金属材料性能知识大汇总(超全)
金属材料的热物理性能包括 金属材料的性能的物理知识点

金属材料的热物理性能包括金属材料的性能的物理知识点
金属材料的性能可分为使用性能和工艺性能(又称为加工性能)。
使用性能包括:
1、物理性能(比重、熔点、导电性、导热性、热膨胀性、磁性等);
2、物理性能(耐腐蚀性、耐氧化性等);
3、机械或力学性能(强度、塑性、硬度、韧性、疲劳强度等)。
工艺性能(加工性能):
1、铸造性能;
2、锻造性能;
3、焊接性能;
4、切削加工性能;
5、弯曲;
6、热处理性能等。
1、比重:比重是一种物体的重量与同体积的水的重量的比值,常用符号表示,以克/厘米为单位。
2、熔点:金属和合金从固体状态向液体状态转变时的熔化温度叫做熔点。
3、导电性:金属传导电流的性能叫做导电性。
衡量金属导电性能的指标是导电率(又叫导电系数)和电阻率(又叫电阻系数),导电率与电阻率互成反比,导电率越大,则电阻越小。
4、导热性:金属传导热量的性能叫导热性。
它反映了金属在加热和冷却时的导热能力,在金属中银和铜的导热性最好。
5、热膨胀性:金属温度升高时,产生体积胀大的现象,称为热膨胀性。
用热膨胀系数a表示,它的单位是:毫米/毫米?℃或1/℃,即金属温度每升高1℃其单位长度所伸长的长度(毫米)。
6、磁性:金属被磁场磁化或吸引的性能叫磁性,用导磁率()表示。
感谢您的阅读!。
金属材料的性能 重点概括

1、金属材料的性能包括:使用性能和工艺性能。
2、使用性能:是指金属材料在使用条件下所表现出来的性能,包括①物理性能(如密度、熔点、导热性、导电性、热膨胀性、磁性等)。
②化学性能(如抗腐蚀性、抗氧化性等)。
③力学性能(如强度、塑性、硬度、冲击韧性及疲劳强度等)。
④工艺性能。
力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。
3、力学性能包括:强度、硬度、塑性、冲击韧性a)金属在静载荷作用下,抵抗塑性变形或断裂的能力称为强度。
强度的大小用应力来表示。
b)根据载荷作用方式不同,强度可分为:抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度等。
一般情况下多以抗拉强度作为判别金属强度高低的指标。
4、金属材料受到载荷作用而产生的几何形式和尺寸的变化称为变形。
变形分为:弹性变形和塑性变形两种5、不能随载荷的去除而消失的变形称为塑形变形。
在载荷不增加或略有减小的情况下,试样还继续伸长的现象叫做屈服。
屈服后,材料开始出现明显的塑性变形。
Fs称为屈服载荷6、sb:强化阶段:7、随塑性变形增大,试样变形抗力也逐渐增加,这种现象称为形变强化(或称加工硬化)。
Fb:试样拉伸的最大载荷。
8、在拉伸试验过程中,载荷不增加(保持恒定),试样仍能继续伸长时的应力称为屈服点。
用符号σs表示,计算公式:σs=Fs/So对于无明显屈服现象的金属材料可用规定残余伸长应力表示,计算公式:σ0.2=F0.2/So9、(2)抗拉强度材料在拉断前所能承受的最大应力称为抗拉强度,用符号σb表示。
计算公式为:σb=Fb/So10、断裂前金属材料产生永久变形的能力称为塑性。
塑性由拉伸试验测得的。
常用伸长率和断面收率表示。
11、伸长率:试样拉断后,标距的伸长与原始标距的百分比称为伸长率。
用δ表示:计算公式:δ=(l1-l0)/l0×100%断面收缩率:试样拉断后,缩颈处横截面积的缩减量与原始横截面积的百分比称为断面收缩率。
用ψ表示12、材料抵抗局部变形特别是塑性变形压痕或划痕的能力称为硬度。
任务一金属材料的性能

任务一金属材料的性能金属材料是人类使用最为广泛的材料之一,具有许多优良的性能。
以下将详细介绍金属材料的各项性能,包括力学性能、化学性能、物理性能等。
1.力学性能金属材料的力学性能是指材料在外力作用下所表现出的机械性能。
主要包括抗拉强度、屈服强度、弹性模量、延伸率和硬度等参数。
金属材料通常具有优良的力学性能,具体表现在以下几个方面:(1)抗拉强度:金属材料的抗拉强度是指材料在拉伸载荷作用下所能承受的最大拉伸应力。
常见的金属材料如铝、铁、铜等具有较高的抗拉强度,通常在100MPa以上。
(2)屈服强度:金属材料的屈服强度是指在材料开始出现塑性变形时所承受的最大应力。
屈服强度一般小于抗拉强度,通常在50-80%之间。
(3)弹性模量:金属材料的弹性模量是指材料在弹性阶段内的应力和应变之比,也称为刚度。
弹性模量越大,表示材料的刚度越大,对外力的变形越小。
常见金属材料如钢材的弹性模量在200-210GPa之间。
(4)延伸率:金属材料的延伸率是指材料在拉伸过程中能够产生的塑性变形量。
