医学图像三维重建
医学图像的三维重建与可视化

医学图像的三维重建与可视化医学图像的三维重建与可视化是目前医学领域中的研究热点之一。
通过将医学图像转化为三维模型,医生和研究人员可以更好地观察和分析病灶,从而更准确地进行诊断和治疗,提高患者的治疗效果和生活质量。
本文将从三维重建技术和可视化技术两个方面介绍医学图像的三维重建与可视化。
三维重建技术三维重建技术是将多幅医学图像处理后,生成一个三维模型的过程。
常用的医学图像包括X光片、CT、MRI等。
三维重建技术是一项非常技术含量高的工作,需要专业的软件和设备支持,一般需要数学、物理等多个领域的知识的综合运用。
三维重建的过程主要有两步:首先是图像预处理,此步骤对图像进行去噪、增强和分割等操作,以提高三维重建的精度;然后是生成三维模型,此过程需要通过算法和数学模型来将二维图像转化为三维模型。
常用的三维重建方法包括Marching Cubes算法和Voxel Coloring算法。
其中Marching Cubes算法是一种基于灰度值的重建方法,适合于处理CT和MRI图像;而Voxel Coloring算法则是一种基于颜色的重建方法,适合处理表面模型。
可视化技术可视化技术是将三维重建的模型以可视化的方式呈现出来,让医生和研究人员可以更直观、更全面地了解病灶的情况。
常用的可视化技术包括虚拟现实技术、动态模拟技术和实时互动技术等。
虚拟现实技术是将三维重建的模型放入虚拟现实环境中展示,模拟真实环境的同时提供完整的三维信息。
这种技术通常需要大型的设备和高显卡性能的计算机。
虚拟现实技术可以让医生和研究人员在模拟环境下进行手术模拟、观察器官结构等。
动态模拟技术是通过对三维模型进行动态分析,模拟病变的进程和变化,有助于预测治疗后的效果。
例如,在肿瘤治疗中,医生可以通过动态模拟技术来预测肿瘤的发展趋势,从而制定更为科学的治疗方案。
实时互动技术是将三维模型呈现在普通计算机上,并通过交互方式来实现对三维模型的控制。
这种技术可以让医生和研究人员在计算机上方便地进行多角度观察和交互操作,提高工作效率和准确性。
医学图像的三维重建和可视化技术研究

医学图像的三维重建和可视化技术研究医学图像的三维重建和可视化技术在当今医疗领域中越来越普及。
近年来,随着医学科技的快速发展以及互联网和移动互联网技术的普及和应用,医学图像的三维重建和可视化技术已经成为医学影像领域至关重要的一部分。
一、医学图像的三维重建技术医学图像的三维重建技术是通过计算机处理医学影像数据,将二维影像转化为具有三维空间分布信息和形态特征的立体图像。
医学图像的三维重建技术主要有以下几种:1. 体绘制法(Volume Rendering)体绘制法是医学图像三维重建中最常见的一种方法,它可以将三维图像在计算机显示器上以虚拟体形式呈现出来。
体绘制法的基本原理是根据医学图像数据,通过体绘制算法将像素数据转换成立体图像。
体绘制法的优点是可以呈现出医学图像的大部分信息,并且呈现效果非常逼真。
但是,体绘制法也存在一些局限性,如不能很好地显示深部结构、分辨率和可视范围等问题。
2. 表面重构法(Surface Reconstruction)表面重构法是利用医学影像数据,将体表面重构成立体图像的一种方法。
它通过将三维图像表面进行分割并转化为曲面网格,然后建立曲面模型,在计算机程序中进行立体显示。
表面重构法的优点是可以产生非常精确的表面形状,可以在特定领域的医学图像重建中得到广泛应用。
3. 切片法(Slicing)切片法是通过计算机程序对医学影像数据进行切片,最终形成具有空间三维分布的影像。
切片法主要依赖于医学影像数据的精确分层,它具有处理速度快和成本低的优点。
但是在处理颜色和灰度变化较大的图像时,这种方法不能很好地完全保留图像信息。
二、医学图像的可视化技术医学图像的可视化技术是将医学影像数据以可视化方式呈现给医生和患者,让他们更好地理解医学影像结果,并且在诊断和治疗方面提供指导。
医学图像的可视化技术主要有以下几种:1. 虚拟现实技术(Virtual Reality)虚拟现实技术是将医学影像数据实现立体感和动态效果,并且让医生和患者可以在虚拟环境中进行交互的一种技术。
医学图像的处理及三维重建

噪声去除是医学图像预处理的重要步骤,旨在消除图像中的噪声和干扰,提高图像质量。
噪声去除的方法包括滤波、中值滤波、高斯滤波等。这些方法通过平滑图像,减小像素值的随机波动,从而减少噪声对图像的影响。
