1.2.2_第一课时(函数的表示法)
第一章 1.2 1.2.2 第一课时 函数的表示法

答案:A
返回
2.已知函数 f(x),g(x)分别由下表给出.
x f(x)
1 2
2 1
3 1
x g(x)
1 3
2 2
3 1
(1)f[g(1)]=________;
(2)若g[f(x)]=2,则x=________.
返回
解析:(1)由表知 g(1)=3, ∴f[g(1)]=f(3)=1; (2)由表知 g(2)=2,又 g[f(x)]=2,得 f(x)=2, 再由表知 x=1.
解析:由于兔子中间睡了一觉,所以有一段路程不变,而 乌龟的路程始终在增加且比兔子早到终点,故选B. 答案:B
返回
2.函数 y=f(x)的图象如图, f(x)的定义域 则 是 A.R B.(-∞,1)∪(1,+∞) C.(-∞,0)∪(0,+∞) D.(-1,0) ( )
解析:由图象知x≠0,即x∈(-∞,0)∪(0,+∞).
返回
例:求下列函数的解析式: 1+x 1+x2 1 ①已知 f( x )= 2 +x,求 f(x); x ②已知 f( x+1)=x+2 x,求 f(x). 1+x 1 1 解:①法一:(换元法) 令 t= x =x+1,得 x= , t-1
1+x 1+x2 1 1 则 t≠1.把 x= 代入 f( )= 2 + ,得 x x x t-1 1 2 1+ t-1 1 f(t)= + =(t-1)2+1+(t-1)=t2-t+1. 1 2 1 t-1 t-1 ∴所求函数的解析式为 f(x)=x2-x+1,x∈(-∞,1)∪(1,+∞).
返回
法二:(配凑法) 1+x 1+x2+2x-2x 1 ∵f( x )= +x x2 1+x 2 1+x-x =( x ) - x 1+x 2 1+x =( x ) - x +1, ∴f(x)=x2-x+1. 1+x 1 又∵ x =x+1≠1, ∴所求函数的解析式为 f(x)=x2-x+1(x≠1).
人教版高中数学必修一1.2.2函数的表示法 (1)ppt课件

例5、下列映射是不是A到B的一一映射?
A
B
A
B
f
1
3
f
1
3
2
5
3
7
5 2
7
3
9
4
9
4
1
(1)
(2)
解:(1) 是
(2) 不是。由于B中元素1在集合A中没有原像
例6、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} ,f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
5 , 1 5 < x 2 0 , 2 1
图公交车票价.gsp
05
10
15
20
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
注意: (1)有时表示函数的式子可以不止一个,对于分几个 表示的函数,不是几个函数,而是一个函数,我们把它 分段函数.
(2) 函数图象既可以是连续的曲线,也可以是直线、 线、离散的点等等。
注意:解析法表示函数是中学研究函数的主要表示方法;用 法表示函数时,必须注明函数的定义域.
2.图像法:用函数图像表示两个变量之间的对应关系。
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的.
例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
(1)对于任何一个实数a,数轴上都有唯一的点P和它对
(2)对于坐标平面内任何一个点A,都有唯一的有序实数 (x,y)和它对应;
人教高中数学必修1课件:1.2.2函数的表示法第1课时函数的表示法精讲优练课型

1.2. 2函数的表示法第1课时函数的表示法【即时小测】1 •思考下列问题: ⑴所有的函数都能用列表法来表示吗?提示:并不是所有的函数都能用列表法来表示,如函数y二2x+l f xe R.因为自变量X w R不能一一列出,所以不能用列表法来表示•(2)用解析法表示函数是否一定要写出自变量的取值范围?提示:函数的走义域是函数存在的前提,写函数解析式的时候L般要写出函数的定义域.2・已知函数f(x)由下表给出:则f(f(2))= ____________【解析】由表格可知十⑵二4所以f(f⑵)=f⑴二0・答案:03・CU咨 f (x —l)"(x —l)2』=f(X)3晝聖【sm ffiXIlHbpMIXHt+l、s u w (t T t 2・0H (x T x 2・嘯4.已知函数y=f (x)的图象如图所示,则其定义域是3~~03^【解析】因为函数y二f(x)图象上所有点的横坐标的取值范围是[23],所以其定义域为[么3]・答案:[23]5.已知f (n) =2f (n+1), f (1) =2,则f (3)= 【解析】f(n) = 2f(n + l),f(l) = 2, 所以俭)= 2f(2)=4f⑶,故f⑶二( 答案:2 2【知识探究】知识点函数的三种表示方法观察如图所示内容,回答下列问题:(函数的表示方法)——(图象法)问题1 :应用三种方法表示函数时应注意什么问题?