或过滤等方法去除悬浮物,保证废水清澈透明。

9. 重金属重金属是废水中的有毒污染物之一,主要来源于工业废水。

二十个污水处理关键参数控制指标收藏!

二十个污水处理关键参数控制指标收藏!

二十个污水处理关键参数控制指标收藏!污水处理是指对城市、工业、农村等产生的污水进行处理,以移除其中的污染物质,使其达到排放标准,不会对环境造成污染。

为了确保污水处理的有效性和稳定性,需要对处理过程中的关键参数进行控制和监测。

本文将介绍二十个污水处理关键参数控制指标。

1.废水pH值:控制废水的酸碱度,通常要求在中性或碱性范围内,以确保后续处理过程的稳定性。

2.水温:影响废水中的活性微生物生长速率和反应速度,一般需要在适宜的温度范围内进行处理。

3.高锰酸盐指数:衡量废水中的可被氧化物质含量,反映有机物浓度和污染程度,需要控制在合理范围内。

4.溶解氧浓度:控制废水中的氧气含量,确保微生物生存和生物降解过程的进行。

5.总悬浮物(TSS)浓度:反映废水中悬浮物的含量,需要控制在排放标准范围内,以防止沉淀和堵塞处理设备。

6.化学需氧量(COD):衡量废水中有机污染物的含量,需要控制在排放标准限值内。

7.生化需氧量(BOD):反映废水中的可生物降解有机污染物的含量,同样需要控制在排放标准限值内。

8.氨氮浓度:反映废水中的氨氮含量,需要控制在适宜的范围内,以防止对环境的影响。

9.总磷浓度:衡量废水中的总磷含量,需要控制在排放标准限值内,防止过度富营养化。

10.总氮浓度:反映废水中的总氮含量,需要控制在适宜的范围内,以减少对水体生态的影响。

11.悬浮沉淀物(SS)浓度:控制废水中的悬浮颗粒物含量,以防止设备堵塞和水体浑浊。

12.投加药剂量:控制废水处理中添加的药剂量,以确保处理效果符合要求。

13.混合剂用量:调节废水处理过程中的搅拌和混合作用,确保废水中的污染物能够均匀分布和接触到处理剂。

14.填料比表面积:衡量废水处理设备中填料的接触面积,以提高物质转化速率和处理效果。

15.气体输入量:控制废水处理中添加的气体量,如氧气和臭氧,以促进氧化和降解过程。

16.曝气时间:控制废水中微生物接触气体的时间,以确保氧气传递和生物降解反应。

污水处理中的COD指标

污水处理中的COD指标

污水处理中的COD指标一、背景介绍污水处理是保护环境和维护人类健康的重要环节。

COD(化学需氧量)是衡量污水中有机物含量的重要指标,也是评估污水处理效果的关键参数之一。

本文将详细介绍污水处理中的COD指标的定义、作用、测试方法、标准要求以及控制措施。

二、COD指标的定义和作用COD是指在酸性条件下,有机物被氧化到二氧化碳和水所需的化学氧化剂的量。

COD指标可以反映污水中有机物的含量和污染程度,是衡量污水处理效果和水质的重要指标之一。

COD指标的高低直接影响着水体的水质和环境的健康。

三、COD指标的测试方法1. 试剂准备:采用二氧化钾(K2Cr2O7)作为氧化剂,硫酸作为催化剂。

2. 样品采集:根据采样点的特点和要求,选择合适的采样容器,保证样品的代表性。

3. 实验操作:将采集的样品加入预先称量好的试剂中,进行加热反应,反应结束后,用铁铵硫酸进行滴定,直至颜色变化为止。

4. 数据处理:根据滴定所用的铁铵硫酸的体积,计算出COD的含量。

四、COD指标的标准要求不同地区和不同类型的污水处理厂,对COD指标的要求可能会有所不同。

一般来说,COD指标的标准要求如下:1. 工业废水处理厂:COD去除率应达到80%以上。

2. 市政污水处理厂:COD去除率应达到60%以上。

3. 农村生活污水处理厂:COD去除率应达到50%以上。

4. 特定行业污水处理厂:根据行业特点和国家相关标准进行要求。

五、COD指标的控制措施1. 提高曝气效果:通过增加曝气设备的数量和曝气时间,增加COD的氧化速率,提高COD去除率。

2. 加强沉淀处理:适当增加沉淀池的容积,延长沉淀时间,加强COD的沉淀和去除效果。

3. 优化生物处理工艺:采用好氧生物处理和厌氧生物处理相结合的方法,提高COD的去除效率。

4. 控制进水COD浓度:通过对进水COD浓度的监测和调节,控制进水质量,降低COD的负荷。

六、总结COD指标是污水处理中的重要参数,对于保护环境和维护人类健康具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章废水处理常规分析控制指标1.废水的主要物理特性指标有哪些?⑴温度:废水的温度对废水处理过程的影响很大,温度的高低直接影响微生物活性。

