巧用辅助圆,妙解几何题
初中数学竞赛平面几何讲座---巧添辅助-- 妙解竞赛题

初中数学巧添辅助-- 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.ABGC DFE 图1例 2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____.例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P . 求证:△ABC 的面积S =43AP ·BD .A图3BP QD HC ABCDPO图22 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.A EDCB图4图5例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N . 求证:AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.EANCD B FM 12345图6例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.同步练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD.2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a . 求证:∠BAC =∠CAD =∠DAE .3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(1)(2)图8ABCA'B'C'cb a'c'b'3. 如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.4. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D . 求证:AC 2=AB ·AE .6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1.F DAB EC图10C图11初中数学巧添辅助-- 妙解竞赛题答案在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED = ∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系. 容易想到作∠BED 的平分线,但因BE ≠ED ,故不能 直接证出BD =2CD .若延长AD 交△ABC 的外接圆 于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF .作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD = ∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2. 则sin ∠AOB =____.ABGCD FE图1ABCDPO 图2分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615 . 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证: △ABC 的面积S =43AP ·BD . 分析:因S △ABC =43BC 2=43AC ·BC ,只 须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =43AC ·BC =43AP ·BD . A图3BPQDHC2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.分析:由“AD =DC =DB =p ”可知A 、B 、C 在 半径为p 的⊙D 上.利用圆的性质即可找到AC 与 p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE . 显然A 、B 、C 在⊙D 上. ∵AB ∥CD ,∴BC =AE . 从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围. 解:如图5,所给抛物线的顶点为A 0(1,9), 对称轴为x =1,与x 轴交于两点B (-2,0)、 C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、A EDCB图4图5Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论. 证明:如图6,∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5, ∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交 BA 的延长线于E .则AE =AF =AN . 由割线定理有 BM ·BN =BF ·BE =(AB +AE )(AB -AF ) =(AB +AN )(AB -AN ) =AB 2-AN 2, 即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连 结CG .因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆.EA N D BFM 12345图6由切割线定理,有 EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB=EC ·ED +FC ·FB =EP 2+FQ 2,即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆 例8 如图8,△ABC 与△A 'B ' C '的三边分别为a 、b 、c 与a '、 b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ',∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB .有DC B A ''=CB C B ''=DBC A '',即 DC c '=a a '=DB b '.故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a . 从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '.练习题(1)(2)图8ABCA'B'C'ca b a'c'b'A BCDa b b c图91. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而AC AB =DEBD=DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2. (提示:分别以BC 和CD 为直径作圆交AC 于点 G 、H .则CG =AH ,由割线定理可证得结论.) 5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE . (提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3 于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)FDAEC图10图11。
