§7.1 微分方程的基本概念

合集下载

7.1微分方程的概念

7.1微分方程的概念

例1. 曲线过(0,1),且曲线上每个点处的切线斜率 等于该点的横坐标,求此曲线方程.
初始条件 设曲线方程为 y = y(x), 则 y x,
x2 y xdx c 2
c 1
y | x 0 1
一阶线性 微分方程
x y 1 2
2
通解
特解
一 、 微 分 方 程 的 概 念
如: y
x 1
2 可以确定 y x C 中的C
2
一阶常微方程的初始条件为 y ( x 0 ) y 0 ,其中
x 0 , y 0 是两个已知数.
y ( x0 ) y0 , 二阶微分方程的初始条件为 . y ( x 0 ) y 0
一 、 微 分 方 程 的 概 念
x 2x y C e C e , y ( 0 ) 0 由初始条件 代入 1 2
得 C1 C2 0 x 2x y C e 2 C e , y ( 0 ) 1 由初始条件 代入 1 2 得 C1 2C2 1.
C1 1 C2 1 于是,满足所给初始条件的特解为
常微分方程. 偏微分方程.
z x y x
y x
dy xy dx
本章内容
一 、 微 分 方 程 的 概 念
例1:下列方程中,哪些是微分方程?哪些不是?
(1) y 4 y 3 y 1
(2) y
d y (4) 2 1 x dx
一 、 微 分 如:以下方程1,2,4是二阶,3是一阶。 方 程 (1) y 4 y 3 y 1 的 概 念 (2) y 2 4 y 3 0
(3)dy cos xdx
d y (4) 2 1 x dx

高等数学教学教案§7-1--微分方程的基本概念-§7-2--可分离变量的微分方程

高等数学教学教案§7-1--微分方程的基本概念-§7-2--可分离变量的微分方程
例1一曲线通过点(12)且在该曲线上任一点M(xy)处的切线的斜率为2x求这曲线的方程
例2列车在平直线路上以20m/s(相当于72km/h)的速度行驶当制动时列车获得加速度04m/s2问开始制动后多少时间列车才能停住以及列车在这段时间里行驶了多少路程?
几个概念
微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程叫微分方程常微分方程未知函数是一元函数的微分方程叫常微分方程
例3设降落伞从跳伞塔下落后所受空气阻力与速度成正比并设降落伞离开跳伞塔时速度为零求降落伞下落速度与时间的函数关系
例4求微分方程 的通解
例4有高为1m的半球形容器水从它的底部小孔流出小孔横截面面积为1cm2开始时容器内盛满了水求水从小孔流出过程中容器里水面高度h随时间t变化的规律
解由水力学知道水从孔口流出的流量Q可用下列公式计算
讨论下列方程中哪些是可分离变量的微分方程?
(1)y2xy是y1dy2xdx
(2)3x25xy0是dy(3x25x)dx
(3)(x2y2)dxxydy=0不是
(4)y1xy2xy2是y(1x)(1y2)
(5)y10xy是10ydy10xdx
(6) 不是
第一步分离变量将方程写成g(y)dyf(x)dx的形式
作业布置
《高等数学》标准化作业
双语教学
导数:derivative;微分:differential calculus;微分方程:differential equation;阶:order;
常微分方程:ordinary differential equation;偏微分方程:partial differential equation;
教 学 基 本 内 容
函数是客观事物的内部联系在数量方面的反映利用函数关系又可以对客观事物的规律性进行研究因此如何寻找出所需要的函数关系在实践中具有重要意义在许多问题中往往不能直接找出所需要的函数关系但是根据问题所提供的情况有时可以列出含有要找的函数及其导数的关系式这样的关系就是所谓微分方程微分方程建立以后对它进行研究找出未知函数来这就是解微分方程

高等数学 上册 第7章 微分方程

高等数学 上册 第7章 微分方程

形如
dny dxn
a1
(
x)
d n1 y dxn1
an1
(
x)
dy dx
an (x) y
f (x)
的微分方程称为n阶线性微分方程.否则,就称为 n阶非线性微分方程.
例如,xy 2 y x2 y 0 是三阶线性微分方程.
dy dx
2
x
dy dx
y
cos
x
是一阶非线性微分方程.
y 2 y( y)2 2x 1 是二阶非线性微分方程.
可分离变量的微分方程 dy f (x)g( y) 的解法总结如下:
dx
① 分离变量: 1 dy f (x)dx
g( y)

