1.2.2 函数的表示法 第一课时 课件(人教A版必修1)
人教A版必修第一册3.1.2函数的表示法PPT课件

课本P72,习题3.1 3 , 7 P101 7
例如,当x=2时, M(2)=max{f(2),g(2)}=max{3,9}=9,请分别用图 像法和解析法表示M(x)
P73页13.函数f (x) [x]的函数值表示不超过x的最大整数, 例如,[3.5] 4,[2.1] 2.当x (2.5,3]时, 写出函数f (x)的解析式,并画出函数的图像。
2.求抽象函数的定义域的方法:
已知f(x)的定义域,求f(g(x))的定义域:
已知f(g(x))的定义域,求f(x)的定义域:
(1)定义域是指x的取值范围; (2)f(x)与f(g(x))这两个括号的范围是一致的
探索点二 求函数的值域 (金版 P49)
【例 2】 (1)函数 y= 的值域为 (-∞,2)∪(2,+∞) .
4
x, x 0
3
y x, x 0
2
1
-3 -2 -1 O 1 2 3 x
在定义域内不同部分上,有不同的 解析表达式的函数通常叫做分段函数
分段函数:对于一个函数,在定义域的不同部 分,有不同的表达式,图象由不同的几段构成.
(1)分段函数是一个函数, 不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的 并集,值域是各段值域的并集.
测 试
成绩 序 第1次
号 姓名
第2次
第3次 第4次
第5次 第6次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
2014年高中数学(入门答疑+思维启迪+状元随笔)1.2.2 函数的表示法第1课时同步课堂讲义课件 新人教A版必修1

f(f(1))________.
解析: 因为1∈[-1,1],所以f(1)=3×1=3.又 3∈(1,5),所以f(3)=32-4×3+6=3.即f(f(1))=3. 答案: 3
4. 下面 8 个对应, 其中哪些是集合 A 到 B 的映射?
解析: 答案:
紧扣映射的定义. (2)(4)(5)(6)(8)
x2, x<0 2.下列图形是函数 y= 的图象的是 x- 1, x≥0
(
)
解析: 由于f(0)=0-1=-1,所以函数图象 过点(0,-1);当x<0时,y=x2,则函数是开口 向上的抛物线在y轴左侧的部分.因此只有图形 C符合. 答案: C
3x,-1≤x≤1 3.已知函数 f(x)= 2 ,则 x -4x+6,1<x<5
解析: (1)设一次函数 f(x)= ax+b(a≠0), ∵ f(1)= 1, f(-1)=-3, a+ b= 1 a= 2 ∴ ,解得 . - a+ b=- 3 b=- 1 ∴ f(x)= 2x- 1, ∴ f(3)= 2×3-1=5. (2)由 g(x)为一次函数,设 g(x)= ax+b(a>0), ∵ f(g(x))=4x2-20x+ 25, ∴ (ax+b)2= 4x2-20x+25, 2 2 2 2 即 a x +2abx+ b =4x - 20x+25, 解得 a=2,b=-5,故 g(x)= 2x-5, (x∈R). 答案: (1)5 (2)g(x)=2x-5(x∈R)
【错因】 本题错解的原因是忽略了函数f(x)的定 义域.上面的解法,似乎是无懈可击,然而从其结 论,即f(x)=x2-4来看,并未注明f(x)的定义域, 那么按一般理解,就应认为其定义域是全体实 数.但是f(x)=x2-4的定义域不是全体实数. 事实上,任何一个函数都由定义域、值域和对应关 系f三要素组成.所以,当函数f(g(x))一旦给出,则 其对应关系f就已确定并不可改变,那么f的“管辖 范围”(即g(x)的值域)也就随之确定.因此,我们 由f(g(x))求f(x)时,求得的f(x)的定义域就理应与 f(g(x))中的f的“管辖范围”一致才妥.
人教版高中数学必修一1.2.2函数的表示法 (1)ppt课件

例5、下列映射是不是A到B的一一映射?
A
B
A
B
f
1
3
f
1
3
2
5
3
7
5 2
7
3
9
4
9
4
1
(1)
(2)
解:(1) 是
(2) 不是。由于B中元素1在集合A中没有原像
例6、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} ,f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
5 , 1 5 < x 2 0 , 2 1
图公交车票价.gsp
05
10
15
20
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
注意: (1)有时表示函数的式子可以不止一个,对于分几个 表示的函数,不是几个函数,而是一个函数,我们把它 分段函数.