噪声去除Biblioteka 详细描述总结词总结词
图像增强是为了改善医学图像的视觉效果和特征表现,使其更符合人眼观察和机器分析的要求。
医学图像处理的基本流程
包括图像去噪、对比度增强、图像分割等步骤,以提高图像质量。
从医学图像中提取出与病变相关的特征,如形状、大小、密度等。
将多个二维图像组合成三维模型,并进行可视化处理。
根据处理后的医学图像进行诊断和分析,得出结论。
预处理
特征提取
三维重建
诊断与分析
02
CHAPTER
医学图像的预处理技术
提高图像质量
测量和分析
三维重建
辅助诊断和治疗
医学图像处理的目的和意义
01
02
03
04
通过降噪、增强对比度等技术,使图像更清晰、更易于观察。
对医学图像进行定量测量和分析,提取病变特征和生理参数。
将二维图像转换为三维模型,更直观地展示人体结构和病变。
为医生提供准确的诊断依据和治疗方案,提高诊断和治疗水平。
数据量庞大
由于医学图像处理和三维重建涉及大量计算,如何提高计算效率是亟待解决的问题。
计算效率问题
面临的挑战
技术发展趋势
深度学习在医学图像处理中的应用
利用深度学习技术自动识别和提取图像特征,提高处理效率和准确性。
高性能计算资源的应用
利用高性能计算资源进行大规模并行计算,提高处理速度。
多模态医学图像融合技术
详细描述
医学图像处理中的三维重建技术与模型验证方法分析

医学图像处理中的三维重建技术与模型验证方法分析概述医学图像处理是医学领域中不可或缺的技术之一。
三维重建技术是其中的重要内容,它能够将医学图像转化为三维模型,为医生诊断和治疗提供更为准确的信息。
然而,三维重建技术必须经过模型验证,以确保其结果的可靠性和准确性。
本文将分析医学图像处理中的三维重建技术以及常用的模型验证方法。
一、三维重建技术1.体素法体素法是一种基于体素(三维像素)的三维重建技术,常用于脑部、肺部等区域的分析。
该方法将医学图像划分为多个小的立方体单元,每个单元包含密度、颜色和形状等信息。
通过对每个体素进行分析和计算,可以重建出三维模型。
2.表面法表面法是另一种常用的三维重建技术,它通过将医学图像中的边界提取出来,并将其连接形成一个网格,从而生成三维模型。
该方法适用于骨骼的重建和组织分割等应用,能够提供更为真实的形状。
3.混合法混合法是一种将体素法和表面法相结合的三维重建技术。
它利用体素法分析内部结构,同时使用表面法重建物体的外部形状。
这种方法在血管和器官的重建中具有广泛的应用。
二、模型验证方法1.准确性验证准确性验证是模型验证的基本要求。
通过与实际物体进行比较,可测量三维模型与实际物体之间的误差。
常用的准确性验证方法包括物理测量和几何验证。
物理测量法将三维模型与实际物体进行定量比较,如使用测量工具测量尺寸、角度等。
几何验证法将三维模型与实际物体进行直接比较,如通过重叠比对、云数据投影等方法进行验证。
2.一致性验证一致性验证是指通过与不同的视角、不同的图像进行比较,验证三维模型是否能够在各种条件下保持一致。
视角一致性验证是通过不同角度的图像进行验证,可以使用旋转投影或虚拟观察等方法。
图像一致性验证是通过不同的图像进行验证,可以使用图像对比、特征一致性等方法。
3.应用验证应用验证是指通过应用特定的医学任务来验证三维模型的有效性。
例如,在手术规划中,将三维模型与实际手术结果进行比较,验证模型在手术导航中的准确性和可行性。
医学断层图像的三维重建系统

医学断层图像的三维重建系统医学三维重建系统是现代医学图像学中的重要应用之一,它通过将医学断层图像进行处理和重建,生成真实的三维图像,以便医生和医学研究人员更加直观和准确地了解病例,作出更好的诊断和治疗。
医学三维重建系统的基本原理是将医学断层图像转化为数字形式,并将其保存在计算机硬盘或内存中,通过数字处理技术和算法,将已知的二维图像通过计算机控制的程序重建成三维的立体模拟图像,使医生不再需要依靠想象来展示内部的复杂结构。
医学三维重建系统主要包含以下模块:1.图像采集和处理模块:医学断层图像的采集和处理是医学三维重建系统的基础,其质量和准确性直接影响三维重建的结果和应用。
现代医学断层影像技术主要包括X射线CT、MRI、PET、SPECT等,这些技术非常精细,可以提供高分辨率和高保真度的图像。
在采集医学断层图像时,需要选择合适的成像参数和处理方法,使得图像的质量和准确性达到最佳状态。