通常用百分比表示,延伸率越高,表示金属材料的可塑性越好。
(5)硬度:金属材料的硬度是指材料在外力作用下抵抗划痕或形变的能力。
硬度是金属材料的一个重要性能指标,不同金属材料的硬度差异较大,如钢材的硬度通常在200-500HB之间。
2.化学性能金属材料的化学性能是指金属材料在各种化学环境中的耐蚀性能。
金属材料通常容易发生氧化、腐蚀等化学反应,因此其耐蚀性是一个重要的考量指标。
金属材料的化学性能受材料成分、表面处理等因素影响,一般来说,金属材料的化学性能表现为以下几个方面:(1)耐腐蚀性:金属材料的耐腐蚀性是指金属在各种化学介质中抵抗腐蚀的能力。
不同金属材料对不同腐蚀介质的抵抗能力不同,有的金属材料对酸、碱、氧化剂等具有较好的耐蚀性能,而有的金属材料对盐、湿气等环境容易发生腐蚀。
(2)热稳定性:金属材料的热稳定性是指材料在高温环境下的稳定性。
金属材料的使用性能

金属材料的使用性能1. 密度(比重):材料单位体积所具有的质量,即密度=质量/体积,单位为g/cm3。
2. 力学性能: 金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。
3. 强度: 金属材料在外力作用下抵抗变形和断裂的能力。
屈服点、抗拉强度是极为重要的强度指标,是金属材料选用的重要依据。
强度的大小用应力来表示,即用单位面积所能承受的载荷(外力)来表示。
4. 屈服点: 金属在拉力试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称为“屈服”。
产生屈服现象时的应力,即开始产生塑性变形时的应力,称为屈服点,用符号σs表示,单位为MPa。
5. 抗拉强度: 金属在拉力试验时,拉断前所能承受的最大应力,用符号σb表示,单位为MPa。
6. 塑性: 金属材料在外力作用下产生永久变形(去掉外力后不能恢复原状的变形),但不会被破坏的能力。
7. 伸长率: 金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始标距长度的百分比,称为伸长率。
用符号δ,%表示。
伸长率反映了材料塑性的大小,伸长率越大,材料的塑性越大。
8. 韧性: 金属材料抵抗冲击载荷的能力,称为韧性,通常用冲击吸收功或冲击韧性值来度量。
9. 冲击吸收功: 试样在冲击载荷作用下,折断时所吸收的功。
用符号A?k表示,单位为J 。
10. 硬度: 金属材料的硬度,一般是指材料表面局部区域抵抗变形或破裂的能力。
根据试验方法和适用范围的不同,可分为布氏硬度和洛氏硬度等多种。
布氏硬度用符号HB表示:洛氏硬度用符号HRA、HRB或HRC表示。
部分常用钢的用途(一)各牌号碳素结构钢的主要用途:1.牌号Q195,含碳量低,强度不高,塑性、韧性、加工性能和焊接性能好。
用于轧制薄板和盘条。
冷、热轧薄钢板及以其为原板制成的镀锌、镀锡及塑料复合薄钢板大量用用屋面板、装饰板、通用除尘管道、包装容器、铁桶、仪表壳、开关箱、防护罩、火车车厢等。
盘条则多冷拔成低碳钢丝或经镀锌制成镀锌低碳钢丝,用于捆绑、张拉固定或用作钢丝网、铆钉等。
金属材料基本常识

金属材料的性能一,物理性能1,密度:物体的质量与其体积的比值计算公式P=m/v (g/cm3)2, 熔点:物体在加热过程中,由固体开始熔化为液体时的温度3.导电性:金属材料传导电流的能力,纯银导电性最好,铜铝次之,纯金更好4.导热性:金属材料传导热量的能力纯金导热性最好,合金稍差,应用炒菜的锅容易焦5 热膨胀性金属材料温度升高后体积增长的性质二力学性能1 强度强度时指金属材料在外力作用下,对变形和破裂的抵抗能力、强度的大小用材料单位横截面积上所产生的抵抗力。
即应力来表示,应力单位为Mpa,其公式6=F/sF---外力(N 1kgf约等于9.8N)s横截面积(mm2)6---应力(mpa)1mp=1N/1mm2=10kg/cm2常用的强度测试方法是拉伸实验2.塑性指金属材料在外力作用下产生显著变形而不断裂的性能------ ------ 凹模1____13 硬度金属材料表面抵抗其他更硬物压入的能力任何零件都应具备足够的硬度才能保证其使用寿命测试硬度的方法有以下几种1)洛式硬度HR方法向上用淬火钢球或120°圆锥形金刚石….2 )布氏硬度ABS最常用的是将直径为10mm的淬火钢球实验力伟3000kgf(29.4KN)压向材料表面,持续时间30s 测压痕直径3 )维氏硬度HV4 象积性疲劳金属材料在低于屈服强度的交变力作用下发生破裂的现象称为疲劳5 韧性金属材料抵抗冲击载荷而不被破坏的能力三工艺性能一般指切削加工型铸造性(金属熔化后烧注成合格铸件的难度程度)可锻性(打造兵器)可焊性和热处理Eg:菜刀经过热处理,强度会增加钢与(铸铁)的区别在于含C量不同钢含c量小于2%铸铁含C量大于2%1 