第1章,金属变形

合集下载

材料力学名词解释(1)

材料力学名词解释(1)

名词解释第一章:1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等13.弹性极限:式样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

14.静力韧度:金属材料在静拉伸时单位体积材料断裂前所吸收的功。

15.正断型断裂:断裂面取向垂直于最大正应力的断裂。

第一章 金属液态成形理论基础

第一章 金属液态成形理论基础

第一节 液态金属充型能力与流动性
0、什么是液态金属的充型能力
1)定义:
液体金属充满铸型型腔,获得尺寸精确、轮廓清晰的 成型件的能力,称为充型能力。
2)充型能力对成型的影响
充型能力不足时,会产生浇不足、冷隔、夹渣、气孔 等缺陷。
3)影响充型能力的因素
充型能力首先取决于金属本身的流动性(流动能力),同 时又受铸型性质、浇注条件和铸件结构等因素影响。
一、铸件的凝固方式
在铸件凝固过程中,其断面上一般存在三个区 域:固相区、凝固区和液相区。
1、分类
依据对铸件质量影响较大的凝固区的宽窄划分 铸件的凝固方式为如下三类:
(1)逐层凝固
纯金属和共晶成分的合金在凝固过程中不存在液、固并 存的凝固区,随着温度下降,固体层不断加厚,液体不 断减少,直达铸件中心,这种凝固方式称为逐层凝固。
机械应力
二、铸件的变形及其防止
1、变形的原因:
铸件内部残余内应力。 只有原来受拉伸部分产生压缩 变形、受压缩部分产生拉伸变 形,才能使铸件中的残余内应 力减小或消除。
平板铸件的变形
杆件的变形
床身铸件的变形
粱形铸件的弯曲变形
2、防止措施:
减小应力; 将铸件设计成对称结构,使其内应力互相平衡; 采用反变形法; 设置拉肋; 时效处理。
2、冷裂纹的特征
裂纹细小,呈连续直线状,裂缝内有金属光泽或轻 微氧化色。
3、防止措施
凡是能减少铸件内应力和降低合金脆性的因素 均能防止冷裂。 设置防裂肋亦可有效地防止铸件裂纹。
防裂肋
三、合金的吸气性
液态合金中吸入的气体,若在冷凝过程中不能溢 出,滞留在金属中,将在铸件内形成气孔。
一)气孔的危害
气孔破坏了金属的连续性,减少了其承载的有效 截面积,并在气孔附近引起应力集中,从而降低 了铸件的力学性能。 弥散性气孔还可促使显微缩松的形成,降低铸件 的气密性。

第一章 金属塑性变形

第一章 金属塑性变形

图:冷变形金属在加热时组织 和性能的变化示意图
3)晶粒长大 冷变形金属刚刚结束再 结晶时的晶粒是比较细 小、均匀的等轴晶粒, 如果再结晶后不控制其 加热温度或时间,继续 升温或保温,晶粒之间 便会相互吞并而长大。
原因:晶体内部的各种缺陷(特别是位错)的运动更 容易产生滑移,而且位错运动所需切应力远远小于刚 性的整体滑移所需的切应力。当位错运动到晶体表面 时,晶体就产生了塑性变形。
未变形
位错运动
塑性变形
图:晶体中通过位错运动而造成滑移的示意图
2. 多晶体金属的塑性变形
多晶体的塑性变形与单晶体的相同处,在于它也是 以滑移和孪生为其塑性变形的基本方式。但多晶体是由 许多形状、大小、取向各不相同的晶粒所组成,这就使 多晶体的变形过程增加了若干复杂因素,具有区别于单 晶体塑性变形的特点。
首先,多晶体的塑性变形受到晶界的阻碍和位向不 同的晶粒的影响;其次,任何一个晶粒的塑性变形都不 是处于独立的自由变形状态,需要其周围的晶粒同时发 生相适应是变形来配合,以保持晶粒之间的结合和整个 物体的连续性。因此,多晶体的塑性变形要比单晶体的 情况复杂得多。
多晶体塑性变形的特点: • 1、各晶粒变形的不同时性; • 2、各晶粒变形的相互协调性; • 3、多晶体的塑性变形也具有不均匀性。
重要齿轮、连杆、炮管、枪管等; 板料冲压-汽车制造、电器、仪表及日用品。
第一章 金属的塑性变形
第一节 金属塑性变形的实质 金属在外力作用下产生塑 性变形的实质是晶体内部 的原子产生滑移。 1. 单晶体金属的塑性变形
滑移面
单晶体的塑性变形主要通过滑移进行。 整体刚性
滑移
(a)未变形(b)弹性变形(c)弹塑性变形(d)塑性变形 图:单晶体滑移变形示意图