一般城市污水处理厂的水温为10o C~25o C之间,工业废水温度的高低与排放废水的生产工艺过程有关。

⑵颜色:废水的颜色取决于水中溶解性物质、悬浮物或胶体物质的含量。

新鲜的城市污水一般是暗灰色,如果呈厌氧状态,颜色会变深、呈黑褐色。

工业废水的颜色多种多样,造纸废水一般为黑色,酒糟废水为黄褐色,而电镀废水蓝绿色。

⑶气味:废水的气味是由生活污水或工业废水中的污染物引起的,通过闻气味可以直接判断废水的大致成分。

新鲜的城市污水有一股发霉的气味,如果出现臭鸡蛋味,往往表明污水已经厌氧发酵产生了硫化氢气体,运行人员应当严格遵守防毒规定进行操作。

⑷浊度:浊度是描述废水中悬浮颗粒的数量的指标,一般可用浊度仪来检测,但浊度不能直接代替悬浮固体的浓度,因为颜色对浊度的检测有干扰作用。

⑸电导率:废水中的电导率一般表示水中无机离子的数量,其与来水中溶解性无机物质的浓度紧密相关,如果电导率急剧上升,往往是有异常工业废水排入的迹象。

⑹固体物质:废水中固体物质的形式(SS、DS等)和浓度反映了废水的性质,对控制处理过程也是非常有用的。

⑺可沉淀性:废水中的杂质可分为溶解态、胶体态、游离态和可沉淀态四种,前三种是不可沉淀的,可沉淀态杂质一般表示在30min或1h内沉淀下来的物质。

2.废水的化学特性指标有哪些?废水的化学性指标很多,可以分为四类:①一般性水质指标,如pH值、硬度、碱度、、余氯、各种阴、阳离子等;②有机物含量指标,生物化学需氧量BOD5、化学需氧量CODCr总需氧量TOD和总有机碳TOC等;③植物性营养物质含量指标,如氨氮、硝酸盐氮、亚硝酸盐氮、磷酸盐等;④有毒物质指标,如石油类、重金属、氰化物、硫化物、多环芳烃、各种氯代有机物和各种农药等。

在不同的污水处理厂,要根据来水中污染物种类和数量的不同确定适合各自水质特点的分析项目。

3.一般污水处理厂需要分析的主要化学指标有哪些?一般污水处理厂需要分析的主要化学指标如下:⑴pH值:pH值可以通过测量水中的氢离子浓度来确定。

pH值对废水的生物处理影响很大,硝化反应对pH值更加敏感。

城市污水的pH值一般在6~8之间,如果超出这一范围,往往表明有大量工业废水排入。

对于含有酸性物质或碱性物质的工业废水,在进入生物处理系统之前需要进行中和处理。

⑵碱度:碱度能反应出废水在处理过程中所具有的对酸的缓冲能力,如果废水具有相对高的碱度,就可以对pH值的变化起到缓冲作用,使pH值相对稳定。

碱度表示水样中与强酸中的氢离子结合的物质的含量,碱度的大小可用水样在滴定过程中消耗的强酸量来测定。

⑶CODCr : CODCr是废水中能被强氧化剂重铬酸钾所氧化的有机物的数量,以氧的mg/L计。

⑷BOD5:BOD5是废水中有机物被生物降解所需要的氧量,是衡量废水可生化性的指标。

⑸氮:在污水处理厂中,氮的变化和含量分布为工艺提供参数。

污水处理厂进水中的有机氮和氨氮含量一般较高,而硝酸盐氮和亚硝酸盐氮含量一般较低。

初沉池氨氮的增加一般表明沉淀污泥开始厌氧,而二沉池硝酸氮和亚硝酸氮的增加,表明硝化作用已经发生。

生活污水中氮的含量一般为20~80mg/L,其中有机氮8~35mg/L,氨氮为12~50mg/L,硝酸氮和亚硝酸氮的含量很低。

工业废水中有机氮、氨氮、硝酸氮和亚硝酸氮含量因水而异,有的工业废水中氮的含量极低,在利用生物法处理时,需要投加氮肥以补充微生物所需的氮含量,而出水中氮的含量过高时,又需要进行脱氮处理,以防止受纳水体出现富营养化现象。