普通碳素机构钢N/mm2 Q195 Q235Q为屈服点即:每mm2 最多能承受195的力只规定屈服强度不规定含碳量2 碳素工具钢(一般高碳钢实验室中的工具就是)3 优质碳素结构钢08# 10# 20# 25#45号钢:含碳量0.45%的钢4 合金结构钢38CrMoAl 都不超过1%Al Cr Ti Mo Mn W Ni Si N B5 合金工具钢1白口铸铁BT硬(耐磨)脆断开后雪白雪白的含碳量少主要用于炼钢或制造可锻铸铁的原料2灰口铸铁AT 片状石墨削弱灰铁的强度主要用于制造承受低中高负荷的零件(如手轮工作台活塞床身等)HT200—>HT300 ----HT400 (屈服强度减少片状石墨越少)3球墨铸铁QT 球状石墨削弱作用比片状石墨小,因此强度大,主要用于制造机床零件,轴瓦柴油曲轴拖拉机减速齿轮等QT450-10 (450Mpa ,10为延伸率)稀土镁合金包头片状石墨变球状石墨4可锻铸铁KT自来水管(九十度)差速器主要用于汽车后桥外壳活塞环等。
金属知识点总结大全

一、金属的基本性质1. 导电性:金属具有良好的导电性,其原子结构中的自由电子能够在金属内部自由流动,从而实现电流的传导。
2. 导热性:金属具有良好的导热性,可以快速将热量传导到周围环境中,因此常用于制造散热器和导热器等产品。
3. 可塑性:金属具有良好的可塑性,可以通过锻造、轧制等方式形成各种形状的产品。
4. 良好的机械性能:金属材料具有较高的强度和韧性,可以满足不同工程领域的需要。
二、金属的分类1. 基本金属:包括铁、铜、铝、镁、锌等,是工业生产中最常用的金属材料。
2. 合金:由两种或更多种金属或非金属混合而成,具有优良的物理和化学性能,如钢、铜合金、铝合金等。
3. 贵金属:如黄金、铂、银等,具有良好的抗腐蚀性和化学稳定性,常用于珠宝、电子器件等领域。
三、常见金属材料1. 铁:是最常见的金属材料,包括纯铁、钢和铸铁等,广泛应用于建筑、机械制造、汽车制造等领域。
2. 铝:具有良好的轻量化和耐腐蚀性能,常用于航空航天、汽车制造和建筑材料等领域。
3. 铜:具有良好的导电性和导热性,常用于电子器件、建筑材料等领域。
4. 钛:具有优良的耐腐蚀性和高强度,常用于航空航天、医疗器械等领域。
四、金属加工和制造1. 铸造:将金属熔化后倒入模具,冷却后得到所需的形状。
2. 锻造:通过对金属进行加热后进行锻打,使其得到所需的形状和尺寸。
3. 冷拔:通过在室温下拉制金属材料,使其形成所需的形状和尺寸。
4. 焊接:将两个金属材料通过加热或施加压力,使其相互连接。
5. 切削加工:通过旋转刀具等方式对金属材料进行加工,实现所需的形状和尺寸。
1. 建筑领域:金属材料常用于制造建筑结构、门窗、屋顶等部件。
2. 机械制造:金属材料广泛应用于制造机床、轴承、齿轮等机械零部件。
3. 电子设备:金属材料常用于制造电子器件、电路板、散热器等产品。
4. 汽车制造:金属材料是汽车制造的主要材料,常用于制造车身、发动机零部件等。
六、金属的环保和可持续发展1. 循环利用:金属材料可以通过回收再利用的方式,减少资源浪费和环境污染。
金属材料性能知识大汇总(超全)

金属材料性能知识大汇总1、关于拉伸力-伸长曲线和应力-应变曲线的问题低碳钢的应力-应变曲线a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。
b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σ;屈服点σS;抗拉强度σb;断裂强度σk。
P;弹性极限σε真应变 e=ln(L/L0)=ln(1+ε) ;真应力 s=σ(1+ε)= σ*eε指数e 为真应变。
c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。
弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。
2、关于弹性变形的问题a、相关概念弹性:表征材料弹性变形的能力刚度:表征材料弹性变形的抗力弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。
弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。
包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。
弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。