问题2:函数的三种表示方法各有什么优缺点?【总结提升】1 •对函数三种表示法的说明列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示•在应用三种方法表示函数时要注意:⑴解析法:必须注明函数的定义域(2)列表法:选取的自变量要有代表性,应能反映定义域的特征.⑶图象法:是否连线.2.函数三种表示方法优缺点比较"能形象、直观地表示壓函数的变化情况点 小、 只能近似求出自变量所对应的函数值,而 R 有时误差较大 K ____________ /【题型探究】类型一待定系数法求函数解析式【典例】1.已知f(X)是一次函数,且f (f (x)) =4x+3,则函数f(X)的解析式为_____________ ■2.已知二次函数y=f (x)的最大值为13,且f(3)=f(-l)=5,求f (x)的解析式.【解题探究】1•典例1中一次函数解析式的形式是什么? 提示:一次函数解析式的形式为f(x)二ax+b (a工0) •2.典例2中二次函数的一般形式是什么?提示:二次函数的一般形式是f(x)二ax?+bx+c (a H 0) •【s s】l ・ffi f (x T ax +b (a H O )・ m=f (fH +b T爾糊f s H 2X +一烘f (X)H —w x —w2•方法一:利用二次函数的一般式求解.设f(x)=ax2+bx+c(a^0).由条件知,点⑶5),(也5),("3)在f(x)的图象上9a+3b+c = 5, fa = -2所以a — b+c = 5,所以f的斤邂时x+lg = ii方法二:利用二次函数的顶点式求解.由f(3)=f(・l),可知:对称轴为x“,又最大值为D故可设f(x)二a(x・l)2+13.将f⑶=5代入得a=2・所以f(x) = -2(x-l)2+13jpf(x) = -2x2+4x+ll.【方法技巧】待定系数法求函数解析式(1)适用范围:已知所要求的解析式f(x)的类型,如是一次函数、二次函数等等,即可设出f(x)的解析式,然后根据已知条件确定其系数.(2)待定系数法求函数解析式的步骤:①设出所求函数含有待定系数的解析式;③解方程或方程组,得到待定系数的值;④将所求待定系数的值代回所设解析式.【变式训练】已知二次函数f (X )的图象过点A(0, -5), B (5, 0),其对称 轴为x=2,求其解析式.【解析】因为抛物线的对称轴为x=2, 所以设二次函数的解析式为f(x)=a(x-2)2+k(a^O).把(0,-5),(5,0)分别代入上式得丽劇嗨斛*9・ 龈敲MX 』",类型二换元法(或配凑法)、方程组法求函数解析式【典例】求满足下列条件的函数f(x)的解析式.(1)函数f(X)满足f ( +l)=x+2 .(2)函数f (x)满足2f 占)+f (x) =x《HO).1X【解题探究】1.典例⑴中的5 +1)中的低+1与x+2低能否建立联系?提示:典例⑴中的X+2 =( +1)2-1.2 •典例(2)中x和有越关爲1提示:互为倒数关黍・(1£)「益(3欝“人1:埠只Ig lx V ^.J (T :+r (T +)J M £ V0+x只因:(+s2e H +s g(一丄jpex) J XH (X )J E5£ rH」u z +z(I £H e 4M £"(IeHxliio 存g芥企 叟+W IK ®l 4W 运(I⑵由题意知f(x) + 2f( i=x f令X二(tHO) fx t则i=t f则f(卅2f(t)二a即班?+2f(x)・(于是得剧关于f(肯f(x)的方程自—i ■x X Xf(x) + 2f』) =xf(-) + 2f(x) = I 2 x1解得f(x)拄-°)・XXX【延伸探究】1.(变换条件)典例(1)中若将条件“f(+l)=x+2 “f(2x-l)p2+x+l”,则f(x)的解析式是什么?【解析】设2x-l=t f则X二t+1所以f(t)二亍Q nX/、t+1 ° t+1 7即f(x)二一r+一+i 二一+t+—.2 2 4 41 97一x~+x -一・4 42.(变换条件)典例(1)中若将条件“f (低+ l)=x+2低”变为“f(l+ 1 )=i+x21 ”,则f(x)的解析式是什么?【解析】平(1 + * X1+?]因為寻岂占诫溜胡析幽)+hf(x)=x24c+ 1 , XG(-OO f 1) U (1 , +8).X【方法技巧】换元法(或配凑法)、方程组法求函数解析式的思路⑴已知f (g (x)) =h (x),求f (x),常用的有两种方法:①换元法,即令t=g (x),解出禺代Ah(x)中,得到一个含t的解析式,即为函数解析式,注意:换元后新元的范围②配凑法,即从f (g(X))的解析式中配凑出即用g(x)来表示h (x),然后将解析式中的g (x)用x代替即可.(2)方程组法:当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.【补偿训练】已知f(x-l)=xMx-5,则f(x)的解析式是()【解析】选A.