两边积分:
1 g( y)
dy
f
(x)dx
二、可分离变量的微分方程
例1. 求微分方程
的通解.
解: 分离变量,得 d y 4x3 d x 说明: 在求解过程中
y
每一步不一定是同解
dx x

5、回代变量:将u回代成 .
一、齐次方程
例1. 求微分方程 x2 dy y2 xy 满足初值条件 y |x1 1 的特解 x2

假定方程①中的f(x),g(y)是连续的,且 g( y) 0,
设y=(x)是方程①的解, 则有恒等式
1 (x) d x f (x) d x g( (x))
两边积分, 得
f (x)dx
设函数G(y)和F(x)依次为 则有
和f(x)的原函数, ② 这说明方程①的解满足等式②
二、可分离变量的微分方程

dx
y x1 3

由①得
( C为任意常数)

微分方程的基本概念

微分方程的基本概念

第十二章 微分方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=xdx y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5) 把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上,F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x .积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .。

第7章 常微分方程初值问题的数值解法

第7章 常微分方程初值问题的数值解法

例1 函数f ( t , y ) = t y 在区域D0 = {( t , y ) | 1 ≤ t ≤ 2, −3 ≤ y ≤ 4}
关于y满足Lipschitz条件,相应的Lipschitz常数可取为L = 2
3 存在性定理 定理1 设函数f ( t , y )在凸集D ⊂ R 2中有定义,若存在常数
(7.2.7)
称为显式Runge-Kutta(龙格-库塔 )方法,简称R-K方法,
其中正整数N 称为R-K方法的级,所有ci , ai , bij 都是待定 常数。
根据定义(7.2.7),N 级R-K方法(7.9)的局部截断误差为
Rn+1 = y( t n+1 ) − y( t n ) − h∑ ci ki
dy 其斜率为 = f ( t0 , y0 ) dt ( t0 , y0 ) 由 点 斜 式 写 出 切线 方 程 dy y = y0 + ( t − t0 ) = y0 + ( t − t0 ) f ( t0 , y0 ) dt ( x0 , y )
0
等步长为h,则t1 - t0 = h, 可由切线算出 y1 : 则 y1 = y0 + hf ( t0 , y0 ) 按此逐步计算y( tn ), 在tn +1处的值 : yn+1 = yn + hf ( tn , yn ) y 注意: 这是“ 注意 : 这是 “ 折 yN 线法” 而非“ 线法 ” 而非 “ 切 线法” 线法 ” 除第一个 点是曲线切线外, 点是曲线切线外 , 其他点不是切线 y2 而是折线(如右 y1 y0 图所示)。 图所示 。
பைடு நூலகம்
则称数值解法(7.5)为显式方法。否则,称数值解法(7.3) 为隐式方法。

