ta-c碳膜的缺点

合集下载

我国类金刚石薄膜主要制备技术及研究现状

我国类金刚石薄膜主要制备技术及研究现状

我国类金刚石薄膜主要制备技术及研究现状摘要类金刚石薄膜具有优良的光学、机械和电特性在军事领域有广泛用途,类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高(1000℃以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。

由于类金刚石结构、性能存在一些缺陷,所以对此作了研究。

本文着重对类金刚石薄膜制备技术进行阐述,同时论述了发展潜力。

由于类金刚石薄膜的优越性,所以我国要加大这方面发展。

关键词:类金刚石薄膜,化学气相沉积法,物理沉积法,金刚石The Main Preparation Techniques and Research Status of theDLC Film in ChinaABSTRACTDLC films with excellent optical, mechanical and electrical characteristics ha ve a wide range of applications in the military field. DLC thin film technology, refers to the use of a variety of optical thin film production technology made close to the natural diamond and synthetic single crystal diamond characteristics (such as with high light transmittance in the wide spectrum-in the range of 2~15μm (microns) low absorption of light to 1%; has high hardness and good thermal conductivity, corrosion resistance and high chemical stability -1000°C (degrees Celsius) above maintained its chemical stability, etc.), artificial polycrystalline diamond films DLC films (also known as the hard carbon film,ion carbon film ,or a transparent carbon film), a technology. DLC structure, the performance has some shortcomings,have been investigated. Focus on the DLC film preparation technique is described,and discusses the potential for development. Because of the superiority the DLC films, so china should step up development in this field.KEY WORDS: DLC film,preparation techniques,CVD目录前言 (1)第1章类金刚石薄膜概述 (2)1.1 类金刚石薄膜介绍 (2)1.1.1类金刚石薄膜发展介绍 (3)1.1.2类金刚石薄膜微观结构与其性质 (3)1.1.3类金刚石薄膜分类 (5)第2章类金刚石薄膜制备技术 (6)2.1 化学气相沉积法 (6)2.1.1 热丝CVD法 (6)2.1.2 等离子体CVD法 (7)2.1.3 离子束蒸镀法 (7)2.1.4 光、激光CVD法 (7)2.2 激光法制备DLC膜的发展趋势 (8)2.2.1 激光脉冲宽度由纳秒脉冲向超短脉冲发展 (9)2.2.2 沉积环境由真空向氢气氛或氧气氛发展 (10)2.2.3 薄膜成分由纯DLC膜向掺杂DLC膜发展 (11)2.2.4 激光源由单一激光向多束激光发展 (11)第3章类金刚石薄膜研究 (12)3.1 实验研究 (12)3.1.1 实验装置 (13)3.1.2 实验过程 (15)3.1.3 实验结论 (15)第4章类金刚石薄膜应用以及展望 (16)4.1 类金刚石薄膜应用 (16)4.2 类金刚石薄膜应用展望.................... 1错误!未定义书签。

类金刚石涂层ta-C沉积工艺

类金刚石涂层ta-C沉积工艺
因有较大的碳颗粒或碳滴产
生而造成涂层表面较粗糙,由此 带来了电弧汽化工艺 的 负 面 效 应。 对于大多数的铣削和钻削应 用,粗糙表面并不损害刀具切削 性能。 但在一些应用场合,光滑 的表面质量可改善切削性能。 例 如,一家德国工具制造商报告了 用 HiPIMS ta-C 涂层刀具对低硅 铝和 高 硅 铝 进 行 攻 丝。 结 果 表 明,豪泽( Hauzer) 公司的涂层比 常规涂层性能更优,且扭矩更低。
通过圆形电弧 CARC+工艺涂覆 taC 涂层的立铣刀,其涂层具有典型的 彩虹色彩
Ta-C 涂层是一种无氢碳元 素涂层, 其 sp3 与 sp2 键的比值 较高。 与其他 DLC 涂层相比,ta -C 膜层具有更高的硬度和抗温 性能,并 可 显 著 降 低 摩 擦 系 数。 该涂层首次应用在汽车工业的挺 杆( 气 门 顶 筒), 并 一 直 应 用 至 今。
DLC 涂层通常由 sp3 与 sp2 键的比值和氢含量来分类。 当碳 元素通过 sp3 键结合,就会 形 成 金刚石;通过 sp2 键结合,就会形 成石墨。 当 sp3 与 sp2 键的比值 增大时,涂层的硬度通常会增加。
可在 DLC 涂层内加入钨( W -C 颐 H) 之类的金属 ( 此处 C 为 碳,H 为氢) ;还可以加入其他元 素如硅( Si -DLC) 来改变涂层的 摩擦系数或抗温性能。 一种已用 于切削刀具的复合涂层为高硬度 的氮化物涂层( 如 TiAlN) 加上较 软的、具有润滑功能的顶层涂层 ( 如 W -C 颐 H) 。 因为排屑的改 善,这种复合涂层在攻丝和钻削 应用中显示出优异的效果。 本文 将重点讨论一种被称作四面体非 晶碳( ta-C) 的 DLC 涂层。
高功率脉冲磁控溅射( HiPIMS) 工艺 利用碳靶来沉积 ta-C 涂层