方法一:设t 二则x=t+l,因为f(x-l)=x2+4x ・5, 所以 f(t) = (t+l)2+4(t+l)-5=t 2+6t ff (x)的解析式是f (x)=x 2+6x.方法二:因为 f (x-1)=x 2+4x- 5=(x-1)2+6 (x-1),所以 f(x)=x 2+6x. 所以f (X )的解析式是f (X )二x2+6x.A. f (x) =x 2+6xC. f (x) =x 2+2x-3 B. f (x) =x 2+8x+7 D. f (x) =x 2+6x-10类型三函数的图象及其应用【典例】作出下列函数的图象:(1)y=2x+l, x G [0, 2]・(2)y=x2-2x, x E [0, 3) •(3)y=.【解题探究】典例中可以使用什么方法来画函数图象? 提示:典例中函数的图象可通过描点法来画.1X【解析】⑴当x=0时"二1;当x=2时"二5・所画图象如图(1)所示.⑵因为0<x<3f所以这个函数的图象是抛物线y=x2-2x介于0«xv3 之间的一部分,如图(2)所示.⑶函数图象如图⑶所示・图(1)----------- i―I——>0 2 X图⑵图⑶【方法技巧】描点法作函数图象的步骤及关注点(1)步骤:①列表:取自变量的若干个值,求出相应的函数值,并列表表示;②描点:在平面直角坐标系中描出表中相应的点;③连线:用平滑的曲线将描出的点连接起来,得到函数图象・(2)关注点:①画函数图象时首先关注函数的定义域,即在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等•要分清这些关键点是实心点还是空心点.【变式训练】作出函数尸x2-2x-2, xG [0, 3]的图象并求其值域.【解析】因为y=(x-l)2-3f所以函数y二x^2x・2的对称轴为x=4顶点为(1厂3)涵数过点(0厂2)®),具图象如图所示.由图象知函数的值域为[乜1]・• -1 - •【补偿训练】画出函数图象:y=x2-2, xWZ且|x| W2・【解析】因为y=x2・2,xwZ且|x|s2,所以x二・2厂:L,0丄2;对应y的值为2・—2厂12图象如图:\y■-2 -1 0 1 2*■2r • -1 - •易错案例换元法求函数解析式【典例】已知f (x 2+2) =x 4+4x 2,则f (x)的解析式为_严识$【失误案例】 【错解分析】分析解题过程,你知道错哪里吗?)专牛十44,d'化力十? mt"提示:错误的根本原因是忽略了函数f(x)的走义域上面的解法看上去似乎是无懈可击撚而从具结论间f(x)二x?・4来看,并未注明f(x)的走义域,那么按一般理解,就应认为直走义域是全体实数.但是f(x)=x2・4 的定义域不是全体实数.【自我矫正】因为f(x2+2)=x4+4x2=(x2+2)2・4, 令t=x2+2(tn2),则f (t)=t2-4(t>2)f所以f(x)=x2・4(xn2).答案:f(x)=x2-4(x>2)【防范措施】关注换元法求函数解析式时对定义域的要求任何一个函数都由定义域、值域和对应关系f三要素组成•所以, 当函数f (g (x)) 一旦给出,则其对应关系f就已确定并且不可改变,那么f的“管辖范围”(即g(x)的值域)也就随之确定•因此,我们由f (g (x))求f (x)时,求得的f (x)的定义域就理应与f (g (x))中的f的“管辖范一致才妥. 围”课时撮井作此/点击进入Word版可编辑套题。
人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

PART 03
合作探究·攻重难
TO WORK TOGETHER TO FIND OUT WHAT'S GOING ON
高中数学精品系列课件
[合作探究· 攻重难]
函 数表 示 法的 选 择
例1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图
象法、解析法表示出来. [解] ①列表法如下:
高中数学精品系列课件
[解] (1)不能用解析法表示,用图象法表示为宜. 在同一个坐标系内画出这四个函数的图象如下:
人教版高中数学必修一精品课件
高中数学精品系列课件
(2)王伟同学的数学成绩始终高于班级平均水平, 学习情况比较稳定而且成绩优秀, 张城同学的数学成绩 不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学成绩低于班级平均水平, 但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
优点
缺点
①简明、全面地概括了变量间的关系;②可以通过解析式求出任意
解析法
不够形象、直观
一个自变量所对应的函数值
列表法 不通过计算就可以直接看出与自变量的值相对应的函数值
一般只能表示部分自变量的函数值
直观、形象地表示出函数的变化情况,有利于通过图形研究函数的 只能近似地求出自变量所对应的函数值,有时误
人教版高中数学必修一精品课件
高中数学精品系列课件
图象的画法及应用
例2作 出 下 列 函 数 的 图 象 并 求 出 其 值 域 . 2