⑹磷:生物污水中磷的含量一般为2~20mg/L,其中有机磷1~5mg/L,无机磷为1~15mg/L。

工业废水中磷的含量差别很大,有的工业废水中磷的含量极低,在利用生物法处理时,需要投加磷肥以补充微生物所需的磷含量,而出水中磷的含量过高时,又需要进行除磷处理,以防止受纳水体出现富营养化现象。

⑺石油类:废水中的油大多是不溶于水的,且浮在水面上。

进水中的油会影响充氧效果、导致活性污泥中的微生物活性降低,进入到生物处理构筑物的混合污水含油浓度通常不能大于30~50mg/L。

⑻重金属:废水中的重金属主要来自工业废水,其毒性很大。

污水处理厂通常没有较好的处理方法,通常需要在排放车间内进行就地处理达到国家排放标准后再进入排水系统,如果污水处理厂出水中重金属含量上升,往往说明预处理出现了问题。

⑼硫化物:水中的硫化物超过0.5mg/L后,就带有令人厌恶的臭鸡蛋味,且有腐蚀性,有时甚至会引起硫化氢中毒事件。

⑽余氯:使用氯消毒时,为保证在输送过程中微生物的繁殖,出水中余氯(包括游离性余氯和化合性余氯)是消毒工艺的控制指标,一般不超过0.3mg/L。

4.废水的微生物特性指标有哪些?废水的生物性指标有细菌总数、大肠菌群数、各种病原微生物和病毒等。

医院、肉类联合加工企业等废水排放前必须进行消毒处理,国家有关污水排放标准对此已经作出了规定。

污水处理厂一般不对进水中的生物性指标进行检测和控制,但对处理后的污水排放之前要进行消毒处理,以控制处理污水对受纳水体的污染。

如果对二级生物处理出水再进行深度处理后回用,就更需要在回用前进行消毒处理。

⑴细菌总数:细菌总数可作为评价水质清洁程度和考核水净化效果的指标,细菌总数增多说明水的消毒效果较差,但不能直接说明对人体的危害性有多大,必须结合粪大肠菌群数来判断水质对人体的安全程度。

⑵大肠菌群数:水中大肠菌群数可间接地表明水中含有肠道病菌(如伤寒、痢疾、霍乱等)存在的可能性,因此作为保证人体健康的卫生指标。

污水回用做杂用水或景观用水时,就有可能与人体接触,此时必须检测其中粪大肠菌群数。

⑶各种病原微生物和病毒:许多病毒性疾病都可以通过水传染,比如引起肝炎、小儿麻痹症等疾病的病毒存在于人体的肠道中,通过病人粪便进入生活污水系统,再排入污水处理厂。

污水处理工艺对这些病毒的去除作用有限,在将处理后污水排放时,如果受纳水体的使用价值对这些病原微生物和病毒有特殊要求时,就需要消毒并进行检测。

5.反映水中有机物含量的常用指标有哪些?有机物进入水体后,将在微生物的作用下进行氧化分解,使水中的溶解氧逐渐减少。

当氧化作用进行的太快、而水体不能及时从大气中吸收足够的氧来补充消耗的氧时,水中的溶解氧可能降得很低(如低于3~4mg/L),进而影响水中生物正常生长的需要。

当水中的溶解氧耗尽后,有机物开始厌氧消化,发生臭气,影响环境卫生。

由于污水中所含的有机物往往是多种组分的极其复杂的混合体,因而难以一一分别测定各种组分的定量数值。

实际上常用一些综合指标,间接表征水中有机物含量的多少。

表)表示的示水中有机物含量的综合指标有两类,一类是以与水中有机物量相当的需氧量(O2指标,如生化需氧量BOD、化学需氧量COD和总需氧量TOD等;另一类是以碳(C)表示的指标,如总有机碳TOC。