第1章 金属固态相变基础

第1章 金属固态相变基础

41
d. 调幅分解 :由一种高温固 溶体,冷至某一温度范围, 分解为两种与原固溶体结 构相同,而成分不同的微 区的转变称为调幅分解 α→ α1 + α2 特点 : (a) 新形成的微区之间无明 显的界面和成分的突变; (b) 通过上坡扩散,最终使 均匀固溶体变为不均匀固 溶体。
42
e. 有序化转变: 固溶体中,各组元的相对位置
部(固溶体)原子的扩散,使铸锭(或铸件)晶
内化学成分均匀,组织达到或接近平衡状态,改 善复相合金中第二相的形状和分布,提高合金塑 性,改善加工性能和最终使用性能。
19
b. 基于回复、再结晶的退火 金属冷变形后组织处于亚稳状态,内能高、
强度硬度增加、组织发生变化,有时还出现织
构。若加热到一定温度,会发生回复、再结晶, 变形织构也会发生变化,从而在一定程度上消 除了由冷变形造成的亚稳定状态,使金属材料 获得所需组织、结构和性能。这种热处理还包
31
在实际应用中,无论哪一种具体的热处理工艺过程都 可归诸于上述某种热处理类型,或上述几种热处理类型 的结合。但必须指出,实际应用的热处理工艺多种多样, 而且迄今为止,我国尚无统一的热处理分类标准,在生 产中有些热处理也不一定按上述类别的名称命名。 各种形式的热处理在生产中不总是单独分开的,往往 在一次热处理过程中,同一种金属材料内部就发生了多 种形式热处理的复杂过程,即在金属材料内部进行着多 种固态转变,因此,在遇到实际问题时,必须从具体情 况出发,进行全面、综合分析。
16
基本热处理的主要类型
a. 均匀化退火(扩散退火) ① 退火 b. 基于回复、再结晶的退火 c. ② 淬火 ③ 时效或回火 基于固态相变退火
17
淬火
退火 温 度 时效/回火

1章 金属材料的力学性能 寒假(1)

1章 金属材料的力学性能  寒假(1)

第一章金属材料的力学性能姓名:一、填空题(共10小题,每小题3分,共30分)l. 是指金属材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,常用的硬度实验法有硬度实验法、硬度实验法和硬度实验法。