巧作辅助圆妙解几何题

巧作辅助圆妙解几何题作者:张云峰来源:《甘肃教育》2008年第13期〔关键词〕辅助圆;隐含条件;角平分线;代数式〔中图分类号〕 G633.63〔文献标识码〕C〔文章编号〕 1004—0463(2008)07(A)—0058—01近几年来,数学课程的内容、思路和理念都发生了一定的变化,所以数学课堂教学内容必然要适应这些变化,以应对符合这些变化的中考.下面,笔者就中考中的一些几何题来说明其解题思路的变化.这类几何题,所给条件和欲求的结论从表面上来看和圆没有多大关系,但是,放宽视野,不难发现,引入辅助圆后常常能达到化繁为简、化难为易的目的.求线段长例1:如图1,四边形ABCD中,AB∥CD,AB=AC=AD=a,BC=b,求BD的长.分析:若局限于所给图形去思考,较难解决,但题设中有AB=AC=AD这一条件,则可以考虑以A为圆心,AB为半径作圆,这时解题思路马上豁然开朗.解:以A为圆心,AB为半径作圆,延长BA交⊙A于E,连接DE.例2:如图2,△ABC中,∠B=2∠C,求证:AC分析:欲证AC证明:作△ABC的外接圆,并作∠B的平分线交外接圆于D,连接AD、CD.例3:如图3,点D为等边△ABC外一点,且与点A均在BC同侧,AD=BC.求∠BDC的度数.分析:题目中△ABC为等边三角形,又由2AB=AD,可考虑利用圆的知识来解决.解:以A为圆心,AB为半径作⊙A.∵ AD=BC,BC=AC=AB,∴ AD=AC=AB.∵点D、C在⊙A上,例4:如图4,AB=AC=AD,∠BAC=k∠CAD,则∠BDC是∠DBC的()倍.A. kB. 2kC. 3k分析:此类题一般用三角形内角和定理和等腰三角形的性质列方程来求解,但注意到已知条件AB=AC=AD,可联系到B、C、D均在以A为圆心,以AB为半径的圆上,利用圆的有关性质来求解,比一般方法来解要简便得多.解:以A为圆心,以AB为半径作圆.∵∠BAC=k∠CAD,∴∠BDC=k∠DBC.求代数式的值例5:如图5,在△ABC中,AB=AC=2.BC边上有100个不同的点P1,P2, (100)记作mi=APi2+BPi·CPi(i=1,2,……100).求m1+m2+…m100的值.分析:由题设AB=AC,可知B、C在以点A为圆心,以AB为半径的圆上,作出⊙A 后,在弦BC上任取一点PK,使直线APK分别交⊙A于E、F,由相交弦定理得:BPK·PKC=FPK·PKE=(2+APK)(2-APK)=4-APK2,∴ APK2+BPK·PKC=4,又因PK为BC上的任一点,故mi=APi2+BPi·CPi=4(i=1,2,……100),∴ m1+m2+……m100=4×100=400.总结:通过对以上五大类几何题的详细分析解答,不难发现,无论是在“有关线段的求解证明”、“角度的求解证明”还是“求代数式的值”中,一些看似复杂又无从下手的问题,通过结合题设条件,大胆、巧妙地引入辅助圆后,可以使解题思路豁然开朗.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
用辅助圆解决几何最值问题举例

用辅助圆解决几何最值问题举例几何图形的美,关键在于对称美,对于圆来说,它既是轴对称图形(经过圆心的直线都是圆的对称轴,圆有无数条对称轴),又是中心对称图形(对称中心是圆心),所以人们称圆是最完美的几何图形.当然,人们对圆的赞美绝不仅仅在于它的对称性,而更在于有关圆的性质定理和结论有着非常重要且广泛的应用,这样的例子很多.下面的问题通过添加圆辅助线,能巧妙地解决几何中的某些最值问题.复习回顾 三角形三边的关系定理为:(1)两边之和大于第三边; (2)两边之差小于第三边.与圆有关的重要结论如图(1)所示,点P 是⊙O 外一点,点A 是⊙O 上一动点,连结OA 、P A ,则有下列重要结论:(1)当点A 为OP 与⊙O 的交点时,线段P A 的长度取得最小值,如图(2)所示; (2)当点A 为PO 的延长线与⊙O 的交点时,线段P A 的长度取得最大值,如图(3)所示.图(1)图(2)图(3)AN结论应用例1. 如图(4)所示, AB 是半圆O 的直径,AB =6,P A 为⊙O 的切线,P A =4,点C 为⊙O 上一动点,则PC 的最小值为________.图(4)例2. 如图(5)所示,正方形ABCD 的边长为2,点E 、F 为AD 边上的两个动点,且AE =DF ,连结BD 、BE 、CF ,BD 与CF 交于点G ,连结AG ,交BE 于点H ,则线段DH 的最小值是________.图(5)HGF DABCE例3. 如图(6)所示,在边长为2的菱形ABCD 中,∠A =60°,点M 是AD 边的中点,点N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,则A ′C 长度的最小值是________.例题解析例1. 解:连结OP ,与半圆O 交于点C ,此时PC 取得最小值. ∵P A 是⊙O 的切线 ∴AB PA ⊥在Rt △AOP 中,由勾股定理得:5342222=+=+=OA PA OP∴235=-=-=OC OP PC 即PC 的最小值为2.例2. 解:∵四边形ABCD 为正方形∴︒=∠=∠︒=∠=∠==45,90,CDG ADG CDF BAE DC DA AB 在△ABE 和△DCF 中∵⎪⎩⎪⎨⎧=∠=∠=DC AB CDF BAE DF AE ∴△ABE ≌△DCF (SAS ) ∴21∠=∠同理可证:△ADG ≌△CDG ∴32∠=∠ ∴31∠=∠∵︒=∠+∠903BAH∴︒=∠+∠901BAH ∴︒=∠90AHB∴点H 在以AB 为直径的⊙O 上如图所示,连结OD ,当点H 为OD 与⊙O 的交点时,DH 取得最小值. 在Rt △AOD 中,由勾股定理得:5122222=+=+=OA AD OD∴15-=-=OH OD DH . 即DH 的最小值为15-.例3. 解: ∵点M 是AD 边的中点 ∴1==DM AM 由折叠可知:M A AM '= ∴M A DM AM '==∴点A 、D 、'A 在以点M 为圆心,以AM 的长为半径的圆上,如左图所示. 当点'A 为CM 与⊙M 的交点时,C A '的长取得最小值.过点M 作CD ME ⊥,交CD 的延长线于点E . ∵四边形ABCD 为菱形 ∴AB CD //∴︒=∠=∠60EDM A ∴︒=∠30DME ∴25212,2121=+=+===DE CD CE DM DE ∴232112222=⎪⎭⎫ ⎝⎛-=-=DE DM ME在Rt △CEM 中,由勾股定理得:723252222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=ME CE CM ∴17''-=-=M A CM C A 即C A '的最小值为17-.。
构造辅助圆 巧解初中数学几何问题

BP 图1
的交点为点Q,连接A Q,试求解三角形A CB与三角形 A PQ的面积之比.
