函数的表示法ppt(中职数学基础模块上册)PPT优选课件
合集下载
【实用资料】中职数学基础模块上册函数的表示法PPT

解:这个函数的定义域是数集{1,2,3,4,5} .
列表法表示: x 笔记本数 由空调公共汽车票价制定的规定,可得到以下函数解析式:
-3 -2 -1 O
1
23
45
不是所有的函数都能用解析法表示的.比如前面提到的股市走势图就不能用一个具体的解析式来表示出.
钱数 y 5 10 (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
例如:S = 60 t 2 ,A = r 2, y x2(x2),
S = 2 r l, y = ax2 + bx + c ( a 0 ),
函数的表示法
思考二:比较三种表示法,它们各自的特点是什
么?并试着再举出一些用这三种方法分别表示函数的 实例.
图象法:就是用函数图象表示两个变量之间的关 系.
优点:能直观形象地表示自变量的变化,相应的函 数值变化的趋势,有利于我们通过图象来研究函数的 某些性质.图象法在生产和生活中有许多应用,如企 业生产图,股市走势图.
中职数学基础模块上册函数的表示法
(优选)中职数学基础模块上 册函数的表示法ppt讲解
函数的表示法
问题:
在初中我们已经接触过函数的三种表示法:解析 法、图像法和列表法.你能分别说说这三种表示方 法吗?
就是用数学表达式表示两个变量之间 的对应关系,如前面的实例(1).
实例1:
一枚炮弹发射后,经过26s落到地面击中目标, 炮弹的射高为845m,且炮弹距地面的高度h(单 位:m)随时间t(单位:s)变化的规律是:
(1)分段函数是一个函数,不要把它误认为是几个函数; 王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定并且成绩优秀. 例4.某市空调公共汽车的票价按下列规则制定: 图象法:就是用函数图象表示两个变量之间的关系. 1 234 5 就是列出表格来表示两个变量之间的对应关系,如前面的实例(3). 思考三:所有的函数都能用解析法表示吗?试举出一些实例来说明. 例2 下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表. 下面是我国“八五”计划以来的恩格尔系数表. 解:由绝对值的概念,我们有: 图象法:就是用函数图象表示两个变量之间的关系. 图象法:就是用函数图象表示两个变量之间的关系. 曲线显示南极上空臭氧层空洞的面积从1979~2001年的变化情况.
高教版中职数学(基础模块)上册3.1《函数的概念及表示法》ppt课件3

值域为 {- 2,1, 4,7,13}.
• 例5、已知函数f(x)=2x2+3x+1,求f(1),
• f(f(-2)),f(2t)
• 分析:将1,-2,t依次代入函数的解析式中.
• 解:f(1)=2×12+3×1+1=6.
•
f(f(-2))=f(2×(-2)2+3×(-2) +1)=f(3)
•
=2×32+3×3+1=28.
2019/7/31
最新中小学教学课件
21
thank
you!
2019/7/31
最新中小学教学课件
22
A. f x x, g(x)
2
x
C. f (x) x2 , f x (x 1)2
B. f x x, g(x) x2 D. f x x , g(x) x2
解决先前的两个问题:
(1) y 1是函数吗? (2)y x与y x 2 是同一个函数吗?
§3.1.1函数的概念
初中我们学过哪些函数?
正比例函数:y kx(k 0)
反比例函数:y k (k 0) x
一次函数:y kx b(k 0)
二次函数:y ax2 bx c(a 0)
初中函数定义:
设在一个变化过程中有两个变量x和y, 如果对于x的每一个值,y都有唯一的值与 它对应,那么就说y是x的函数.其中x叫自 变量,y叫因变量.
1y
y
-1
0 1x
-1
(A)
y
-1 1
0
x
(C)
0
x
(B)
y
1
-1
01 x
(D)
考题试做
高教版(2021)中职数学基础模块上册第3单元《函数的表示》课件

-x,x<0,
x,x≥0.
画出图像如图:
像这样的函数,叫做分段函数.分段函数一般在实际问题中出现的比较多,例如出租车
的计费,个人所得税的计算等等.