2.图像分割和处理模块:医学三维重建的重要任务之一是对图像进行分割和处理,将图像中的感兴趣区域分离出来,以便后续分析和建模。
常用的图像分割技术包括阈值分割、边缘检测、区域生长和基于模型的分割等。
通过这些分割方法,可以将图像中的内部结构和病变区域准确地提取出来,为后续的三维重建和分析提供基础。
3.三维重建和模拟模块:医学三维重建的最终目的是生成真实精确的三维模拟图像,在这个阶段,需要通过图像处理和计算机模拟技术将二维图像转化为三维模型。
常用的三维重建技术包括立体线性插值、Marching cubes、矢量加权球等。
这些方法可以自动或半自动地将医学断层图像转化为三维实体或表面模型,以便医生更加直观地观察和分析。
4.可视化和交互模块:医学三维重建的最终目的是为医生和患者提供更直观、更准确的诊断和治疗方案。
在这个阶段,需要将三维模型转化为可视化的图像,以便医生和患者可以通过交互来进行观察和分析。
常用的可视化技术包括体绘制、投影绘制、三维切片和虚拟现实等。
医学图像配准与三维重建算法研究

医学图像配准与三维重建算法研究医学图像配准与三维重建是医学图像处理领域的重要研究方向,广泛应用于医学诊断、手术规划以及科学研究等领域。
本文将介绍医学图像配准与三维重建的基本概念、应用领域以及常用算法,以期对该领域的研究有一定了解。
医学图像配准是指将来自不同时间、不同设备或不同成像模态的医学图像进行空间上的对齐,以便实现更准确的定位、可视化和分析。
医学图像配准的主要目标是使得不同图像之间的相同解剖结构在空间上对应位置重合,从而实现比较、分析和增强。
这对于医学诊断、疾病监测和治疗规划等方面具有重要意义。
医学图像三维重建是将二维医学图像转换为三维模型的过程,可以更全面地展示解剖结构,为医学专业人士提供更详细的信息。
三维重建的关键是从二维图像中恢复出三维的形状和位置信息。
三维重建技术可以应用于手术规划、器官功能评估、医学教育和研究等领域。
医学图像配准与三维重建的算法研究包括各种方法和技术,下面介绍几种常用的算法:1. 特征点匹配算法:特征点匹配是实现图像配准和三维重建的基础步骤。
这种算法通过检测图像中的关键特征点,并将其与其他图像进行匹配,从而找到相同或相似的解剖结构。
特征点匹配算法常用的方法有SIFT、SURF和ORB等。
2. 刚体变换算法:刚体变换是一种常用的配准方法,通过平移和旋转对图像进行变换,使得两个图像的空间位置一致。
刚体变换适用于需要保持形状和大小的图像配准任务。
常见的刚体变换算法有最小二乘法和ICP(迭代最近点)算法。
3. 弹性变形算法:弹性变形算法是一种能够处理非刚性图像配准问题的方法。
它可以对图像进行局部的形变,从而更准确地对齐解剖结构。
其中,常用的弹性变形模型有BSpline模型和Thin-Plate Spline(TPS)模型。
4. 体素填充算法:体素填充算法是三维重建的一种常用方法,通过使用体素进行体积数据的表示和重建。
该算法首先对医学图像进行分割,提取出感兴趣区域的体素数据,然后根据体素之间的关系进行体素填充,最终形成三维重建模型。
医学影像图像的三维重建技术

医学影像图像的三维重建技术医学影像是临床医学中一个极其重要的领域。
医学影像可以为医生提供非常直观且准确的生物信息,从而帮助医生更好地进行疾病诊断和治疗。
在医学影像中,图像重建技术是一个非常重要的领域,其中三维图像重构技术就是一个非常重要的技术。
三维重建技术是指从一组二维影像数据中,通过计算机算法将其重建为三维的图像。
因为三维图像包含了更多的信息,相比二维图像,它能够更好地还原真实的形态,减小医生在诊断上的误差,并且同时降低了人的主观判断的影响。
针对这个问题,三维重建技术得到了广泛的应用,特别是在疾病的早期诊断和治疗上,同时也可以在手术操作中提高安全性和准确性,为医生工作提供了更多的便利和准确性。
在医学影像中,CT和MRI成像技术是最常用的影像技术。
这些技术生成的图像都是二维图像。
然而,对于一些局部较小的器官、动脉、淋巴结等等,二维图像的显示很难准确地表达出体内的情况。
对于这些情况,三维重建技术提供了一种可行的解决方案。
通过三维重建技术,可以将这些较小的器官、动脉、淋巴结等等按照真实比例还原,从而给予医生更加深入的视觉和准确的生物信息。
三维图像重建技术有很多方法和算法,目前主要有以下几种:1. 预处理法:预处理法主要是通过对图像数据进行处理,提取出一些关键的信息,以此来重建三维图像模型。