DLC薄膜制备和检测技术综述

DLC薄膜制备和检测技术综述

文献综述DLC薄膜的制备和检测技术综述学院光电学院学科光学工程学号1101210021姓名薛俊2013年6月18日前言20世纪70年代初,Aisenberg[1]和E.Gspenc[2]分别次采用离子束沉积技术(IBD)和碳气相离子束增强沉积(IBED)技术制备了绝缘碳膜,命名该膜为DLC[1]。

20世纪70年代末,前苏联研制的DLC膜的硬度已经达到15000(维氏硬度)[3]。

DLC薄膜具有生产工艺简单,性能优良等特点。

20世纪80年代中期,在世界范围内掀起了研究、制备、开发和应用DLC膜的热潮。

厚度为100μm、表面粗糙度<10nm的DLC膜己经被美国通用原子公司(GA)利用PECVD制造出来[3]。

我国在制备DLC膜研究、应用方面也去得了长足的进展,不过与发达国家相比,差距还是存在的。

现在DLC膜还有很多问题存在争议或尚未解决。

这也问题严重制约了DLC膜的研究发展,现在,随着DLC制备技术的日益完善以及社会对DLC膜的需求量的增加,DLC 膜的应用研究价值也日益凸显。

1 DLC薄膜概况1971年德国的Aisenberg 采用碳离子束首次制备出了具有金刚石特征的非晶态碳膜,由于所制备的薄膜具有与金刚石相似的优异性能,Aisenberg于1973年首次把它称之为类金刚石(DLC)膜[1]。

DLC膜有着和金刚石几乎一样的性质,如高硬度、耐磨损、高表面光洁度、高电阻率、优良的场发射性能,高透光率及化学惰性等,它的产品广泛应用在机械、电子、光学和生物医学等各个领域。

尤其在光学领域,该技术在光学薄膜制造及其应用方面, 突破了大面积、高均匀性、高透射比、抗激光兼容的红外减反射膜镀制关键技术, 并在军事和民用上得以应用。

DLC膜的沉积温度低、表面平滑,具有比金刚石膜更高的性价比,且在相当广泛的领域内可以代替金刚石膜,所以自80年代以来一直是研究的热点。

碳是类金刚石膜的主要成分。

碳元素有3种同素异形体,即金刚石、石墨和各种无定形碳。

6.第六讲-正确选用类DLC涂层工艺

6.第六讲-正确选用类DLC涂层工艺

第六节正确选用DLC (类金刚石)涂层类金刚石diamond-like carbon,简称DLC薄膜,涂层的主要成分为碳,是以sp3、sp2键结合为主体,并混合有少量sp1键的远程无序立体网状非晶态结构,这种结构使得DLC薄膜具有一系列优良的物理化学性能,如红外波段透明、硬度高、摩擦系数小、化学性能稳定、热膨胀系数小等,从而使该薄膜在光学、电学、材料、机械、医学、航空航天等领域广泛应用。

由于制备技术和方法不同,DLC膜可能完全由碳元素组成,也可能含有大量的氢,因此一般来说,可将DLC薄膜分为含氢碳膜和不含氢碳膜。

根据薄膜中原子的键合方式(C-H、C-C、sp3、sp2等)及各种键比例不同,DLC膜又有不同的称谓:◎非晶碳(amorphous carbon,a-C)膜,膜中sp2键含量较高;◎含氢非晶碳(hydrogenated amor-phous carbon,a-C:H)膜;◎四面体非晶碳(tetra-hedral amorphous carbon,ta-C)膜,sp3键含量超过70%,也称非晶金刚石膜。