在自变量的不同取值区
间,有不同对应关系的函数
叫做分段函数.
分段函数
(1)分段函数是一个函数,而不是几个函数,处理分段函数的问题时,首先
要明确自变量的取值在哪个区间,从而选取相应的对应关系.
3.2函数的表示方法
回顾
函数的三要数:
定义域 对应关系
值域
对应关系称为函数的表示法
1、某位同学的年龄与身高
把年龄看作为自变量x,身高为y
x
1岁
6岁
12岁
18岁
y
0.72m
1.2m
1.5m
1.7m
像这样用表格来表示函数的方法叫作列表法
问题:如果变量过多还适合用表格吗?
2、下图是北京市2016年11月23日的空气质量指数 (AIR Quality
【3】解析法,就是用数学表达式表示两个变量之间的对应关系,如y=2x+3
函数的三种表
示法各自的特
点是什么?
用列表法,不用
计算,看表就知
道函数值
用解析法,
便于研究函
数性质
用图像法,容易
表示出函数的变
化情况
函数的表示法
【例题】某种钢笔的单价是10元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用
(2)分段函数在书写的时候左边用大括号把几个对应关系括在一起,在每段
对应关系表达式的后面用小括号写上相应的取值范围.
(3)分段函数的定义域是所有自变量取值区间的并集,只能写成一个集合
中职教育-数学(基础模块)上册课件:第3章 函数.ppt

解 设购买的茶杯数为x(个),应付款为y(元),则函 数的定义域为{1,2,3,4,5}.
(1)依题意知,函数的解析式为y=3.5x,故用解析法可 将函数表示为
y=3.5x,x∈ {1,2,3,4,5}.
(2)根据售价,分别计算出购买 个茶杯时的应付款,列 成表格,即用列表法可将函数表示为表3-2.
第3章 函数
3.1 • 函数的概念 3.2 • 函数的表示方法 3.3 • 函数的基本性质 3.4 • 函数的实际应用举例
内容简介:函数是研究客观世界变化规律和集合之间 关系的一个最基本的数学工具。本章介绍了函数的概念,函 数的三种表示方法及其基本性质,并通过实际的例子介绍了 函数的实际应用。
学习目标:理解函数的概念,理解函数的三种表示方 法,理解函数的单调性和奇偶性,了解函数的实际应用。
中去计算.
像上述这种,在自变量的不同取值范围内,需要用不同 的解析式来表示的函数称为分段函数.
分段函数的定义域是自变量的各个取值范围的并集,图 像也是由连续(或不连续)的两段或多段组成的.
计算器辅助求值
在用描点法作函数图像时,需要 列表求值,对于一些不容易计算的函 数值,可以借助于计算器.下面以 CASIO fx-82ES PLUS型函数计算器 (图3-4)为例,介绍如何计算 7 的 值.
我们用几何画板绘制分段函数
x 6, 6 x 0
f
(x)
x
2
9,0
x
3
的图像,具体操作步骤如下:
(1)打开几何画板,选择“绘图”>“绘制新函数”菜 单,在弹出的“新建函数”对话框中输入分段函数的解析式 “x+6”,然后单击“确定”按钮,得到函数 y= x+6在整个 定义域上的图像.
中职数学基础模块上册《函数的表示法》ppt课件3

• 作函数图象时应注意以下几点:
• (1)在定义域内作图;
• (2)图象是实线或实点,定义域外的部分有时 可用虚线来衬托整个图象;
• (3)要标出某些关键点,例如图象的顶点、端 点、与坐标轴的交点等.要分清这些关键点 是实心点还是空心点.
• 4 作出下列函数的图象: • (1)y=1+x(x∈Z); • (2)y=x2-2x(x∈[0,3)). • 解:(1)这个函数的图象由一些点组成,这些
• 2.在平面直角坐标系内,如果某图形满足: 垂直于x轴的直线与其至多有一个交点,那么
• 3.描点法画函数图象的步骤:
• (1)求函数定义域;(2)化简解析式;(3)列表; (4)描点;(5)连线.