微分方程的基本概念

微分方程的基本概念

第九章 微分方程对自然界的深刻研究是数学最富饶的源泉. -------傅里叶微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具.如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型.微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论.第一节 微分方程的基本概念一般地,含有未知函数及未知函数的导数或微分的方程称为微分方程. 微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.在物理学、力学、经济管理科学等领域我们可以看到许多表述自然定律和运行机理的微分方程的例子.分布图示★ 引 言★ 微分方程的概念★ 例1★ 例2★ 微分方程解的概念★ 例3★ 例4 ★ 内容小结★ 习题9—1内容要点一、微分方程的概念我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程,本章我们只讨论常微分方程. 常微分方程的一般形式是:,0),,,,()(='''n y y y y x F (1.5)其中x 为自变量,)(x y y =是未知函数.如果能从方程(1.5)中解出最高阶导数,就得到微分方程).,,,,()1()(-'=n n y y y x f y (1.6)以后我们讨论的微分方程组主要是形如(1.6)的微分方程,并且假设(1.6)式右端的函数f 在所讨论的范围内连续.如果方程(1.6)可表为如下形式:)()()()(1)1(1)(x g y x a y x a y x a y n n n n =+'+++-- (1.7)则称方程(1.7)为n 阶线性微分方程. 其中),(1x a ),(2x a , )(x a n 和)(x g 均为自变量x 的已知函数.不能表示成形如(1.7)式的微分方程,统称为非线性方程.在研究实际问题时,首先要建立属于该问题的微分方程,然后找出满足该微分方程的函数(即解微分方程),就是说,把这个函数代入微分方程能使方程称为恒等式,我们称这个函数为该微分方程的解. 更确切地说,设函数)(x y ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,有,0))(,)(),(),(,()(='''x x x x x F n ϕϕϕϕ则称函数)(x y ϕ=为微分方程(1.5)在区间I 上的解.二、微分方程的解微分方程的解可能含有也可能不含有任意常数. 一般地,微分方程的不含有任意常数的解称为微分方程的特解. 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解). 所谓通解的意思是指,当其中的任意常数取遍所有实数时,就可以得到微分方程的所有解(至多有个别例外).注:这里所说的相互独立的任意常数,是指它们不能通过合并而使得通解中的任意常数的个数减少.许多实际问题都要求寻找满足某些附加条件的解,此时,这类附加条件就可以用来确定通解中的任意常数,这类附加条件称为初始条件,也称为定解条件. 例如,条件(1.2)和(1.4)分别是微分方程(1.1)和(1.3)的初始条件.带有初始条件的微分方程称为微分方程的初值问题.微分方程的解的图形是一条曲线,称为微分方程的积分曲线.例题选讲微分方程的概念例1(E01)设一物体的温度为100℃,将其放置在空气温度为20℃的环境中冷却. 根据冷却定律:物体温度的变化率与物体和当时空气温度之差成正比,设物体的温度T 与时间t 的函数关系为)(t T T =,则可建立起函数)(t T 满足的微分方程)20(--=T k dt dT(1)其中k )0(>k 为比例常数. 这就是物体冷却的数学模型.根据题意,)(t T T =还需满足条件.100|0==t T (2)例2(E02)设一质量为m 的物体只受重力的作用由静止开始自由垂直降落. 根据牛顿第二定律:物体所受的力F 等于物体的质量m 与物体运动的加速度α成正比,即αm F =,若取物体降落的铅垂线为x 轴,其正向朝下,物体下落的起点为原点,并设开始下落的时间是0=t ,物体下落的距离x 与时间t 的函数关系为)(t x x =,则可建立起函数)(t x 满足的微分方程g dt xd =22其中g 为重力加速度常数. 这就是自由落体运动的数学模型.根据题意,)(t x x =还需满足条件.0,0)0(0===t dt dxx微分方程的解 例3(E03)验证函数kt C kt C x sin cos 21+=是微分方程)0(0222≠=+k x k dt xd的通解, 并求该微分方程满足初值条件0|,|00====t t dt dxA x 的特解. 解 求出题设函数的一阶及二阶导数:)1(,cos sin 21kt k C kt k C dtdx+-=).sin cos (11222kt k C kt k C k dt xd +-= 把它们代入题设微分方程, 得0)sin cos ()sin cos (212212≡+++-kt C kt C k kt C kt C k因此题设函数是微分方程的解. 又题设函数含有两个相互独立的任意常数, 而题设微分方程是二阶微分方程, 所以题设函数是微分方程的通解.将初值条件A x t ==0|代入通解kt C kt C x sin cos 21+=中得, 得;1A C = 将初值条件0|0==t dt dx代入(1), 得,02=C于是, 所求的特解为.cos kt A x =例4 验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dx dy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dx dy代入方程左边得x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π.42π-=C从而所求特解为.s i n 422x x y ⎪⎪⎭⎫ ⎝⎛-=π.。

微分方程认识微分方程的基本概念与解法

微分方程认识微分方程的基本概念与解法

微分方程认识微分方程的基本概念与解法微分方程:认识微分方程的基本概念与解法微分方程是数学中的一个重要分支,广泛应用于物理、工程、生物等领域。

本文将介绍微分方程的基本概念和解法,以帮助读者对微分方程有更深入的认识。

一、微分方程的定义和分类微分方程是含有未知函数及其导数的方程。

一般可分为常微分方程和偏微分方程两类。

常微分方程仅涉及一个独立变量,而偏微分方程则涉及多个独立变量。

常微分方程还可根据阶数进行分类,其中阶数为二的方程较为常见。

例如,一阶线性微分方程可表示为dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数;二阶线性微分方程可表示为d²y/dx² + p(x)dy/dx +q(x)y = r(x),其中p(x),q(x),和r(x)是已知函数。