(2) 函数图象既可以是连续的曲线,也可以是直线、 线、离散的点等等。
注意:解析法表示函数是中学研究函数的主要表示方法;用 法表示函数时,必须注明函数的定义域.
2.图像法:用函数图像表示两个变量之间的对应关系。
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的.
例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
(1)对于任何一个实数a,数轴上都有唯一的点P和它对
(2)对于坐标平面内任何一个点A,都有唯一的有序实数 (x,y)和它对应;
人教高中数学必修1课件:1.2.2函数的表示法第1课时函数的表示法精讲优练课型

1.2. 2函数的表示法第1课时函数的表示法【即时小测】1 •思考下列问题: ⑴所有的函数都能用列表法来表示吗?提示:并不是所有的函数都能用列表法来表示,如函数y二2x+l f xe R.因为自变量X w R不能一一列出,所以不能用列表法来表示•(2)用解析法表示函数是否一定要写出自变量的取值范围?提示:函数的走义域是函数存在的前提,写函数解析式的时候L般要写出函数的定义域.2・已知函数f(x)由下表给出:则f(f(2))= ____________【解析】由表格可知十⑵二4所以f(f⑵)=f⑴二0・答案:03・CU咨 f (x —l)"(x —l)2』=f(X)3晝聖【sm ffiXIlHbpMIXHt+l、s u w (t T t 2・0H (x T x 2・嘯4.已知函数y=f (x)的图象如图所示,则其定义域是3~~03^【解析】因为函数y二f(x)图象上所有点的横坐标的取值范围是[23],所以其定义域为[么3]・答案:[23]5.已知f (n) =2f (n+1), f (1) =2,则f (3)= 【解析】f(n) = 2f(n + l),f(l) = 2, 所以俭)= 2f(2)=4f⑶,故f⑶二( 答案:2 2【知识探究】知识点函数的三种表示方法观察如图所示内容,回答下列问题:(函数的表示方法)——(图象法)问题1 :应用三种方法表示函数时应注意什么问题?问题2:函数的三种表示方法各有什么优缺点?【总结提升】1 •对函数三种表示法的说明列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示•在应用三种方法表示函数时要注意:⑴解析法:必须注明函数的定义域(2)列表法:选取的自变量要有代表性,应能反映定义域的特征.⑶图象法:是否连线.2.函数三种表示方法优缺点比较"能形象、直观地表示壓函数的变化情况点 小、 只能近似求出自变量所对应的函数值,而 R 有时误差较大 K ____________ /【题型探究】类型一待定系数法求函数解析式【典例】1.已知f(X)是一次函数,且f (f (x)) =4x+3,则函数f(X)的解析式为_____________ ■2.已知二次函数y=f (x)的最大值为13,且f(3)=f(-l)=5,求f (x)的解析式.【解题探究】1•典例1中一次函数解析式的形式是什么? 提示:一次函数解析式的形式为f(x)二ax+b (a工0) •2.典例2中二次函数的一般形式是什么?提示:二次函数的一般形式是f(x)二ax?+bx+c (a H 0) •【s s】l ・ffi f (x T ax +b (a H O )・ m=f (fH +b T爾糊f s H 2X +一烘f (X)H —w x —w2•方法一:利用二次函数的一般式求解.设f(x)=ax2+bx+c(a^0).由条件知,点⑶5),(也5),("3)在f(x)的图象上9a+3b+c = 5, fa = -2所以a — b+c = 5,所以f的斤邂时x+lg = ii方法二:利用二次函数的顶点式求解.由f(3)=f(・l),可知:对称轴为x“,又最大值为D故可设f(x)二a(x・l)2+13.将f⑶=5代入得a=2・所以f(x) = -2(x-l)2+13jpf(x) = -2x2+4x+ll.【方法技巧】待定系数法求函数解析式(1)适用范围:已知所要求的解析式f(x)的类型,如是一次函数、二次函数等等,即可设出f(x)的解析式,然后根据已知条件确定其系数.(2)待定系数法求函数解析式的步骤:①设出所求函数含有待定系数的解析式;③解方程或方程组,得到待定系数的值;④将所求待定系数的值代回所设解析式.