• 4.求函数解析式常用的方法有:(1)待定系 数 法 ; (2) 换 元 法 ; (3) 配 凑 法 ; (4) 消 元 法 等.
(2)把已知条件代入解析式,列出含待定系数的方程或方程组.
(3)解方程或方程组,得到待定系数的值.
(4)将所求待定系数的值代回原式.
• 2 (1)已知一次函数f(x)满足f[f(x)]=4x+6, 则f(x)=________.
解析:设 f(x)=ax+b(a≠0),则 f[f(x)]=f(ax+b)=a(ax+b)+b= a2x+ab+b=4x+6,于是有aab2=+4b=6 ,解得ab= =22 或ab==- -26 , 所以 f(x)=2x+2 或 f(x)=-2x-6.
• 1.2.2 函数的表示法
• 第1课时 函数的表示法
• 目标要求
• 1.掌握函数的三种表示方法——解析法、图 象法、列表法.
• 2.在实际情境中,会根据不同的需要选择恰 当方法表示函数.
• 热点提示 • 1.准确画出函数图象是学习函数的必备基本
高教版中职数学基础模块上册3.1函数的概念及表示法ppt课件2.ppt

例题解析
例3 已知函数 f x 2x 3 。
① 把f(x)写成分段函数的形式。
② 求f(-2),f(5)的值。
解:
① 函数的定义域为 ,,函数f(x)写出分 段函数的形式为
f
x
2
x
3
2x 3
x 3 2
x 3 2
②
因为 2< 3
2
所以f(-2)=(-2)× (-2)+3=7
因为 5 3
2
所以f(5)=2× 5-3=7
x 1 0 2 x 0
得 1 x 2
所以这个函数的定义域为 1,2
课堂练习题
◆ 知识巩固1 P62 1、写出反比例函数和一次函数的一般形式,
并确定它们的定义域和值域。 2、用一段长为40米的篱笆围一块矩形绿地,
矩形一边长为x米,面积为y平方米,请写 出y关于x的函数关系式,并求它的定义域。 3、求下列函数的定义域: ① y 3x 1 ② y x 1
世界中变量之间的关系,理解函数是变量 之间关系的数学模型。 ◆ 学会用恰当的方法(解析法、列表法、图 像法)表示函数,会解读用列表法与图像 法表示的函数关系的实际含义。 ◆ 会求一些简单函数的定义域。
◆ 理解函数值的概念,并学会用观察与分析 的方法得到一些简单函数的值域。
◆ 会用描点法画简单函数的图像。
第三章 函数
◆ 假设某种细胞的裂变过程是:第一次由1个 分裂成2个,第二次由2个分裂成4个,…, 如此不断分裂下去,第x次分裂后产生y个 细胞。这里,变量y和x之间存在怎样的关 系?当学习了本章的函数知识后,我们将 找到答案。初中阶段,我们已学过正比例 函数、反比例函数、一次函数和二次函数, 本章里我们将学习另外三种函数。在此之 前,我们需要运用集合的知识来进一步理 解函数的概念。
《函数的表示法》中职数学基础模块上册3.2ppt课件2【语文版】

§3、2函数的表示法 (一)
新课
教学目标:
1、使学生掌握函数的两种表示方法:列表发和 解析法,让学生从不同方式表达函数关系时获 得函数的基本特征;
2、让学生掌握函数的不同表示方法,并能够根 据问题的特点和要求选择恰当的表示方法表达 函数关系,发展学生应用数学解决问题的能力;
3、培养学生借助计算机软件构建数学图表及获 取基本信息的能力。
探究(解析法):
生物学研究表明,某种蛇的长度y (cm)是其尾 长x (cm)的一次函数。当蛇的尾长是6cm时, 测得蛇长45.5cm;当蛇的尾长是14cm时,测 得蛇长105.5cm.
(1)写出y与x之间的函数关系;
(2)若一条该种蛇的尾长是10cm,它的长度是 多少?
新知:
解析法:一般地,用解析式的形式表示两个变 量之间的关系的方法,称为~.