二、解微分方程的基本方法1. 可分离变量法当微分方程可通过分离变量后进行变量代换,使之变为两个纯变量相乘的形式时,可利用可分离变量法解方程。

具体步骤为将方程两端分离相乘并求积分,最后解出未知函数。

2. 线性微分方程的齐次与非齐次解法线性微分方程是指可写成dy/dx + p(x)y = q(x)形式的方程。

对于齐次线性方程dy/dx + p(x)y = 0,可通过变量代换将其转化为一阶可分离变量方程进行求解。

对于非齐次线性方程dy/dx + p(x)y = q(x),可通过常数变易法求得非齐次线性微分方程的一个特解,并将通解与特解相加得到最终解。

3. 常系数线性微分方程的解法常系数线性微分方程是指方程中的系数与自变量无关。

一般形式为dⁿy/dxⁿ + a₁dⁿ⁻¹y/dxⁿ⁻¹ + ... + an-1dy/dx + any = 0。

解常系数线性微分方程的方法是先猜解,再通过代入方程进行求解。

4. 齐次线性微分方程的解法齐次线性微分方程是指方程中非齐次项为零的方程。

解齐次线性微分方程的方法是先猜解,再通过代入方程进行求解。

高数(第七版)第7章讲稿

高数(第七版)第7章讲稿
说明 1的通解为:
y Q(x)e P(x)dxdx C1 e P(x)dx e P(x)dx Q(x)e P(x)dxdx C1e P(x)dx
这表明:一阶非齐次线性方程的通解等于对应于它 的齐次方程的通解加上该非齐次方程的一个特解.
例1.(P316,例1)求方程 dy 2 y (x 1)5/2的通解. dx x 1
从而 dy u x du ,方程 1变为u x du (u)
dx
dx
dx
即 du (u) u ,这是可分离变量方程,求出它的
dx
x
通解,再将u y 代入得1的通解.
x
例1P310?解方程 y2 x2 dy xy dy .
dx dx
解:先化为标准形式
(xy x2 ) dy y2 dx
解法 : 作换元,令 y p, y dp dx
原方程变为 dp f (x, p) 一阶方程 dx
设其通解为: p (x,C1),C1是任意常数 即 y (x,C1)
y (x,C1)dx C2 , (C1, C2是任意常数)
只表示一个原函数
例2.(P323,例3)求(1 x2) y 2xy的通解,并求满足初始
y C(x)(x 1)2 2C(x)(x 1)
代入原方程,得
C(x)(x 1)2 2C(x)(x 1) 2 C(x)(x 1)2 x 1
(x 1)5/2
C(x)(x 1)2 (x 1)5/2
C(x) (x 1)1/2
C(x)
(x
1)1/2 dx
2 3
(x
1)3/ 2
C1
y C(x)(x 1)2
过点(x0 , y0 )的那条积分曲线.
初值问题 3的几何意义:求微分方程 y f (x, y, y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s 0 .2 t2 C 1 t C 2 通解
代入初始条件知:
C 1 2,0 C 2 0
则vds0.4t2,0 dt
故 s0.2t22t0 , 特解
开始制动到列车完全停住共需 t 2050(秒), 0.4
列车在这段时间内行驶了 s 0 .2 5 2 0 2 5 0 0 5( 米 0 )0 .
二、微分方程的定义
第十二章 常微分方程
本章仅研究一元函数的常微分方程. 一般形式为:
F(x,y,y,…...,y(k) )=0
单摆运动是数学、力学常引用的动力学系统的典型例子。 伽利略早已注意到一个单摆完成一个往复运动所需时间是常数 (当摆幅很小时)。他认为这一点对设计新型时钟很有用。 惠更斯(1629-1675)的研究给出了无阻尼自由单摆运动的 微分方程:
分类2: 线性与非线性微分方程.
y P (x )y Q (x ), x (y )2 2 y y x 0 ;
分类3: 单个微分方程与微分方程组.
dy dx
3 y 2z,
dz
2 y z,
dx
三、中心问题----求方程的解
微分方程的解:
代入微分方程能使方程成为恒等式的函数.
设 y (x )在I 区 上 n 阶 间 有,导数 F ( x , ( x ) ( ,x ) , ( n ) ( x ) ) 0 .
x t0
A,
dx dtt0
0的特解.
解 d d x tk1C sikn tk2 C co k,st