(1)y= - x, x∈ {0,1, - 2,3}; (2)y=, x∈ [2, + ∞ ); (3)y= x2+ 2x, x∈ [- 2,2). x
[解] (1)列表
人教版高一年级数学必修课程《函数的表示法》(第一课时)优质教案

1.2.2函数的表示法(第一课时)学习目标:1.了解函数的一些基本表示法(列表法、图象法、解析法)2.会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想. 学习重点:函数的三种表示方法学习难点:对函数解析法的理解学习过程:(一)导入新课我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(二)师生互动,新课讲解(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.例1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.例 2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80 赵磊68 65 73 72 75 82 班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀; 张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.例3.将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y 表示为x 的函数,用数学的方法解决,然后再回到实际中去. 解:设矩形一边长为x,则另一边长为21(a-2x),则面积y=21(a-2x)x=-x 2+21ax. 又⎩⎨⎧>>0,2x -a 0,x 得0<x<2a ,即定义域为(0,2a).由于y=-(x 4a -)2+161a 2≤161a 2, 如图1-2-2-4所示,结合函数的图象得值域为(0,161a 2].图1-2-2-4例4.已知2f(x)+f(-x)=3x+2,则f(x)=________.分析:由题意得⎩⎨⎧+=++=+2,-3x f(x)2f(-x)2,3x f(-x)2f(x)把f(x)和f(-x)看成未知数,解方程即得. (三)课堂练习1.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是( )图1-2-2-5 图1-2-2-6答案:B2.2007宁夏银川一模,理14已知f(x x +-11)=2211x x +-,则f(x)=________.分析:可设x x +-11=t,则有x=tt+-11, 所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+.答案:212xx+ 3.已知函数f(x)=273++x x ,写出函数的定义域和值域.(换元法)注意:讨论函数的值域要先考虑函数的定义域,换元后马上写出新元的取值范围 (四)课堂小结:本节课学习了函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数. (五)作业:1.车管站在某个星期日保管的自行车和电动车共有3 500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)若设自行车停放的辆次数为x,总的保管费收入为y 元,试写出y 关于x 的函数关系式;(2)若估计前来停放的3 500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.2.水池有2个进水口,1个出水口,每个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).图1-2-2-9给出以下三个论断: ①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水;其中一定正确的论断是( )A.①B.①②C.①③D.①②③3.求值域y=x4+ x2-2(六)教学反思:。
人教版必修一1.2.2函数的表示法课件

[导入新知]
[化解疑难]
三种表示方法的优、缺点比较
优点
缺点
解 析 法
一是简明、全面地概括了变量 间的关系;二是可以通过解析 式求出任意一个自变量所对应 的函数值
不够形象、直观,而且并 不是所有的函数都可以用 解析式表示
列 表 法
不通过计算就可以直接看出与 自变量的值相对应的函数值
例:求下列函数的解析式: (1)已知f1+x x=1+x2x2+1x,求f(x); (2)已知f( x+1)=x+2 x,求f(x).
解:(1)法一:(换元法) 令t=1+x x=1x+1,得x=t-1 1,则t≠1. 把x=t-1 1代入f1+x x=1+x2x2+1x,得
f(t)=1+ 1t-112 2+
y 0 -1 0 3
8
画图象,图象是抛物线y=x2+2x在-2≤x≤2之间的部分.