例如,通过对图像数据进行阈值处理、边缘检测等操作,提取出某些区域的信息,然后把这些信息组合在一起,生成三维模型。
但是,预处理法对图像质量要求比较高。
2. 直接体绘制法:直接体绘制法主要是通过对边界数据进行处理,生成三维图像。
边缘数据由计算机算法进行处理,将重点区域的边缘数据和其它区域的边缘数据整合到一起,利用计算机技术进行加工处理,最终生成三维模型。
3. 点云法:点云法主要是利用激光扫描技术,将整个目标扫描成一个点云,然后再通过一定的算法进行处理,最终生成三维模型。
点云法在医学影像处理中广泛应用于骨科和牙科领域中。
医学影像分析中的3D重建技术

医学影像分析中的3D重建技术医学影像分析是当今医学领域中一个重要的技术分支。
它可以通过各种成像技术获得人体组织与器官的影像信息,帮助医生了解人体内部的结构和情况,进而做出更为准确的诊断和治疗方案。
而在医学影像分析中,3D重建技术无疑是一种十分重要、也十分普及的技术。
一、3D重建技术的基本概念3D重建技术,即将医学影像数据转化为3D三维模型的技术。
它不仅可以模拟真实的人体内部结构,帮助医生更加直观地观察患者影像信息,还可以进行模拟手术操作等,用于教育与培训。
3D重建技术的核心是图像配准、重建算法和可视化技术。
二、3D重建技术的应用领域3D重建技术在医学影像分析中有着广泛的应用,主要涉及的领域包括:1. 诊断与治疗:3D重建技术可以将患者影像数据转化为三维模型,帮助医生更加直观地观察病变情况,并制定更好的诊断和治疗方案。
2. 计划手术操作:3D重建技术可以帮助医生进行手术前虚拟实践,提高手术操作的成功率和准确率,同时减少手术时间和手术风险。
3. 教育与培训:通过对三维模型的可视化和交互式操作,医生可以更加深入和直观地了解人体内部结构和器官组织,提高医学教育和培训的效果。
三、3D重建技术的实现过程3D重建技术的实现过程主要包括以下几个步骤:1. 图像采集与处理:通过各种成像设备(如CT、MRI、超声等),采集患者的影像数据,并作初步的处理和去噪处理。
2. 配准与分割:将采集到的影像数据进行配准,即将不同方向和不同时间下采集到的影像数据进行对齐,同时进行组织和器官的分割,用于后续的重建。
3. 重建算法:根据配准和分割后的数据,运用各种重建算法,如Marching Cubes算法等,将二维影像数据转换为立体模型,实现三维重建。
4. 可视化与交互:在完成三维重建后,可以通过各种可视化技术,如OpenGL等,将模型转换为可以实时交互、可旋转、可缩放的三维模型,以方便医生进行观察与操作。
四、3D重建技术的挑战与展望随着医疗技术的不断发展和影像数据处理能力的不断提高,3D 重建技术也正不断迎来新的挑战与机遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
On Th e - i e so a c n t u to fM e i a m a e r e d m n i n lRe o sr c i n o d c l I gs
LIYa - i ng me
( h nS f aeT c ncl olg, h n4 0 7 , hn ) Wu a o w r eh ia C l e Wu a 3 0 4 C ia t e
摘 要: 在传 统的方法中医生往往是根据胶 片或者数 字形式的二维 图像 , 靠“ 依 在头脑 中进行三 维对 象重现 ” 来 进行分析和诊断 。文章研 究 医学 图像 三维重建技术——通过对具有 空间特征 的 医学对象在 静态或动态三维空间 中
进行处理 , 以视 觉信 息的形 式充分反映 出医学对 象中丰富的隐含信 息。分别从基于体 素和基 于表 面两个方面研究 医
学图像三 维重建技术的算法和原理 , 并从 实现结果对两种方法进行分析比较 。
关键词 : 医学图像 三维重建 ; 移动立方体算法 ; 光线投影法
中 图分 类 号 :P 9 T3l 文 献 标 识 码 : A 文 章 编 号 :6 1 94 2 1 )10 4 — 3 17 — 1X(0 2 0 — 0 3 0
f r o h wo— me so l i g s i he mi d.Th s p p rsud e r e i nso a e r d c in o d c l o m ft e t di n ina ma e n t n i a e t id Th e -d me in lr p o u to fme i a