金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗b、相关理论:弹性变形都是可逆的。
理想弹性变形具有单值性、可逆性,瞬时性。
但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。
弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映单晶体和多晶体金属的弹性模量,主要取决于金属原子本性和晶体类型。
包申格效应;滞弹性;伪弹性;粘弹性。
包申格效应消除方法:预先大塑性变形,回复或再结晶温度下退火。
循环韧性表示材料的消震能力。
金属材料性能的基础知识

金属材料性能的基础知识金属材料的性能决定着材料的适用范围及应用的合理性。
金属材料的性能要紧分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。
一.机械性能(一)应力的概念物体内部单位截面积上经受的力称为应力。
由外力作用引发的应力称为工作应力,在无外力作用条件下平稳于物体内部的应力称为内应力(例如组织应力、热应力、加工进程终止后留存下来的残余应力…等等)。
(二)机械性能金属在必然温度条件下经受外力(载荷)作历时,抗击变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。
金属材料经受的载荷有多种形式,它能够是静态载荷,也能够是动态载荷,包括单独或同时经受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,和摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标要紧有以下几项:1.强度这是表征材料在外力作用下抗击变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。
由于金属材料在外力作用下从变形到破坏有必然的规律可循,因此通常采纳拉伸实验进行测定,即把金属材料制成必然规格的试样,在拉伸实验机上进行拉伸,直至试样断裂,测定的强度指标要紧有:(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=-1Kgf/mm2或1Kgf/mm2= σb=P b/F o式中:P b–至材料断裂时的最大应力(或者说是试样能承受的最大载荷);F o–拉伸试样原来的横截面积。
(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,金属材料的拉伸试验曲线但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。
产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料性能知识大汇总1、关于拉伸力-伸长曲线和应力-应变曲线的问题低碳钢的应力-应变曲线a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。
b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σε;屈服点σS;抗拉强度σb;断裂强度σk。
真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。
c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。
弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。
2、关于弹性变形的问题a、相关概念弹性:表征材料弹性变形的能力刚度:表征材料弹性变形的抗力弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。
弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。
包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。
弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。
金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗b、相关理论:弹性变形都是可逆的。
理想弹性变形具有单值性、可逆性,瞬时性。
但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。
弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映单晶体和多晶体金属的弹性模量,主要取决于金属原子本性和晶体类型。
包申格效应;滞弹性;伪弹性;粘弹性。
包申格效应消除方法:预先大塑性变形,回复或再结晶温度下退火。
循环韧性表示材料的消震能力。
3、关于塑形变形的问题a、相关概念滑移:滑移系越多,塑性越好;滑移系不是唯一因素(晶格阻力等因素);滑移面——受温度、成分和变形的影响;滑移方向——比较稳定孪生:fcc、bcc、hcp都能以孪生产生塑性变形;一般在低温、高速条件下发生;变形量小,调整滑移面的方向屈服现象:退火、正火、调质的中、低碳钢和低合金钢比较常见,分为不连续屈服和连续屈服;屈服点:材料在拉伸屈服时对应的应力值,σs;上屈服点:试样发生屈服而力首次下降前的最大应力值,σsu;下屈服点:试样屈服阶段中最小应力,σsl;屈服平台(屈服齿):屈服伸长对应的水平线段或者曲折线段;吕德斯带:不均匀变形;对于冲压件,不容许出现,防止产生褶皱。
屈服强度:表征材料对微量塑性变形的抗力连续屈服曲线的屈服强度:用规定微量塑性伸长应力表征材料对微量塑性变形的抗力(1)规定非比例伸长应力σp:(2)规定残余伸长应力σr:试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力;残余伸长的百分比为0.2%时,记为σr0.2(3)规定总伸长应力σt:试样标距部分的总伸长(弹性伸长加塑性伸长)达到规定的原始标距百分比时的应力。
晶格阻力(派纳力);位错交互作用阻力Hollomon公式: S=Ke n,S为真应力,e为真应变;n—硬化指数0.1~0.5,n=1,完全理想弹性体,n=0,没有硬化能力;K——硬化系数缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象。
抗拉强度:韧性金属试样拉断过程中最大试验力所对应的应力。
代表金属材料所能承受的最大拉伸应力,表征金属材料对最大均匀塑性变形的抗力。
与应变硬化指数和应变硬化系数有关。
等于最大拉应力比上原始横截面积。
塑性是指金属材料断裂前发生不可逆永久(塑性)变形的能力。
b、相关理论常见的塑性变形方式:滑移,孪生,晶界的滑动,扩散性蠕变。
塑性变形的特点:各晶粒变形的不同时性和不均匀性(取向不同;各晶粒力学性能的差异);各晶粒变形的相互协调性(金属是一个连续的整体,多系滑移;Von Mises 至少5个独立的滑移系)。
硬化指数的测定:①试验方法;②作图法lgS=lgK+nlge硬化指数的影响因素:与层错能有关,层错能下降,硬化指数升高;对金属材料的冷热变形也十分敏感;与应变硬化速率并不相等。
缩颈的判据(失稳临界条件)拉伸失稳或缩颈的判据应为dF=0两个塑性指标:断后伸长率δ=(L1-L0)/L O*100%;断后收缩率:ψ=(A0-A1)/A0*100%ψ>δ,形成为缩颈ψ=δ或ψ<δ,不形成缩颈4、关于金属的韧度断裂问题a、相关概念韧性:断裂前吸收塑性变形功和断裂功的能力韧度:单位体积材料断裂前所吸收的功韧性断裂:裂纹缓慢扩展过程中消耗能量;断裂最先发生在纤维区,然后快速扩展形成放射最后断裂形成剪切唇,放射区在裂纹快速扩展过程中形成,一般放射区汇聚方向指向裂纹源。
脆性断裂:基本不产生塑性变形,危害性大。
低应力脆断,工作应力很低,一般低于屈服极限;脆断裂纹总是从内部的宏观缺陷处开始;温度降低,应变速度增加,脆断倾向增加。
穿晶断裂:裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂,断口明亮。
沿晶断裂:裂纹沿晶界扩展,都是脆性断裂,由晶界处的脆性第二相等造成,断口相对灰暗。
穿晶断裂和沿晶断裂可混合发生。
高温下,多由穿晶断裂转为沿晶韧性断裂。
沿晶断裂断口:断口冰糖状;若晶粒细小,断口呈晶粒状。
剪切断裂:材料在切应力作用下沿滑移面滑移分离而造成的断裂。
(滑断、微孔聚集型断裂)解理断裂:材料在正应力作用下,由于原于间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。
金属的强度就是指金属材料原子间结合力的大小,一般说金属熔点高,弹性模量大,热膨胀系数小则其原子间结合力大,断裂强度高。
断裂的实质就是外力作用下材料沿某个原子面分开的过程。
格里菲思理论:从热力学观点看,凡是使能量减低的过程都将自发进行,凡使能量升高的过程必将停止,除非外界提供能量。
Griffth指出,由于裂纹存在,系统弹性能降低,与因存在裂纹而增加的表面能平衡。