2.金属材料在作用下,抵抗和的能力称为强度。

3.金属材料的性能分为和。

4.塑性指标是和,其值越大表示材料的塑性越。

5.变形一般可分为和两种,不能随载荷的去除而消失的变形称为6.200HBS表示硬度,硬度值是,压头是。

7.测定原材料常用试验,测定淬火钢常用试验。

8.金属材料抵抗载荷作用而的能力,称为冲击载荷。

9.布氏硬度值测量压痕,洛氏硬度值测量压痕,维氏硬度值测量压痕。

10.金属材料在循环应力作用下能经受无限多次循环而不断裂的最大应力称为金属材料的。

二、判断题(共10小题,每小题2分,共20分)1.洛氏硬度值无单位。

()2.做布氏硬度测试时,当试验条件相同时,其压痕直径越小,材料的硬度越低。

()3.在实际应用中,维氏硬度值是测定压痕对角线长度的算术平方值后再查表得到的。

()4.各种不同的标尺的洛氏硬度值可进行直接比较,因此应用方便。

()5.维氏硬度值具有连续性,故可测定很软到很硬的各种金属材料的硬度,其准确性高。

()6.金属的塑性越好,变压抗力越小,金属的锻造性能越好。

()7.金属材料的力学性能差异是由其内部组织所决定的。

()8.金属在强大的冲击作用下,会产生疲劳现象。

()9.拉伸试验可以测定金属材料的强度、塑性等多项指标。

()10.布氏硬度测量法宜用于测量成品及较薄零件。

()三、单项选择题(共10小题,每题2分,共20分)1.金属材料抵抗塑性变形或断裂的能力称为()。

A.塑性B.硬度C.强度D.韧性2.做疲劳试验时.试样承受的载荷为()。

A.静载荷B.冲击载荷C.循环载荷D.过载荷3.下列属于力学性能指标的是()。

A.热膨胀性B.化学稳定性C.疲劳强度D.可锻性4.拉伸试验时,试样拉断前能承受的最大标称应力称为材料的()。

材料热处理原理第一章金属固态相变基础

材料热处理原理第一章金属固态相变基础
材料热处理原理
1#楼203 周二 5-6节 周四 1-2节
热处理
热处理原理与工艺
• 热处理:将金属或工件放在一定的介质中,通 过加热、保温和冷却的方法,使金属或合金的 内部组织结构发生变化,从而获得所需性能的 技术。
• 金属材料生产和机械制造过程的重要组成部分 之一。
• 热处理的特点:
– 一般不改变材料或工件的形状和整体的化学成分 – 改变材料或工件的微观组织和结构,或表面的化学成
特点:
(1)存在由于均匀切变引起的宏观形状改变,可在预先制备的抛光试样 表面上出现浮突现象。
(2)相变不需要通过扩散,新相和母相的化学成分相同。 (3)新相和母相之间存在一定的晶体学位向关系。 (4)某些材料发生非扩散相变时,相界面移动速度极快,可接近声速。
4. 按相变方式分类
➢ 有核相变:通过形核-长大方式进行的。
• 其两个生成相的结构和 成分均与母相不同
• 加热时也可发生 α+→转变,称为逆 共析相变
平衡相变
④调幅分解
• 某些合金在高温下具有均匀单相固溶体,但冷却到 某一温度范围时可分解成为与原固溶体结构相同但 成分不同的两个微区,这种转变称为调幅分解。
特点:转变初期不存在明显的相界面和成分突变; 通过上坡扩散实现成分变化; 一个自发分解过程; 不经历形核阶段; 分解速度快
3. 按原子迁移特征分类
扩散型相变
相变时原子迁移特征
非扩散型相变
3. 按原子迁移特征分类
(1)扩散型相变
相变时,相界面的移动是通过原子近程或远程扩散而进行的相变。
如:脱溶型相变、共析型相变(珠光体型转变)、调幅分解和有序化 转变等。
特点:
(1)有原子扩散运动,相变速率受原子扩散速度所控制; (2)新相和母相的成分往往不同; (3)只有因新相和母相比容不同而引起的体积变化,没有宏观形状

金属变形特性


思考:为什么会出现屈服现象?
金属变形特性
16
塑性变形过程--屈服
屈服强度:表示材料对
开始发生微量塑性变形
的抗力,也称为屈服极
限,用σs表示。对具有 屈服现象的材料用屈服
现象发生时对应的应力
表示;对屈服现象不明
显的材料,则以所产生
的塑性应变变0.2%时的
应力值表示。
金属变形特性
17
塑性变形过程--均匀变形
21
塑性变形过程--断裂
脆性断裂:断裂前因并未经过明显塑性变形,故其断口 常具有闪烁的光泽,这种断裂叫“脆性断裂”。脆性断 裂可沿晶界发生,称为“晶间断裂”,断口凹凸不平; 脆性断裂也可穿过各个晶粒发生,称为“穿晶断裂”, 断口比较平坦。
金属变形特性
沿晶脆性断口 22
➢ 材料的最大弹性变形量随材料的不同而不同。
金属变形特性
10
弹性模量
在弹性变形范围内,应力与应变服从虎克定律。
式中,σ、τ分别为正应力和 σ
切应力,ε、γ分别为正应变和
切应变;比例系数E称为弹性
模量(杨氏模量),G称为切 σe
变模量,它反映材料对弹性变
形的抗力,代表材料的“刚
度” 。
o
ε
金属变形特性
11
弹性模量代表着使原子离开平衡位置的难易程度,是 表征晶体中原子间结合力强弱的物理量。
弹性模量是表征材料在发生弹性变形时所需要施加力 的大小。
在给定应力下,弹性模量大的材料只发生很小的弹性 应变,而弹性模量小的材料则发生比较大的弹性应变。
结合能是影响弹性模量的主要因素,结合键之间的结 合键能越大,则弹性模量越大,结合键能与弹性模量 之间有很好的对应关系。
金属变形特性

轧钢原理-第1章


形后的尺寸和形状能够保留下来,金属无法恢复到原来
的形状或尺寸的变形称之为塑性变形。
第三节 应力状态及其图示
一、应力状态
金属压力加工过程中,金属内部产生复的应力状态。 研究变形体内的应力状态时,可在变形体内取出一无限小 的正六面体(可看成一点),这样就可以认为该六面体各 个面上的应力分布是均匀的。在主坐标系的条件下,作用
轧钢原理
第一章 应力和变形
第一节 力和应力
一、外力
金属塑性加工是金属与合金在外力作用下产生塑性变 形的过程。变形过程中外力主要有作用力和约束反力。
1、作用力:通常把塑性加工设备的可动工具部分对工件所作用的力 称为作用力或主动力。塑性加工时的作用力可以实测或用理论计算出 来。 2、约束反力:工件在主动力作用下,其运动将受到工具所阻碍而产
二、内力和应力
当在外力作用下物体的运动受到阻碍时,或由于物
理或化学等作用而引起物体内原子之间距离发生改变,在
物体内部就会产生内力。内力可由以下两种原因引起: (1)为平衡外力的机械作用将发生内力; (2)在各种物理及物理化学作用下,物体各部分变形大 小不同。由于物体是一个整体,各部分的不均匀变形会互 相限制,因此物体内部就会产生自相平衡的内力。
所以在变形体内往往不是单一的一种应力状态图示。应力
图示随变形的进行也常常发生转变。
力学中,规定正应力的符号是拉应力为正,压应力为
负。主应力按其代数值的大小排序,即σ1>σ2>σ3 。规定σ1
为最大主应力,σ3是最小主应力,σ2是中间主应力。
应力状态举例(1)
拉伸一个金属棒,在
均匀拉伸变形阶段是单向 拉应力图示,可是在拉伸 到出细颈后,由于力的传 递线(图中虚线)在细颈 处弯曲,而在细颈部分就 变成三向拉应力。