事实上,目前对DLC薄膜尚无明确的定义和统一的概念,但若以其宏观性质而论,国际上广为接受的标准为硬度达到天然金刚石硬度20%的绝缘无定形碳膜就称为DLC薄膜。

一、DLC膜的制备技术:DLC薄膜已经开发了许多种沉积方法,大体上可以分为物理气相沉积(PVD)和化学气相沉积(CVD)两大类。

PVD方法是在真空下加热或离化蒸发材料(石墨),使蒸发粒子沉积在基片表面形成薄膜的一种方法。

按照加热方式不同,热蒸发有激光蒸发、电弧蒸发、电子束加热等方法。

溅射沉积是用高能离子轰击靶物质(石墨),与靶表面原子发生弹性或非弹性碰撞,结果部分靶表面原子或原子团溅射出来,沉积在基板上形成薄膜。

CVD方法是在真空室内通入碳的氢化物、卤化物、氧化物,通过气体放电,在一定条件下促使它们发生分解、聚合、氧化、还原等化学反应过程,在基板上形成DLC薄膜的方法。

DLC综述

DLC综述

金属掺杂DLC薄膜及对其物性的研究姓名:***专业:凝聚态物理学号:**********摘要类金刚石(DLC)是一类含有一定量sp3碳杂化键的亚稳态无定形碳材料,具备许多优异的性能,如高硬度、低摩擦系数、良好化学惰性、高红外透光性、优异生物相容性等,在工模具、磁盘、光学窗口、微机电、航空航天、生物医学等诸多领域具有潜在的应用价值。

但因传统沉积方法中的低温等离子体制备DLC 薄膜的生长机制,在形成薄膜关键结构sp3碳键时,常伴随产生高的残余应力,同时存在摩擦性能不稳定、大面积均匀制备困难等关键问题,这使DLC 膜的广泛应用受到极大限制。

目前,Me-DLC薄膜被认为是解决上述关键问题的一种理想技术途径。

作为一篇综述文章,本论文重点介绍一下DLC薄膜的特点,性能和应用以及金属掺杂对DLC薄膜结构,力学性能,残余应力,摩擦学性能的影响,此外简单介绍一下目前金属掺杂DLC存在的问题,及金属掺杂DLC的潜在的应用价值。

关键词:DLC薄膜金属掺杂残余应力目录摘要 (I)1. 前言 (1)2.有关DLC的介绍 (1)2.1 DLC薄膜的结构 (1)2.2 DLC膜的制备方法 (3)3. Me-DLC的介绍 (4)3.1 Me-DLC膜的发展及现状 (4)3.2 Me-DLC膜的结构和性能 (5)3.2.1 金属掺杂对DLC膜微结构的影响 (5)3.2.2 金属掺杂对DLC膜碳结构的影响 (6)3.2.3 金属掺杂对DLC膜残余应力的影响 (6)3.2.4 金属掺杂对DLC膜摩擦学性能的影响 (7)4. 金属掺杂DLC潜在的应用价值 (7)参考文献 (8)1. 前言金刚石具有很多优异性能,如高硬度、高导热性、良好的透光性以及化学惰性等,在自然界所有的材料中均是首屈一指的。

随着人们对金刚石的深入研究和广泛应用,对金刚石的工业需求日益增多,人们对硬质碳素材料有了更进一步的需求和探索, 因此人们渴望找到其它一种可以替代金刚石的功能材料。

最新DLC薄膜制备和检测技术综述汇总

最新DLC薄膜制备和检测技术综述汇总

D L C薄膜制备和检测技术综述文献综述DLC薄膜的制备和检测技术综述学院光电学院学科光学工程学号 1101210021姓名薛俊2013年 6月 18日前言20世纪70年代初,Aisenberg[1]和E.Gspenc[2]分别次采用离子束沉积技术(IBD)和碳气相离子束增强沉积(IBED)技术制备了绝缘碳膜,命名该膜为DLC[1]。

20世纪70年代末,前苏联研制的DLC膜的硬度已经达到15000(维氏硬度)[3]。

DLC薄膜具有生产工艺简单,性能优良等特点。

20世纪80年代中期,在世界范围内掀起了研究、制备、开发和应用DLC膜的热潮。

厚度为100μm、表面粗糙度<10nm的DLC膜己经被美国通用原子公司(GA)利用PECVD制造出来[3]。

我国在制备DLC膜研究、应用方面也去得了长足的进展,不过与发达国家相比,差距还是存在的。

现在DLC膜还有很多问题存在争议或尚未解决。

这也问题严重制约了DLC膜的研究发展,现在,随着DLC制备技术的日益完善以及社会对DLC膜的需求量的增加,DLC 膜的应用研究价值也日益凸显。

1 DLC薄膜概况1971年德国的Aisenberg 采用碳离子束首次制备出了具有金刚石特征的非晶态碳膜,由于所制备的薄膜具有与金刚石相似的优异性能,Aisenberg于1973年首次把它称之为类金刚石(DLC)膜[1]。

DLC膜有着和金刚石几乎一样的性质,如高硬度、耐磨损、高表面光洁度、高电阻率、优良的场发射性能,高透光率及化学惰性等,它的产品广泛应用在机械、电子、光学和生物医学等各个领域。