如弹性能降低足以满足表面能增加,裂纹就会失稳扩展,引起脆性破坏。
b、相关理论断裂三种主要的失效形式:磨损、腐蚀、断裂多数金属的断裂包括裂纹的形成和扩展两个阶段。
按断裂的性态:韧性断裂和脆性断裂;按裂纹扩展路径:穿晶断裂和沿晶断裂;按断裂机制:解理断裂和剪切断裂韧性断裂和脆性断裂:根据材料断裂前产生的宏观塑性变形量的大小来确定。
通常脆性断裂也会发生微量的塑性变形,一般规定断面收缩率小于5%则为脆性断裂。
反之大于5%的为韧性断裂。
脆性断口平齐而光亮,与正应力垂直,断口常呈人字纹或放射花样。
解理断裂是沿特定的晶面发生的脆性穿晶断裂,通常总沿一定的晶面分离。
解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂。
常见的裂纹形成理论:①位错塞积理论②位错反应理论解理与准解理共同点:穿晶断裂;有小解理刻面;台阶及河流花样不同点:①准解理小刻面不是晶体学解理面②解理裂纹常源于晶界,准解理裂纹常源于晶内硬质点。
准解理不是一种独立的断裂机理,而是解理断裂的变种。
格雷菲斯理论是根据热力学原理得出的断裂发生的必要条件,但并不意味着事实上一定断裂。
裂纹自动扩展的充分条件是尖端应力等于或大于理论断裂强度。
5、关于硬度的问题a、硬度概念硬度是衡量金属材料软硬程度的一种性能指标。
b、硬度试验方法:划痕法——表征金属切断强度回跳法——表征金属弹性变形功压入法——表征塑性变形抗力及应变硬化能力布氏硬度压头:淬火钢球(HBS),硬质合金球(HBW)载荷:3000Kg 硬质合金,500Kg 软质材料保载时间:10-15s 黑色金属,30s 有色金属压痕相似原理只用一种标准的载荷和钢球直径,不能同时适应硬的材料或者软的材料。
为保证不同载荷和直径测量的硬度值之间可比,压痕必须满足几何相似。
布氏硬度表示方法:600HBW1/30/20①度值,②符号HBW,③球直径,④试验力(1kgf=9.80665N),⑤试验力保持时间布氏硬度试验的优缺点:优点:压头直径较大→压痕面积较大→硬度值可反映金属在较大范围内各组成相的平均性能,不受个别组成相及微小不均匀性的影响。
缺点:对不同材料需更换压头直径和改变试验力,压痕测量麻烦,自动检测受到限制;压痕较大时不宜在成品上试验洛氏硬度以测量压痕深度表示材料硬度值。
压头有两种:α=120°的金刚石圆锥体,一定直径的淬火钢球。
洛氏硬度试验优缺点:优点:操作简便、迅速,硬度可直接读出;压痕较小,可在工件上试验;用不同标尺可测定软硬不同和厚薄不一的试样。
缺点:压痕较小,代表性差;材料若有偏析及组织不均匀等缺陷,测试值重复性差,分散度大;用不同标尺测得的硬度值没有联系,不能直接比较。
维氏硬度原理与布氏硬度试验相同,根据单位面积所承受的试验力计算硬度值。
不同的是维氏硬度的压头是两个相对面夹角α为136°的金刚石四棱锥体。
努氏硬度与维氏硬度的区别1)压头形状不同;2)硬度值不是试验力除以压痕表面积,而是除以压痕投影面积肖氏硬度一种动载荷试验法,原理是将一定质量的带有金刚石圆头或钢球的重锤,从一定高度落于金属试样表面,根据重锤回跳的高度来表征金属硬度值大小,也称回跳硬度。
用HS表示。
里氏硬度动载荷试验法,用规定质量的冲击体在弹力作用下以一定的速度冲击试样表面,用冲头的回弹速度表征金属的硬度值。
用HL表示。
6、关于金属在冲击载荷下的力学性能a、相关概念冲击韧性:指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,常用标准试样的冲击吸收功AK表示。
冲击测量参数:测量冲击脆断后的冲击吸收功(AkU或AKV),冲击吸收功并不能真正反映材料的韧脆程度(冲击吸收功并非完全用于试样变形和破坏)低温脆性:体心立方或某些密排六方晶体金属及合金,当试验温度低于某一温度tk或温度区间时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状。
tk或温度区间称为韧脆转变温度,又称冷脆转变温度。
b、相关理论韧脆的评价方法:材料的缺口冲击弯曲试验,材料的冲击韧性韧脆的影响因素:温度(低温脆性);应力状态(三向拉应力状态);变形速度的影响(冲击脆断)低温脆性的本质:低温脆性是材料屈服强度随温度降低急剧增加的结果。
屈服强度σs的随温度降低而升高,而断裂强度σc随温度变化很小。
t>tk ,σc >σs ,先屈服再断裂;t<tk ,σc <σs ,脆性断裂韧脆转变温度是金属材料的韧性指标,它反映了温度对韧脆性的影响。
影响韧脆转变温度的冶金因素:晶体结构:体心立方金属及其合金存在低温脆性。
普通中、低强度钢的基体是体心立方点阵的铁素体,故这类钢有明显的低温脆性。