工程材料 第1章-金属材料的力学性能解读


F0 F1 100% 断面收缩率: F0
拉 伸 试 样 的 颈 缩 现 象
断裂后
第二节 硬度
材料抵抗其他更硬物质压入其表 面的能力,是表面局部变形的能力。 1、布氏硬度HB
HB 0.102 2P
D( D D 2 d 2 )
布 氏 硬 度 计
压头为钢球时,布氏硬度用符号 HBS表示,适用于布 氏硬度值在450以下的材料。 压头为硬质合金球时,用符号HBW表示,适用于布氏 硬度在650以下的材料。
体心立方金属具有韧脆转
变温度,而大多数面心立 方金属没有。
韧脆转变温度。
建造中的Titanic 号
TITANIC
TITANIC的沉没
与船体材料的质量
直接有关
Titanic 号钢板(左图)和近代船用钢板 (右图)的冲击试验结果
Titanic
近代船用钢板
第四节 疲劳强度
疲劳:材料在低于s的重复交变应力作用下发生断裂 的现象。
式中,σ—应力,单位MPa ;
F—外力,单位N; S—横截面积,单位mm2。
材料在外力的作用下将发生形状和尺寸变化,称为 变形。 外力去除后能够恢复的变形称为弹性变形。 外力去除后不能恢复的变形称为塑性变形。
五万吨水压机
第一节 强度和塑性
强度:材料在外力作用下抵
抗变形和破坏的能力。 屈服强度s:材料发生微 量塑性变形时的应力值。 单位是Mpa。
显微维氏硬度计 小 负 荷 维 氏 硬 度 计
第三节 冲击韧性
是指材料抵抗冲击载荷作 用而不破坏的能力。

指标为冲击
韧性值Ak(通
过冲击实验
测得)。
韧脆转变温度
材料的冲击韧性随温度 下降而下降。在某一温 度范围内冲击韧性值急 剧下降的现象称韧脆转 变。发生韧脆转变的温

第一章冲压变形的基本原理

第一章冲压变形的基本原理金属塑性变形的基本概念金属在外力作用下产生形状和尺寸的变化称为变形,变形分为弹性变形和塑性变形。

而冲压加工就是利用金属的塑性变形成形制件的一种金属加工方法。

要掌握冲压成形加工技术,首先必须了解金属塑性变形的一些基本原理。

1.1.1 塑性变形的物理概念所有的固体金属都是晶体,原子在晶体所占的空间内有序排列。

在没有外力作用时,金属中原子处于稳定的平衡状态,金属物体具有自己的形状与尺寸。

施加外力,会破坏原子间原来的平衡状态,造成原子排畸变图1.1.1,引起金属形状与尺寸的变化。

图1.1.1 晶格畸变a)无外力作用;b)外力作用产生弹性畸变;c)晶格滑移或孪动;d)外力卸去后的永久变形假若除去外力,金属中原子立即恢复到原来稳定平衡的位置,原子排列畸变消失和金属完全恢复了自己的原始形状和尺寸,则这样的变形称为弹性变形(图 1.1.1a )。

增大外力,原子排列的畸变程度增加,移动距离有可能大于受力前的原子间距离,这时晶体中一部分原子相对于另一部分产生较大的错动(图 1.1.1c )。

外力除去以后,原子间的距离虽然仍可恢复原状,但错动了的原子并不能再回到其原始位置(图),金属的形状和尺寸也都发生了永久改变。

这种在外力作用下产生不可恢复的永久变形称为塑性变形。

受外力作用时,原子总是离开平衡位置而移动。

因此,在塑性变形条件下,总变形既包括塑性变形,也包括除去外力后消失的弹性变形。

1.1.2塑性变形的基本形式金属塑性变形是金属在外力的作用下金属晶格先产生晶格畸变,外力继续加大时,产生晶格错动,而这种错动通常在晶体中采取滑移和孪动两种形式。

1.滑移当作用在晶体上的切应力达到一定数值后,晶体一部分沿一定的晶面,向着一定的方向,与另一部分之间作相对移动,这种现象叫滑移,图1.1.1。

金属的滑移面,一般都是晶格中原子分布最密的面,滑移方向则是原子分布最密的结晶方向,因为沿着原子分布最密的面和方向滑移的阻力最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档