i gs一 s d igtem dcl bet i p t l h rce s c tt r y a ctre dm n i a sae mae. _ t yn e ia o j t sai aatr t s nas i o nmi he— i e s n l p c u h cw h ac ii i ac d o
对 系 统 的消耗 较小 。当显 示头 部骨 骼及 其 内部结 构 的时 候 , 绘制 三 维重 建 得 到 的效果 比面 绘制 三 维 体 重 建得 到 的效果 好 。
点 的颜 色 后显 示 时用 来 区分显 示 和不显 示 的值 。皮 肤组织的 C T值 一 般 比 骨 骼 等 组 织 的 C T值 小 , 阈 将
一
口 e ●‘ n i , 。
・x ' - -
、
基 于表 面 的 医 学 图 像 三 维 重 建 算 法
图 1 切片组成三维数据场
图 2 C b 示意 图 ue
面 绘 制 算 法 是 对 利 重建 方 法 。以移 动 立 方 体 ( rhn u e ) 法 Mac igC b s算
K yw rsrpo u t no re—i nin l eo s c o ;n v u ea o tm;i t rjc e od : rd c o f he— mes a rc nt t n loec b l rh l h o t e i t d o u r i gi g p e
( 稿 : 智勇 编 校 : 审 曾 邹 丹)
襄 樊职 业技 术 学 院学 报
第 1 1卷 双 月 刊 第 1期 21 0 2年 1月
d i 1 9 9 .s.6 19 4 2 1 .1 4 o: . 6 /i n17 - 1X. 2 . 3 l 3 js 0 0 0
医学图像三维重建
黎杨梅
( 汉软件 职 业技 术 学院 电子 与 电气 自动化 系, 武 汉 武 4 07 ) 304
为 例 说 明 面 绘 制 算 法 。本 质 是 将 一 系 列 两 维 的切 片 数据 看 作是 一 个 三 维 的数 据场 , 中将 具 有某 种 域 从 值 的物 质 抽取 出来 , 某 种拓 扑 形 式连 接 成 三 角面 以 片 。圆 片 数 据 可 以 看 作 是 一 些 网 格 点 组 成 的 , 些 切 这
Ab ta t i a io a, o tr otea ay i a d da n s a e n terp o u t no ef m n ii l sr c :nt dt n l d co h n lss n ig oi b sd o h e rd ci f h l a dd gt r i d s o t i a
两 种 模 式 , 种 是 基 于 表 面 ( 廓 ) , 有 一 种 是 一 轮 的 还
基 于体 素 的 。【 ・ 】 本文 介 绍 了医学 图像 三维 重 建技 术 的流 程并 分别 从 基 于 表 面 和 基 于 体 素 两 个 方 面 介 绍其 原 理和算 法 。
(a a 2 i I ) d t a p e
现 代 医 学 中 医生 参 照 C 、 I 医 学 图像 进 T MR 等 行 医 学 诊 断 , 大 程 度 上 还 是 依 靠 其 经 验 。 医 学 图 很 像 三 维 重 建 技 术 就 是 由 一 系 列 的 C 图 像 或 MR T I
用 阈值 对 一 个 C b u e的 8个 顶 点 分 别 进 行 分 类 , 如 果顶 点 的密 度值 小 于 阈值 , 定 为 内值 , 0表示 ; 设 用
Sei s, 00h 8- 5. re 2 33 34
[ ] eb l F c sM r ah he , l aed rT cncl vn e u ii pr TJ [. uoenJua l f ail 6 H o a uh , acK c eib Wii K ln e. eh i a a csnm hsc si l I1 】E rpa orn d o d lA ad i le aC J oR o -
点代 表 了密度 值 , 图 1 示 。 如 所 在 切 片 数 量 中 每 次 读 出 两 张 切 片 ,形 成 一 层 ( a e) 这 样 一 层 中 上 下 相 对 应 的 八 个 网 格 点 构 成 Lyr,