【变式训练】已知二次函数f (X )的图象过点A(0, -5), B (5, 0),其对称 轴为x=2,求其解析式.【解析】因为抛物线的对称轴为x=2, 所以设二次函数的解析式为f(x)=a(x-2)2+k(a^O).把(0,-5),(5,0)分别代入上式得丽劇嗨斛*9・ 龈敲MX 』",类型二换元法(或配凑法)、方程组法求函数解析式【典例】求满足下列条件的函数f(x)的解析式.(1)函数f(X)满足f ( +l)=x+2 .(2)函数f (x)满足2f 占)+f (x) =x《HO).1X【解题探究】1.典例⑴中的5 +1)中的低+1与x+2低能否建立联系?提示:典例⑴中的X+2 =( +1)2-1.2 •典例(2)中x和有越关爲1提示:互为倒数关黍・(1£)「益(3欝“人1:埠只Ig lx V ^.J (T :+r (T +)J M £ V0+x只因:(+s2e H +s g(一丄jpex) J XH (X )J E5£ rH」u z +z(I £H e 4M £"(IeHxliio 存g芥企 叟+W IK ®l 4W 运(I⑵由题意知f(x) + 2f( i=x f令X二(tHO) fx t则i=t f则f(卅2f(t)二a即班?+2f(x)・(于是得剧关于f(肯f(x)的方程自—i ■x X Xf(x) + 2f』) =xf(-) + 2f(x) = I 2 x1解得f(x)拄-°)・XXX【延伸探究】1.(变换条件)典例(1)中若将条件“f(+l)=x+2 “f(2x-l)p2+x+l”,则f(x)的解析式是什么?【解析】设2x-l=t f则X二t+1所以f(t)二亍Q nX/、t+1 ° t+1 7即f(x)二一r+一+i 二一+t+—.2 2 4 41 97一x~+x -一・4 42.(变换条件)典例(1)中若将条件“f (低+ l)=x+2低”变为“f(l+ 1 )=i+x21 ”,则f(x)的解析式是什么?【解析】平(1 + * X1+?]因為寻岂占诫溜胡析幽)+hf(x)=x24c+ 1 , XG(-OO f 1) U (1 , +8).X【方法技巧】换元法(或配凑法)、方程组法求函数解析式的思路⑴已知f (g (x)) =h (x),求f (x),常用的有两种方法:①换元法,即令t=g (x),解出禺代Ah(x)中,得到一个含t的解析式,即为函数解析式,注意:换元后新元的范围②配凑法,即从f (g(X))的解析式中配凑出即用g(x)来表示h (x),然后将解析式中的g (x)用x代替即可.(2)方程组法:当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.【补偿训练】已知f(x-l)=xMx-5,则f(x)的解析式是()【解析】选A.方法一:设t 二则x=t+l,因为f(x-l)=x2+4x ・5, 所以 f(t) = (t+l)2+4(t+l)-5=t 2+6t ff (x)的解析式是f (x)=x 2+6x.方法二:因为 f (x-1)=x 2+4x- 5=(x-1)2+6 (x-1),所以 f(x)=x 2+6x. 所以f (X )的解析式是f (X )二x2+6x.A. f (x) =x 2+6xC. f (x) =x 2+2x-3 B. f (x) =x 2+8x+7 D. f (x) =x 2+6x-10类型三函数的图象及其应用【典例】作出下列函数的图象:(1)y=2x+l, x G [0, 2]・(2)y=x2-2x, x E [0, 3) •(3)y=.【解题探究】典例中可以使用什么方法来画函数图象? 提示:典例中函数的图象可通过描点法来画.1X【解析】⑴当x=0时"二1;当x=2时"二5・所画图象如图(1)所示.⑵因为0<x<3f所以这个函数的图象是抛物线y=x2-2x介于0«xv3 之间的一部分,如图(2)所示.⑶函数图象如图⑶所示・图(1)----------- i―I——>0 2 X图⑵图⑶【方法技巧】描点法作函数图象的步骤及关注点(1)步骤:①列表:取自变量的若干个值,求出相应的函数值,并列表表示;②描点:在平面直角坐标系中描出表中相应的点;③连线:用平滑的曲线将描出的点连接起来,得到函数图象・(2)关注点:①画函数图象时首先关注函数的定义域,即在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等•要分清这些关键点是实心点还是空心点.