由图可得函数的值域是[-1,8].
[类题通法] 1.作函数图象的三个步骤 (1)列表.先找出一些有代表性的自变量x的值,并计算出与 这些自变量相对应的函数值f(x),用表格的形式表示出来. (2)描点.把第(1)步表格中的点(x,f(x))一一在坐标平面上描 出来. (3)连线.用平滑的曲线把这些点按自变量由小到大的顺序连 接起来. [注意] 所选的点越多画出的图象越精确,同时所选的点应 该是关键处的点.
s_t函数图象与故事情节相吻合的是
()
解析:由于兔子中间睡了一觉,所以有一段路程不变,而乌龟的 路程始终在增加且比兔子早到终点,故选B. 答案:B
2.函数y=f(x)的图象如图,则f(x)的定义
域是
()
A.R
B.(-∞,1)∪(1,+∞)
高中数学函数的表示法

单位:亿元
年份
1990
1991 1992 1993
生产总值 18544.7 21665.8 26651.4 34476.7
图象法:
1.2.2 函数的表示法(第一课时)
就是用图象表示两个变量之间的对应关系。
优点:
直观形象地表示随着自变量的变化,相应函数值变 化的趋向 .
解析法:就是用数学表达式表示两个 变量之间的对应关系.
请你对这三个同学在高一学年度的数学学习情况做一个分析.
解:从表中可知每位同学在每次测试中的成绩,
但不易分析每位同学的成绩变化情况 . 若将“成绩”与“测试序号”之间的关系用函数图象
表示出来,那么将…..
若将“成绩”与“测试序号”之间的关系用函数图象表示出 来, 直观反映成绩变化:
分析上图: 王伟同学的数学成绩始终高于班平均水平, 学习情况较为稳定且成绩优秀; 张成同学数学成绩不稳定, 总在班平均水平上下波动,且波动幅度较大; 赵磊同学数学成绩低于班级平均水平, 但他的成绩呈上升趋势,表明他的成绩在稳步提高.
作业: P23 练习第1题,P24 习题1.2 A组 第3题 预习: 课本P21~22,思考下面两个问题:
1.什么是分段函数? 2.什么是映射? 2.函数和映射有什么联系?
思考题
函数的概念:
设 A,B 是非空的数集, 如果按照某个确定的
对应关系 f,使对于集合A中的任意一个数 x , 集合B中都有唯一确定的数f(x)和它对应,那么就 称 “ f :A→ B ” 为从集合A到集合B的一个函数,
记作 y=f(x), x∈A。集合A为函数的定义域,值域C B
是不函被数对
:
A应
国民生产总值
单位:亿元
高中数学必修1课件第一章 1.2.2 第1课时

课
栏 目
A.f(x)=x2-1
开 关
B.f(x)=-(x-1)2+1
C.f(x)=(x-1)2+1
D.f(x)=(x-1)2-1
练一练·当堂检测、目标达成落实处
本 课
答案
D
栏 目
解析
由二次函数的图象开口向上且关于直线 x=1 对称,可
开 关
排除 A、B;又图象过点(0,0),可排除 C.D 项符合题意.
1.2.2 函数的表示法
第 1 课时 函数的表示法
本
课 栏
【读一读学习要求,目标更明确】
目 开
1.了解函数的三种表示法的各自优点,掌握用三种不同形式
关
表示函数;
2.提高在不同情境中用不同形式表示函数的能力.
【看一看学法指导,学习更灵活】
本 课
学习函数的表示形式,不仅是为了研究函数的性质和应
栏
目 用的需要,而且是为加深对函数概念的理解,让学生感受到
解析 ∵g(x+2)=f(x),f(x)=2x+3,∴g(x+2)=2x+3.
令 t=x+2,则 x=t-2,∴g(t)=2(t-2)+3=2t-1. 即 g(x)=2x-1.
练一练·当堂检测、目标达成落实处
1.如果二次函数的图象开口向上且关于直线 x=1 对称,且
本 过点(0,0),则此二次函数的解析式可以是( )
即 2ax+a+b=2x, ∴a=1,b=-1,从而 f(x)=x2-x.
研一研·问题探究、课堂更高效
问题 2 已知函数 f(g(x))的解析式求 f(x)的解析式通常用什么
本
课 栏
方法?这种方法的具体做法是怎样的?