一
个 C b , 图 2所 示 。取 一 个 设 定 值 , 为 阈值 。 ue如 称
如果 顶 点 的密 度 值 大 于 阈 值 , 定 为 外 值 , 1表 设 用
示 。 如 图 3所 示 。
图像 等 D C M 格式 的 医学 图像 通 过某 种 算 法 绘制 IO 出 三 维 图 像 模 型 , 对 图像 进 行 各 种 操 作 , 放 大 、 并 如 旋转 、 动等 , 移 以方 便 医 生 能 更 加 直 观 地 观 察 该 图 像 所代 表 的组织 或 器 官有 没 有 病变 , 或者 病 灶 的位 置 及 大 小 。 就 目前 来 说 , 学 图 像 三 维 重 建 技 术 有 医
d me so a d c ma e e o s u t n ag rt ms a d p n i ls f m h o e — a e n u fc - a e i n in lme i a i g s r c n t c i l o i l r o h n r cp e r i o t e v x l. s d a d s Ya e b s d b wa s a d s d e n o a e h w a sf m h i a h e e n s y n t id a d c mp r d t e t o w y o t e r c iv me t. u r
45
a drf c n er hi l dme nn fh e ia o ic i tefr f i a i o t n s de etre n e e t gt i l i h c mpi a igo em dcl bet n h m o s ln r i . t idt e — e t o v u f ma o u h h
T i d t n。 0 2: 2 —1 5 hr E i o 2 0 1 4 2 . d i
[ ] H L I . e dclm gn c nlg[. i dcl nier g18 ,2 )1 3 14 4 P IL V P N wme i aigt h ooy ]Bo ia E g ei , 8 (3 :1- . P ai e J me n n 9 1 [ ] e nTmaei,ot nLkrFa i P ru. r i tbsdR g t t no 3 n D X R y s]It n tn l o ges 5D i o zvcB s a ia,rno e sG a e - ae e ir i D MRad2 - ai [.n ra oa C nrs a i n dn sao f me J e i
图 3 Cb u e的顶点分类
图 4 顶点状态索引值
收 稿 日期 :0 1 1- 0 2 1 - 12
作者简介 : 黎杨梅 (94 )女 , 18一 , 湖北京山人 。教师 , 硕士 , 研究方向 : 视频图像处理和阵列信号处 理。
43
医 学 图像 三 维 重 建
图 8 、图 9是 用 Mac igC b s 法 分 别 选 取 rhn u e 算 不 同的 阈值进 行 三维 重建 的结 果 。 图 1 、图 1 是用 R y C sn 算 法 分别 选 取 O 1 a- at g i 不 同的 阈值进 行 三维 重建 的结 果 。 在 面绘 制 中 阈值 就 是 上 文 中定 每个 小 立 方 块 的 八 个 顶 点 是 外 点 还 是 内 点 时 设 定 的值 ; 在 体 绘 而 制 中 阈值 是 指 用 光 线 投 影算 法 计 算 出每 一 个 像 素
参 考文 献 :
[ ] 仕 刚 , 耀 钦 , 尚联 . 1张 谢 包 医学 图像 物理 学科 的现 状 和 未 来f. 理 ,0 4 2 (3 :7 7 . J物 】 2 0 ,3 3 )6 — 2
[ ] 季 , 宜 杰.医 学 图像 三 维 重 建 方 法 的 比较 研 究『 . 信 息 ,0 6 ( )9 8 90 2张 王 J 医学 ] 2 0 ,6 ,4 — 5 . [ ] lShodrK nMat ,i oesnT eVsa zt nT okt A bjc一 r ne p rahT D G a hc[ . i ae 3Wi c ree , e rn BlL rne.h i lai oli n0 i t0 i tdA poc o3 rp i M]Kt r: l i l ui o - e e s w