【变式训练】作出函数尸x2-2x-2, xG [0, 3]的图象并求其值域.【解析】因为y=(x-l)2-3f所以函数y二x^2x・2的对称轴为x=4顶点为(1厂3)涵数过点(0厂2)®),具图象如图所示.由图象知函数的值域为[乜1]・• -1 - •【补偿训练】画出函数图象:y=x2-2, xWZ且|x| W2・【解析】因为y=x2・2,xwZ且|x|s2,所以x二・2厂:L,0丄2;对应y的值为2・—2厂12图象如图:\y■-2 -1 0 1 2*■2r • -1 - •易错案例换元法求函数解析式【典例】已知f (x 2+2) =x 4+4x 2,则f (x)的解析式为_严识$【失误案例】 【错解分析】分析解题过程,你知道错哪里吗?)专牛十44,d'化力十? mt"提示:错误的根本原因是忽略了函数f(x)的走义域上面的解法看上去似乎是无懈可击撚而从具结论间f(x)二x?・4来看,并未注明f(x)的走义域,那么按一般理解,就应认为直走义域是全体实数.但是f(x)=x2・4 的定义域不是全体实数.【自我矫正】因为f(x2+2)=x4+4x2=(x2+2)2・4, 令t=x2+2(tn2),则f (t)=t2-4(t>2)f所以f(x)=x2・4(xn2).答案:f(x)=x2-4(x>2)【防范措施】关注换元法求函数解析式时对定义域的要求任何一个函数都由定义域、值域和对应关系f三要素组成•所以, 当函数f (g (x)) 一旦给出,则其对应关系f就已确定并且不可改变,那么f的“管辖范围”(即g(x)的值域)也就随之确定•因此,我们由f (g (x))求f (x)时,求得的f (x)的定义域就理应与f (g (x))中的f的“管辖范一致才妥. 围”课时撮井作此/点击进入Word版可编辑套题。
人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

PART 03
合作探究·攻重难
TO WORK TOGETHER TO FIND OUT WHAT'S GOING ON
高中数学精品系列课件
[合作探究· 攻重难]
函 数表 示 法的 选 择
例1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图
象法、解析法表示出来. [解] ①列表法如下:
高中数学精品系列课件
[解] (1)不能用解析法表示,用图象法表示为宜. 在同一个坐标系内画出这四个函数的图象如下:
人教版高中数学必修一精品课件
高中数学精品系列课件
(2)王伟同学的数学成绩始终高于班级平均水平, 学习情况比较稳定而且成绩优秀, 张城同学的数学成绩 不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学成绩低于班级平均水平, 但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
优点
缺点
①简明、全面地概括了变量间的关系;②可以通过解析式求出任意
解析法
不够形象、直观
一个自变量所对应的函数值
列表法 不通过计算就可以直接看出与自变量的值相对应的函数值
一般只能表示部分自变量的函数值
直观、形象地表示出函数的变化情况,有利于通过图形研究函数的 只能近似地求出自变量所对应的函数值,有时误
人教版高中数学必修一精品课件
高中数学精品系列课件
图象的画法及应用
例2作 出 下 列 函 数 的 图 象 并 求 出 其 值 域 . 2
(1)y= - x, x∈ {0,1, - 2,3}; (2)y=, x∈ [2, + ∞ ); (3)y= x2+ 2x, x∈ [- 2,2). x
[解] (1)列表
人教版必修一1.2.2函数的表示法课件

[导入新知]
[化解疑难]
三种表示方法的优、缺点比较
优点
缺点
解 析 法
一是简明、全面地概括了变量 间的关系;二是可以通过解析 式求出任意一个自变量所对应 的函数值
不够形象、直观,而且并 不是所有的函数都可以用 解析式表示
列 表 法
不通过计算就可以直接看出与 自变量的值相对应的函数值
例:求下列函数的解析式: (1)已知f1+x x=1+x2x2+1x,求f(x); (2)已知f( x+1)=x+2 x,求f(x).