目 开
答 通常用换元法.即令 g(x)=t,反解出 x,然后代入 f(g(x))
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资中县龙结中学高一数学组
四、巩固提升
1. 课堂练习:
第23页第2题
2. 课堂作业: 第23页第1题. 第24页A组第9高一数学组
三、课堂小结 1.函数有哪几种表示法? 解析法、图象法、列表法. 2.描点法画函数图象的步骤是怎样的?
列表、描点、连线(光滑的线).
3.注意:①画函数的图象一定要在定义域范围内. ②画函数的图象要注意其形状和位置. 4.求函数解析式的方法: (1)函数类型已知时,用待定系数法. (2)已知f(g(x))求f(x)时,用换元法或配凑法.
第一课时 (函数的表示法)
资中县龙结中学高一数学组
一、知识回顾
在初中我们学习了函数的哪几种表示法? 每种表示法的意思是什么? 函数有三种表示法,即解析法、图象法、列表法. 解析法:用数学表达式表示两个变量之间的对应关系. 图象法:用图象表示两个变量之间的对应关系. 列表法:列出表格来表示两个变量之间的对应关系.
y = ax + bx + c(a ≠ 0)
a>0
k>0 k<0
a<0
a<0
资中县龙结中学高一数学组
二、典型例题 例1 画出下列函数的图象.
(1)y = -2x + 4 (2)y = x - 2x - 3 (4)y = 2x - 4(x > 0)
2
解: (1)
4
y
( 3 ) y = - ( x { - 3 ,- 2 ,2 } ) x 2 ( 5 ) y = - 2 x + 4 x + 6 ( x ( - 1 ,4 ] )
6
(2) x
y
(3) x
y 3 2
O 2 (4) y O 2 -4
O 1 -4 (5) y
8 -1 4
-3-2 O 2 -3
x
x
O 13 x
注意:从此例看出画函数的图象一定要在定义域范围内.
资中县龙结中学高一数学组
二、典型例题 例2 某种笔记本的单价是5元,买x(x∈{1, 2, 3, 4, 5})个笔 记本需要y元,试用函数的三种表示法表示y=f(x). 解: ①用解析法可将函数y=f(x)表示为: y=5x (x∈{1,2,3,4,5}). ②用列表法可将函数y=f(x)表示为: 笔记本数x 钱数y 1 5 2 10 y 3 15 4 20 5 25
③用图象法可将函数 25 20 y=f(x)表示为: 15 10 5 O
1 2 3 4 5 x
资中县龙结中学高一数学组
二、典型例题 你能说出函数的三种表示法的优缺点吗?
优
点
缺
点
不够形象 直观,而且并 解 不是所有的函 析 数关系式都可 以用数学式子 法 表示. 只适用于 不必通过计算就知道当自变 列表法 量取某些值时函数的对应值. 自变量数目较 少的函数. ①函数关系清楚; ②容易从自变量的值求出其 对应的函数值; ③便于研究函数的性质. 图象法 能形象直观的表示出函数 的变化情况. 不精确
初中学了描点法画函数的图象,请问描 点法画函数图象的步骤是怎样的? 描点法画函数图象的步骤有: 列表、描点、连线(光滑的线).
资中县龙结中学高一数学组
一、知识回顾 你能正确画出初中学的几个基本函数的图象吗? 一次函数 y=ax+b (a≠0)
a>0
2
二次函数
反比例函数
y = (k ≠ 0) x k
资中县龙结中学高一数学组
二、典型例题 例3 (1)已知一次函数f(x)满足:f(f(x))=4x-3,求一次函 数f(x)的解析式.
(2)已 知 f( x ) = 2x + 1, 求 f(x)的 解 析 式 . 解:(1)设f(x)=kx+b(k≠0),则
f(f(x))=f(kx+b)=k(kx+b)+b =k2x+kb+b ∴k2=4且kb+b=-3, 解得k=2、b=-1或k=-2、b=3. ∴f(x)=2x-1或f(x)=-2x+3. (2)方法1(换元法): t = x( t ≥ 0 ) , 则 x = t 2 . 设 ∴f(t)=2t2+1(t≥0). ∴f(x)=2x2+1(x≥0). 方法2(配凑法): f ( x ) = 2 x + 1 = 2 ( x )2 + 1 ∵ ∴f(x)=2x2+1(x≥0).