由此可见,高的变化与底面半径的变化对圆柱体积的影响不同。
问题解决:
几名学生准备去某景点旅游。甲旅行社的报价为:只要1人购买 全票,其他人均可购买半票;乙旅行社的报价为:2人以上参加 旅游,所有人均享受原价的7折优惠。请问:哪家旅行社的报价 更优惠?
练习:
1、以下是南京地区2010年12月17日至31日的最高气温记 录表.
例2、求解下列问题:
(1)一个三角形的底边一定,它的面积可以 看作是什么变量的函数?如果它的某条边上的 高一定呢?分别分析当自变量的值增加1个单 位时,因变量如何随着自变量的变化而变化。
(2)一个圆柱形物体的底面半径一定,它的 体积可以看作是什么变量的函数?如果它的高 一定呢?分别分析当自变量的值增加1个单位 时,因变量如何随着自变量的变化而变化。
课后作业:
指导用书
编者语
• 要如何做到上课认真听讲?
新课
教学目标:
1、使学生掌握函数的两种表示方法:列表发和 解析法,让学生从不同方式表达函数关系时获 得函数的基本特征;
2、让学生掌握函数的不同表示方法,并能够根 据问题的特点和要求选择恰当的表示方法表达 函数关系,发展学生应用数学解决问题的能力;
3、培养学生借助计算机软件构建数学图表及获 取基本信息的能力。
探究(解析法):
生物学研究表明,某种蛇的长度y (cm)是其尾 长x (cm)的一次函数。当蛇的尾长是6cm时, 测得蛇长45.5cm;当蛇的尾长是14cm时,测 得蛇长105.5cm.
(1)写出y与x之间的函数关系;
(2)若一条该种蛇的尾长是10cm,它的长度是 多少?
新知:
解析法:一般地,用解析式的形式表示两个变 量之间的关系的方法,称为~.
由此可见,高的变化与底面半径的变化对圆柱体积的影响不同。
问题解决:
几名学生准备去某景点旅游。甲旅行社的报价为:只要1人购买 全票,其他人均可购买半票;乙旅行社的报价为:2人以上参加 旅游,所有人均享受原价的7折优惠。请问:哪家旅行社的报价 更优惠?
练习:
1、以下是南京地区2010年12月17日至31日的最高气温记 录表.
例2、求解下列问题:
(1)一个三角形的底边一定,它的面积可以 看作是什么变量的函数?如果它的某条边上的 高一定呢?分别分析当自变量的值增加1个单 位时,因变量如何随着自变量的变化而变化。
(2)一个圆柱形物体的底面半径一定,它的 体积可以看作是什么变量的函数?如果它的高 一定呢?分别分析当自变量的值增加1个单位 时,因变量如何随着自变量的变化而变化。
课后作业:
指导用书
编者语
• 要如何做到上课认真听讲?
中职数学基础模块上册《函数的表示法》ppt课件

三、求解函数解析式的方法:代入法、配凑法、换元法。
2.1.2 指数函数及其性质
1、优化学案课后作业本P87
八、作业
谢谢!
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐 述观点。
二、新知全解
h(t)=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞
(图象法)
(3)恩格尔系数
(列表法)
1.2.2 函数的表示法
三、3种表示方法的特点
解析法的特点:简明、全面地概括了变量间 的关系;可以通过用解析式求出任意一个自 变量所对应的函数值。
但不够形象、直观、具体,而且并不是 所有的函数都能用解析式表示出来 列表法的特点:不通过计算就可以直接看出与自变量的 值相对应的函数值。 但它只能表示自变量取较少的有限值的对应关系
做题步骤:整体代入→化简
1.2.2 函数的表示法
五、如何根据已知条件求函数的解析式
一、换元法和配凑法求解析式 类型二:已知f[g(x)] 的表达式,求f(x)的表达式
例2 已知f(x+1) =3x+5,求f(x)的解析式
练习: 1 、 已f知 (+ x 1= )x2 + 2, x 求 f(. x)
2、f若 (x1)x2x1,f求 (x1)的解析式
做题步骤:换元或配凑代入→化简
2.1.2 指数函数及其性质
七、小结
一、函数的三种表示法:
解析式法,图像法,列表法
二、各表示法的注意事项:
解析法:必须明确函数的定义域
图象法: 函数图像既可以是连续 的曲线, 也可以是直 线、折 线、离散的点 等等; 是否连线的 问题; 注意判断一个图形是否 是函数图象的依据;
1.2.2 函数的表示法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、求解函数解析式的方法:代入法、配凑法、换元法 。
2020/10/18
11
2.1.2 指数函数及其性质 八、作业
1、优化学案课后作业本P87
2020/10/18
12
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
2020/10/18而且有时误差较大
6
四1.、2.2典型函数的表示法 例题 例3.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})
个笔记本需要y元.试用三种表示法表示函数y=f(x) .