解:(1)法一:(换元法) 令t=1+x x=1x+1,得x=t-1 1,则t≠1. 把x=t-1 1代入f1+x x=1+x2x2+1x,得
f(t)=1+ 1t-112 2+
y 0 -1 0 3
8
画图象,图象是抛物线y=x2+2x在-2≤x≤2之间的部分.
由图可得函数的值域是[-1,8].
[类题通法] 1.作函数图象的三个步骤 (1)列表.先找出一些有代表性的自变量x的值,并计算出与 这些自变量相对应的函数值f(x),用表格的形式表示出来. (2)描点.把第(1)步表格中的点(x,f(x))一一在坐标平面上描 出来. (3)连线.用平滑的曲线把这些点按自变量由小到大的顺序连 接起来. [注意] 所选的点越多画出的图象越精确,同时所选的点应 该是关键处的点.
s_t函数图象与故事情节相吻合的是
()
解析:由于兔子中间睡了一觉,所以有一段路程不变,而乌龟的 路程始终在增加且比兔子早到终点,故选B. 答案:B
2.函数y=f(x)的图象如图,则f(x)的定义
域是
()
A.R
B.(-∞,1)∪(1,+∞)
数学必修Ⅰ人教新课标A版1-2-2-1函数的表示法课件(36张)

数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
1.已知函数 f(2x+1)=6x+5,则 f(x)的解析式是( )
A.3x+2
B.3x+1
C.3x-1
D.3x+4
数学 必修1
第一章 集合与函数概念
学案·新知自解
解析: 法一:令 2x+1=t,则 x=t-2 1. ∴f(t)=6×t-2 1+5=3t+2, ∴f(x)=3x+2. 法二:∵f(2x+1)=3(2x+1)+2, ∴f(x)=3x+2. 答案: A
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
1.2.2 函数的表示法
第 1 课时 函数的表示法
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
学案·新知自解
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
1.掌握函数的三种表示方法——解析法、图象法、列表法.(重点) 2.会求函数解析式,并正确画出函数的图象.(难点、易错点)
函数,都必须满足函数的概念.
(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数
的定义.
(3)函数的三种表示方法互相兼容或补充,许多函数是可以用三种方法表
示的,但在实际操作中,仍以解析法为主.
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
1.下表表示函数 y=f(x).
x2-3x+2,于是 f(-1)=(-1)2-3×(-1)+2=6.
高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

3 两个函数相同:当且仅当三要素相同。
例1 y= x 3 + 2 x 是函数吗?
——函数的定义域和值域均为非空的数集
例2 y=± x 是函数吗?
——对于函数定义域中每一个x,值域中都有 唯一确定的y和它对应。(不是函数)
练习:下列图形哪个可以表示函数的图象?
y
0x
A
y
0x
B
y
0x
C
四、如何求函数的定义域
想 f(1)表示什么意思? 一 想 f(1)与f(x)有什么区别?
一般地,f(a)表示当x=a时的函数值,是一个常量。 f(x)表示自变量x的函数,一般情况下是变量。 14
例:已知函数f(x)=3x2-5x+2.求f(0),f(a)和 f(a+1)
想一想 f[f(0)]等于多少?
练习:f(x)=|x+1|,则f(-1) +f(1)等于多少?
六、小结
1 函数的概念
2 定义域的求法 3 对函数符号y=f(x)的理解
七、布置作业
一、复习回顾
初中时学过函数的概念,它是怎样叙述的? 设在一个变化过程中,有两个变量x和y,
如果对于x的每一个值,y都有唯一的值与 它对应.那么就说y是x的函数. 其中x叫做 自变量,y是函数值。
想一想
y=1(x∈R)是函数吗?
Go to 13
研究函数y 1 x
为了研究的方便,取几组特殊的x值和对应的y值
当x=1时,y=1
当x=2时,y
1 2
当xБайду номын сангаас3时,y 1
3
A
B
y1
x
1
1
1
2
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图象法
课前自主学习
课堂讲练互动
课后智能提升
典例剖析
题型一 函数的表示法
【例 1】 已知完成某项任务的时间 t 与参加完成 b 此项任务的人数 x 之间适合关系式 t=ax+ ,当 x= x 2 时,t=100;当 x=14 时,t=28,且参加此项任务 的人数不能超过 20 人.