解析院根据已知条件,蚁A BQ=蚁A PQ=90毅,因此A 、 B、P、Q四点共圆,因此,可以绘制辅助圆O.可知蚁PA Q= 蚁PBQ=45毅,进而确定三角形A PQ为等腰直角三角形,很 容易就可以求解两个三角形的面积之比.
初中
65
教
学
参谋
解法探究
2019 年 10 月
的一类动态问题. 证明院如图3所示,已知线段
A B和点C、D,并且蚁D=蚁A CB.
C
D
E
根据“不共线的三点可以确定一
个圆”,可通过A 、B、C三点作圆
O
O.
A
B
如果点D在该圆外,A D和圆
图3
O 交 于 点 E,连 接 BE. 因 为 同 弧 所
对的圆周角相等,因此可得蚁A EB=蚁A CB. 因为蚁D=
B
A
边 形 A BCD 满 足 :A B 椅CD,A D =
DC=DB=p,BC=q,试求解对角线 C
D
E
A C的长度.
解析院在四边形A BCD中,已
图2
知DA =DB=DC,因此可以以点D
为圆心,以DB的长为半径构造辅助圆,即三角形A BC的
外接圆.易知蚁CA E=90毅.A B椅CD,则BC=A E.在直角三角
形A CE中计算A C的长度,即A C= 姨CE2-A E2 = 姨4p2-q2 . 渊三冤动态几何问题 在平面内,如果已知线段A B,点C是A B外一个动点,
并且满足蚁A CB是固定值,那么点C在以A B为弦的圆上. 特别地,如果蚁A CB=90毅,那么点C就在以A B为直径的圆 上 .通 过 这 一 定 理 ,可 以 借 助 绘 制 辅 助 圆 来 解 决 几 何 中
巧解初中几何问题——以构造辅助圆为例

2023年12月下半月㊀解法探究㊀㊀㊀㊀巧解初中几何问题以构造辅助圆为例◉江苏省靖江市外国语龙馨园学校㊀徐㊀乐㊀㊀圆是初中数学平面几何中非常重要的一个知识点,与初中数学中其他几何问题有着紧密的联系.所以在解决几何问题时,一些无法利用常规思路求解的综合问题可以尝试通过构造辅助圆的方式来解决.因此,在初中数学几何问题解题教学中,教会学生如何正确使用辅助圆来巧解几何问题是教师需要重点研究的问题.下面将通过例题对辅助圆的应用进行说明.1角的问题例1㊀在әA B C 中,A B =A C ,øA B C 的平分线交A C 于点D ,已知B C =B D +A D ,求øA 的度数.分析:根据题中所给已知条件,可以判定әA B C为等腰三角形,但是想要根据已知条件通过常规方式求øA 的度数存在一定困难.结合题中所给的角平分线,可以联想圆中共顶点的角的问题,作әA B D 的外图1接圆,与әA B C 的B C 边交于点E ,连接D E ,如图1.根据B D 是øA B C 的角平分线,可以知道A D =D E ,同时还能得到这个辅助圆为四边形A B E D 的外接圆.根据圆内接四边形的对角互补的性质可得øA B C =øE D C ,根据әA B C 为等腰三角形可知øA B C =øE D C =øC ,于是可得øB E D =2øC ,且әE D C 为等腰三角形.所以D E =C E ,则A D =D E =C E ,然后结合B C =B E +A D 得到B D =B E ,所以øB D E =øB E D =2øC .这样就可以在әB D E 中计算øC 的度数,即12øC +2øC +2øC =180ʎ,所以øC =40ʎ,最后计算得出øA =100ʎ.在初中数学几何问题中构造辅助线需要充分结合试题的情况来进行.本题中辅助圆的构造就是结合了本题所给定的角平分线的关系,根据相等的圆周角所对应的弧和弦长相等的性质来实现;然后通过辅助圆及相关线段关系来与相关角取得联系;最后利用三角形的性质求解.