对于同一种污水来讲,这几种指标的数值一般是不同的,按数值大小的排列顺序为TOD>CODCr >BOD5>TOC6.什么是总有机碳?总有机碳TOC(英文Total Organic Carbon的简写)是间接表示水中有机物含量的一种综合指标,其显示的数据是污水中有机物的总含碳量,单位以碳(C)的mg/L来表示。

TOC的测定原理是先将水样酸化,利用氮气吹脱水样中的碳酸盐以排除干扰,然后向氧含量已知的氧气流中注入一定量的水样,并将其送入以铂钢为触媒的石英燃烧管中,在900o C~950o C的高温下燃烧,用非色散红外气体分析仪测定燃烧过程中产生的CO2量,再折算出其中的含碳量,就是总有机碳TOC(详见GB13193--91)。

测定时间只需要几分钟。

一般城市污水的TOC可达200mg/L,工业废水的TOC范围较宽,最高的可达几万mg/L,污水经过二级生物处理后的TOC一般<50mg/L,较清洁的河水TOC一般<10mg/L。

在污水处理的研究中有用TOC作为污水有机物指标的,但在常规污水处理运行中一般不分析这个指标。

7.什么是总需氧量?总需氧量TOD(英文Total Oxygen Demand的简写)是指水中的还原性物质(主要是有机物)在高温下燃烧后变成稳定的氧化物时所需要的氧量,结果以mg/L计。

TOD值可以反映出水中几乎全部有机物(包括碳C、氢H、氧O、氮N、磷P、硫S等成分)经燃烧后变成CO2、H2O、NOx、SO2等时所需要消耗的氧量。

可见TOD值一般大于CODCr值。

目前我国尚未将TOD纳入水质标准,只是在污水处理的理论研究中应用。

TOD的测定原理是向氧含量已知的氧气流中注入一定量的水样,并将其送入以铂钢为触媒的石英燃烧管中,在900o C的高温下瞬间燃烧,水样中的有机物即被氧化,消耗掉氧气流中的氧。

氧气流中原有氧量减去剩余氧量就是总需氧量TOD。

氧气流中的氧量可以用电极测定,因而TOD的测定只需几min。

8.什么是生化需氧量?生化需氧量全称为生物化学需氧量,英文是Biochemical Oxygen Demand,简写为BOD,它表示在温度为20o C和有氧的条件下,由于好氧微生物分解水中有机物的生物化学氧化过程中消耗的溶解氧量,也就是水中可生物降解有机物稳定化所需要的氧量,单位为mg/L。

BOD不仅包括水中好氧微生物的增长繁殖或呼吸作用所消耗的氧量,还包括了硫化物、亚铁等还原性无机物所耗用的氧量,但这一部分的所占比例通常很小。

因此,BOD值越大,说明水中的有机物含量越多。

在好氧条件下,微生物分解有机物分为含碳有机物氧化阶段和含氮有机物的硝化阶段两个过程。

在20o C的自然条件下,有机物氧化到硝化阶段、即实现全部分解稳定所需时间在100d以上,但实际上常用20o C时20d的生化需氧量BOD20近似地代表完全生化需氧量。

生产应用中仍嫌20d的时间太长,一般采用20o C时5d的生化需氧量BOD5作为衡量污水有机物含量的指标。

经验表明,生活污水和各种生产污水的BOD5约为完全生化需氧量BOD20的70~80%。

BOD5是确定污水处理厂负荷的一个重要参数,可用BOD5值计算废水中有机物氧化所需要的氧量。

含碳有机物稳定化所需要的氧量可称为碳类BOD5,如果进一步氧化,就可以发生硝化反应,硝化菌将氨氮转化为硝酸盐氮和亚硝酸盐氮时所需要的氧量可成为硝化BOD5。

一般的二级污水处理厂只能去除碳类BOD5,而不去除硝化类BOD5。

由于在去除碳类BOD5的生物处理过程中,硝化反应不可避免地要发生,因此使得BOD5的测定值比实际有机物的耗氧量要高一些。

BOD测定时间较长,常用的BOD5测定需要5d时间,因此一般只能用于工艺效果评价和长周期的工艺调控。

对于特定的污水处理场,可以建立BOD5和CODCr的相关关系,用CODCr粗略估计BOD5值来指导处理工艺的调整。

相关文档
最新文档