d d22 xtk2C 1co k stk2C 2sikn ,t 将dd2t2x和x的表达式代入,原方程
k 2 ( C 1 c k C o 2 s t k ) s i k 2 ( C n t 1 c k C o 2 s t k ) s i 0 .
解 y : ax eb x e 1
yax eb ex yyx1
例1、xy 2y x2y 0是______阶微分方程;
2、Ldd2tQ 2
RdQQ0是______阶微分方程; dt c
3、(d)3 sin2是______阶微分方程; d
分类1:
一阶微分方程 F (x ,y,y)0 , yf(x,y);
高阶(n)微分方程 F (x ,y ,y , ,y (n )) 0 , y (n ) f(x ,y ,y , ,y (n 1 )).
初始条件: 用来确定任意常数的条件.
初值问题: 求微分方程满足初始条件的解的问题.
y f (x, y)
一阶:
y
x
x0
y0
过定点的积分曲线;
二阶:
yf(x,y,y) yxx0 y0,yxx0 y0
是过定点且在定点的切线的斜率为定值的积分曲线.
例3 验证:函数xc1cosktc2sinkt是微分 方程dd2t2xk2x0的解. 并求满足初始条件
m d v m k g ,其 v v (t) 解 m (1 g e m kt)
dt
k
设 s(0 ) 0 ,则 s(t) m kt g (v 0 m k)e g m kt
(*)
(*)是给出了当 s=常数 时,下降到达时间与v0的关系。 若提出到地面的时间,则可以从(*)求出相应的初速度v0。
故 xC 1co k stC 2sikn 是 t 原方 . 程
x A, dx 0,
t0
dtt0
C 1 A , C 2 0 .
所求特解为 xA ck o.ts
补充: 微分方程的初等解法: 初等积分法.
求解微分方程
求积分
(通解可用初等函数或积分表示出来)
例 4 、 已 知 函 数 yaxe b x ex 1 , 其 中 a,b 为 任 意 常 数 , 试 求 函 数 所 满 足 的 微 分 方 程 .
车 获 得 加 速 度 0 .4米 / 秒 2, 问 开 始 制 动 后 多 少 时 间 列 车 才 能 停
住 ? 以 及 列 车 在 这 段 时 间 内 行 驶 了 多 少 路 程 ?
初解t始 条设 0 件时 ,s 制 0 t,秒 v动 d d st钟 2s后 米 ,0,行 sv s(tdd)驶 stddt22s0.4t0.4C1
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且任 意常数的个数与微分方程的阶数相同.
例yy,
通解 ycex;
yy0, 通 y c 1 解 sx i n c 2 cx o ; s
(2)特解: 确定了通解中任意常数以后的解.
解的图象: 微分方程的积分曲线.
通解的图象: 积分曲线族.
d d 2 2 tg ls i n 0 , 其 (解 t) A s为 ig ln t ( )
是一简谐运动。
由于摆动周期与重力加速度有关,则在技术上可通过 测量地球的不同地点的单摆周期,来计算该点处的重力加 速度,从而推测地球表面的形状。
跳伞问题是微分方程中的常见例子。运动员在跳塔上以
初速度v0=0下落,所受空气阻力与速度v成正比。设重力 加速度为常数,则由牛顿第二定律:
Байду номын сангаас
§12.1 微分方程的基本概念
例 1 一曲线通过点(1,2),且在该曲线上任一点
M(x, y)处的切线的斜率为2x,求这曲线的方程.
解 设所求曲y线 y为 (x)
dy 2 x dx
其x 中 1 时 ,y2
y 2xdx 即yx2C, 求C 得 1,
所求曲线方y程x2为 1.
例 2 列 车 在 平 直 的 线 路 上 以 2 0米 / 秒 的 速 度 行 驶 , 当 制 动 时 列
微分方程: 凡含有未知函数的导数或微分的方程叫微分方程.
例 yxy, y2y3yex,
(t2x)d txd 0 x ,
z x y, x
常微分方程
偏常微分方程.
实质: 联系自变量,未知函数以及未知函数的 某些导数(或微分)之间的关系式.
微分方程的阶: 微分方程中出现的未知函数的最
高阶导数的阶数. 本章仅研究一元函数的常微分方程.
相关文档
最新文档