课前自主学习
课堂讲练互动
1 1 解析:令 =t,则 x= ,且 t≠0, x t 1 t ∴f(t)= = (t+1≠0), 1 t+1 1+ t x ∴f(x)= (x≠0 且 x≠-1). x+1
x 答案: (x≠0 且 x≠-1) x+1
课前自主学习
课堂讲练互动
课后智能提升
4.如图,函数 f(x)的图象是曲 线 OAB,其中点 O,A,B 的坐标 1 分别为(0,0),(1,2),(3,1),则 f f3 的值等于________.
课前自主学习
课堂讲练互动
课后智能提升
正解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 令t=x2+2(t≥2),则f(t)=t2-4(t≥2), ∴f(x)=x2-4(x≥2). 纠错心得:采用换元法求函数的解析式时,一 定要注意换元后的自变量的取值范围.如本题中令t =x2+2后,则t≥2.
(2)解法一:(换元法)令 x+1=t(t≥1), 则 x=(t-1)2,∴f(t)=(t-1)2+2 t-12 =t2 -1, ∴f(x)=x2-1(x≥1).
课前自主学习
课堂讲练互动
课后智能提升
解法二:(配凑法)
x+2 x=( x+1)2-1( x+1≥1). ∴f( x+1)=( x+1)2-1( x+1≥1), 即 f(x)=x2-1(x≥1).
)
课前自主学习
课堂讲练互动
课后智能提升
解析:结合函数的定义知,对A、B、D,定义 域中每一个x都有唯一函数值与之对应,而对C,对 大于0的x而言,有两个不同值与之对应,不符合函 数定义,故选C. 答案:C
课前自主学习
课堂讲练互动
课后智能提升
3.若 f
1 1 = ,则 x 1+x
f(x)=________.
课前自主学习
课堂讲练互动
课后智能提升
题型三 求函数解析式 【例3】 求下列函数的解析式: (1)已知f(x)为一次函数,且f[f(x)]=4x-1,求 f(x);
(2)已知 f( x+1)=x+2 x,求 f(x).
解:(1)(待定系数法)因为f(x)是一次函数. 设f(x)=kx+b(k≠0).
1.国内跨省市之间邮寄信函,每封信函的质量和对应邮资如下表:
课前自主学习
课堂讲练互动
课后智能提升
3.已知f(x)是二次函数,且满足f(0)=1,f(x+1) -f(x)=2x,求f(x)的解析式. 解:设所求的二次函数为f(x)=ax2+bx+ c(a≠0). ∵f(0)=1,∴c=1,则f(x)=ax2+bx+1. 又∵f(x+1)-f(x)=2x,对任意x∈R成立, ∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
课前自主学习
课堂讲练互动
课后智能提升
课堂总结
1.函数的三种表示方法:解析法、列表法、图 象法. 2.画函数图象的方法:(1)列表、描点、连 线;(2)图象变换. 3.求函数解析式的方法有:换元法、配凑法、 待定系数法等.
不够形象、直观、 具体,而且并不是 所有的函数都能用 解析式表示出来
课前自主学习
课堂讲练互动
课后智能提升
优
点
缺
点
不需要计算就可以 直接看出与自变量 列表法 的值相对应的函数 值 能形象直观地表示 出函数的变化情况
它只能表示自变量 取较少的有限值的 对应关系 只能近似地求出自 变量的值所对应的 函数值,而且有时 误差较大
课堂讲练互动
课后智能提升
196 所以 t=x+ ,又因为 x≤20,x 为正整数, x
所以函数的定义域是{x|0<x≤20,x∈N*}. (2)x=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 17,18,19,20,共取20个值,列表如下:
x
t 11
1
2
3
4
5
44.2 16
由解析式可得到分段函数的简图,从而得到表 示函数M=f(m)的另一种方法,即图象法.
课前自主学习
课堂讲练互动
课后智能提升
题型二 作函数的图象 【例2】 作出下列函数图象: (1)y=1-x(x∈Z且|x|≤2); (2)y=2x2-4x-3(0≤x<3). 解:(1)因为x∈Z且|x|≤2, ∴x∈{-2,-1,0,1,2}. 所以图象为一直线上的孤立点(如图(1)).