解:这个函数的定义域是数集{1,2,3,4,5}.
用解析式法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}
新课标人教版课件系列 《高中数学》 必修一
1.2.2
函数的表示法
2020/10/18
1
一1、.2温.2故函而数的表示法 知新
1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f, 使对于集合A中的任意一个数x,在集合B中都有唯一确定 的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).
4
1.2.2 函数的表示法 (二1)、炮新弹发知射 (解析法)
全h(t解)=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞 (图象法)
(3)恩格尔系数 (列表法)
2020/10/18
5
三、31种.2表.2 示函方数法的的表示法 特点
解析法的特点:简明、全面地概括了变量间 的关系;可以通过用解析式求出任意一个自 变量所对应的函数值。
做题步骤:整体代入→化简
2020/10/18
9
五、1如.2何.2根函据数已的知表条示件法求函数 的解析式
一、换元法和配凑法求解析式
类型二:已知f[g(x)] 的表达式,求f(x)的表达式
例2 已知f(x+1) =3x+5,求f(x)的解析式
练习:1 、 已 f( + 知 1 x = x )2 + 2, xf 求 ( . x)
记作:y=f(x),x∈A.
2.函数的三要素为 定义域、 对、应关系 值域
2020/10/18
2
1.2.2 函数的表示法 (二1)、炮新弹发知射
全h(t解)=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞
(3)恩格尔系数
2020/10/18
3
二1、.2.新2 知函数的表示法 全解
2020/10/18
但不够形象、直观、具体,而且并不是所 有的函数都能用解析式表示出来
列表法的特点:不通过计算就可以直接看出与自变 量的值相对应的函数值。
但它只能表示自变量取较少的有限值的对应关系
图像法的特点:直观形象地表示出函数的变化情况 , 有利于通过图形研究函数的某些性质
但只能近似地求出自变量的值所对应的函数值,
汇报人:XXX 日期:20XX年XX月XX日
用列表法可将函数y=f(x)表示为
注一:
解析法:必须 注明函数的定 义域
笔记本数 x
1
2
3
45
钱数y 5 10 15 20 25
2020/10/18
7
四1、.2典.2型函例数的表示法 题
用图像法可将函数y=f(x)表示为(如图)
注二:
函数图像既可 以是连续的曲 线也可以是直 线、折线、离 散的点等等
2020/10/18
是否可以 连线呢?
8
五、1如.2何.2根函据数已的知表条示件法求函数 的解析式
一、代入法求解析式
类型一:已知f(x)的表达式,求f[g(x)]的表达式
例1 (1)已知f(x)=3x+2,求f(x+1),f(x-2);
练习:求出下列函数的解析式; (1) f(x)=3x+6,求f(3x+6)的解析式
2 、f(若 x 1 )x2x 1 ,f(求 x 1 0/18
10
2.1.2 指数函数及其性质 七、小结
一、函数的三种表示法:
二、各表示法的注意事项 :
解析式法,图像法,列表 法
解析法:必须明确函数的定义域 图象法: 函数图像既可以是连续
的曲线, 也可以是直线 、折 线、离散的点等等 ; 是否连线的问题; 注意判断一个图形是否 是函数图象的依据;