尤其在光学领域,该技术在光学薄膜制造及其应用方面, 突破了大面积、高均匀性、高透射比、抗激光兼容的红外减反射膜镀制关键技术, 并在军事和民用上得以应用。

DLC膜的沉积温度低、表面平滑,具有比金刚石膜更高的性价比,且在相当广泛的领域内可以代替金刚石膜,所以自80年代以来一直是研究的热点。

碳是类金刚石膜的主要成分。

类金刚石薄膜

类金刚石薄膜

类金刚石薄膜材料班级:材料物理081401姓名:谭旭松学号:2007140201241.1类金刚石薄膜材料的概述类金刚石薄膜(Diamond Like Carbon)简称DLC,它是一类性质近似于金刚石,以sp3和 sp2键杂化的碳原子空间网络结构的亚稳态非晶碳膜。

依据制备方法和工艺不同,DLC的性质可以在非常大的范围变化,既可能非常类似与金刚石,也可能非常类似与石墨。

其硬度、摩擦系数、导热率、光学带隙、光学透光率、电阻率等都可以依据需要进行“调制”。

一般类金刚石薄膜沉积温度较低、膜面平整光滑,因而在机械电子光学声学计算机的很多领域得到应用,如耐磨层、高频扬声器振膜、光学保护膜等,因此对DLC的开发研究引起很多材料工作者的极大关注。

自从1971年Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物理气相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。

这之中有两个法分别为气相法和沉积法。

1.2类金刚石薄膜材料的结构和分类常态下碳有三种键和方式:sp1,sp2,sp3。

在sp3态碳原子的四个电子按四面体形状分布成sp3杂化轨道,形成强σ键;在sp2态,碳原子的四个电子中的三个形成在同一平面内的三次轴对称的sp2杂化轨道,它们可形成强σ键第四个电子轨道与该平面垂直,形成π键;在sp1态,仅两个电子形成σ键,另两个电子形成π键。

金刚石(diamond)—碳碳以 sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;而类金刚石(DLC)—碳碳则是以sp3和 sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,因而类金刚石薄膜的结构和性能介于金刚石和石墨之间,收沉积环境和沉积方式影响类金刚石薄膜中还可能含有H等杂质,形成一定数量的C-H键。

金刚石薄膜

金刚石薄膜

图1 碳的相图
各种动力学因素:
反应过程中输入的热能或射频功率等的等离子体能量、反 应气体的激活状态、反应气体的最佳比例、沉积过程中成 核长大的模式等对生成金刚石起着决定性的作用。
选用与金刚石有相同或相近晶型和点阵常数的材料作基片, 降低金刚石的成核势垒。却提高了石墨的成核势垒。
石墨在基片上成核的可能性仍然存在,并且一旦成核,就 会在其核上高速生长,还可能生成许多非晶态碳,因此, 需要有一种能高速除去石墨和非晶态碳的腐蚀剂,相比之 下,原子氢是最理想的腐蚀剂,它能同时腐蚀金刚石和石 墨,但它对石墨的腐蚀速率比腐蚀金刚石的速率高30~40 倍,这样就能有效地抑制石墨相的生长。
0.1m / h )
厚为 50nm 的金刚石连续薄膜
金刚石薄膜的结构
金刚石虽是一种原子构成,但是它的晶格是 一个复式格子,由2个面心立方的布喇菲原 胞沿其空间对角线位移1/4的长度套购而成, 金刚石结构的结晶学原胞如图所示,在1个 面心立方原胞内有4个原子,这4个原子分别 位于4个空间对角线的1/4处。
日本国立无机材料研究所Yoichiro Sato提出“键的选择” 和“键的控制”的概念,借助异质元素如H、F或其他卤素元 素与碳键合,从而达到控制键或晶体结构的目的;
Shin Sato研究了自由基、离子-分子反应在形成金刚石机理 中的作用,提出了可能的反应机理;
我国的苟清泉、冉均国、郑昌琼提出甲基聚合形成金刚石和石 墨转化形成金刚石的机理;
300k时的性能非晶态碳金刚石密度15183515努氏硬度125016501030001506000010010氢的百分含量13380110电阻率10131016光学能隙ev0818548透射带宽0520225346182565折射率1822240标定的折射率12122068碳组成68sp100sp30sp类金刚石薄膜的应用应用领域举例机械dlc涂层刀具电子mis结构光敏元件声学扬声器振动膜电子计算机磁介质保护膜电绝缘膜光刻电路板用掩模光学保护层和抗反射层太是能光热转换层光学一次写入记录介质发光材料医学矫形针涂层人工心脏瓣膜且沉积温度低面积大吸附性好表面平滑工艺成熟所以它比多晶金刚石膜应用早而且更适合于工业应用如摩擦磨损高频扬声器振动膜光学窗口保护膜等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档