课前自主学习
课堂讲练互动
课后智能提升
则 f[f(x)]=f(kx+b)=k(kx+b)+b=k2x+kb+b= k=2 k2=4 k=-2 4x-1,∴ ,∴ , 1 或 kb+b=-1 b=1 b=-3 1 ∴f(x)=2x- 或 f(x)=-2x+1. 3
课前自主学习
课堂讲练互动
课后智能提升
点评:在实际研究一个函数时,通常是将上述 三种表示法结合起来使用,即解析式→列表→描 点,画出图象,然后再总结出函数的性质.三种方 法相互兼容和补充,各有优缺点,在实际操作中, 仍以解析法为主.
1.国内跨省市之间邮寄信函,每封信函的质量和对应邮资如下表:
课前自主学习
1.2.2
函数的表示法(一)
课前自主学习
课堂讲练互动
课后智能提升
1.掌握函数的三种表示方法:列表法、图象 法、解析法,体会三种表示方法的特点. 2.掌握函数图象的画法及解析式的求法.
课前自主学习
课堂讲练互动
课后智能提升
课前自主学习
课堂讲练互动
课后智能提升
自学导引
表示函数的方法常用的有: (1)解析法——用数学表达式 表示两个变量之间
课前自主学习
课堂讲练互动
课后智能提升
预习测评
1.已知函数f(x)由下表给出,则f(3)的值为( x f(x) 1 -3 2 -2 3 -4 4 -1 )
A.-1 B.-2 C.-3 D.-4 解析:由表可知f(3)=-4,故选D. 答案:D
课前自主学习
课堂讲练互动
课后智能提升
2.下列各图中,不能是函数f(x)图象的是(
课堂讲练互动
课后智能提升
1.国内跨省市之间邮寄信函,每封信函的质量 和对应邮资如下表:
信函质量 (m/g) 邮资 M/元 0<m≤2 20<m≤ 40<m≤ 60<m≤ 80<m≤ 0 40 60 80 100 1.2 2.4 3.6 4.8 6.0
试用另外两种表示方法表示函数M=f(m).
课前自主学习
1.国内跨省市之间邮寄信函,每封信函的质量和对应邮资如下表:
课前自主学习
课堂讲练互动
课后智能提升
2.作出下列函数的图象: 1 (1)y= ,x>1; x (2)y=x2-4x+3,x∈[1,3].
解:(1)当x=1时,y=1,所画函数图象如图1
课前自主学习
课堂讲练互动
课后智能提升
(2)y=x2-4x+3=(x-2)2-1, 且x=1,3时,y=0;当x=2时,y=-1.所画函 数图象如图2.
课堂讲练互动
课后智能提升
解:已知给出的是用列表法表示的函数M= f(m),该函数是分段函数.
1.2 0<m≤20 2.4 20<m≤40 M= 3.6 40<m≤60 4.8 60<m≤80 6.0 80<m≤100
课前自主学习
课堂讲练互动
课后智能提升
课前自主学习
课堂讲练互动
课后智能提升
即 2ax + a + b = 2x , 由 恒 等 式 性 质 , 得 2a=2 a=1 ,∴ . a+b=0 b=-1 ∴所求二次函数为 f(x)=x2-x+1.
课前自主学习
课堂讲练互动
课后智能提升
误区解密 因忽略函数的定义域而出错
的对应关系; (2)图象法——用 图象 表示两个变量之间的对 应关系; (3)列表法——列出 表格 来表示两个变量之间 的对应关系.
课前自主学习
课堂讲练互动
课后智能提升
自主探究
任何一个函数都可以用解析法表示吗? 答:不一定.如某一地区绿化面积与年份关系 等受偶然因素影响较大的函数关系等无法用解析式 表示.
6
38.7 17
7
35 18 28.9
8
32.5 19 29.3
9
30.8 20 29.8
10
29.6
197 100 68.3 53 12 13 14 15
28.8 28.3 28.1 28 28.1 28.25 28.5
课前自主学习
课堂讲练互动
课后智能提升
注:表中的部分数据是近似值. (3)函数t的图象是由20个点组成的一个点列.如 图所示.
课前自主学习
课堂讲练互动
课后智能提升
(2)∵y=2(x-1)2-5,∴当x=0时,y=-3; 当x=3时,y=3;当x=1时,y=-5. 所画函数图象如图(2).