教师要对学生进行相应的引导,让学生掌握通过角的关系来构造辅助圆,进而借助辅助圆解决问题.2线段长度的问题图2例2㊀如图2所示,在R t әA B C中,A B ʅB C ,A B =6,B C =4,P 是R t әA B C 内部的一个动点,且满足øP A B =øP B C ,则线段C P 的最小值为(㊀㊀).A.32㊀㊀㊀㊀㊀㊀B .2C .81313D.121313图3分析:根据A B ʅB C 可以知道øA B C =90ʎ,结合øP A B =øP B C 可得到øA P B =90ʎ,所以әA B P 是直角三角形.根据直角三角形中斜边的中线等于斜边的一半以及圆的直径所对的圆周角是90ʎ,可知点P 在以A B 为直径的圆上.以A B 的中点O 为圆心,A B 为直径作圆,如图3所示.这样就可得到当P C 的值最小时,点P 正好在线段O C 上.因为A B =6,所以O B =3.在R t әO B C 中,B C =4,根据勾股定理得到O C =5,于是可求出P C 的最小值为2.所以正确答案是选项B .例2的解题关键是需要判断点P 的轨迹,首先根据试题中所给定的关系得到øA P B =90ʎ,结合直角三角形的性质和圆的性质很容易判断出点P 在以直线A B 为直径的圆上,然后就能够求解最小值.因此,在解题的过程中,只有认真分析题目条件,才能顺利找到解题思路.教师在进行解题教学时需要教会学生如何根据题目中所给定的已知条件来进行分析,从而找到解题思路.很多几何问题都是需要在解题的过程中才能够找到相应的解题思路,并不是通过对试题的观察就能得到解题思路的.因此结合已知条件来对试97解法探究2023年12月下半月㊀㊀㊀题中存在的关系进行分析,在解题的过程中发现解题思路,是解决问题最好的方式.教师需要引导学生先根据已知条件尝试找到解题的思路,进而解决问题.3三角形相似的问题例3㊀әA B C 中,A D 是øB A C 的外角平分线,交B C 的延长线于点D ,求证:B D D C =A BA C.分析:A B ,A C 是әA B C 的两条边,而B D ,D C则是线段B D 上的两条线段,根据所学的知识,要证明B D D C =A BA C ,线段成比例关系可以通过证明三角形相似来解决.因此需要将线段B A 延长至点F ,连接D F ,构建出әB A C ʐәB D F ,得到A B A C =B DD F,然后证明C D =D F 就可以了,从而将证明的关键转化为证明C D =D F .结合题意,øB A C 的外角平分线交B C的图4延长线于点D ,如图4,根据例题1中的方式构造әA C D 的外接圆,B A 的延长线与圆交于点F ,连接D F .根据圆的性质可以得到C D =D F ,通过相似三角形的证明就可以解决问题.几何问题中需要求证的结论存在线段比例关系或者线段等积关系时,都会涉及三角形相似或者全等的证明,通过构造圆为三角形相似或者全等提供条件,实现对问题的求解.在这个过程中,需要充分结合例题1和例题2中辅助圆构造的方式来找到相应的关系.4动点的问题图5例4㊀如图5所示,边长为3的等边三角形A B C ,D ,E 分别是B C ,A C 边上的两个动点,且B D =C E ,A D ,B E 交于点P ,求点P 的运动路径长和C P 的最小值.分析:首先需要对点P 的运动路径进行判定.根据等边三角形的相关性质和B D =C E 可以得到әA B D ɸәB C E ,这样就得到øC B E =øB A D ,然后通过øC B E +øA B P =60ʎ得到øB A P +øA B P =øA P E =60ʎ,于是øA P B =120ʎ.可以发现在点D 和点E 移动的过程中,øA P B =120ʎ是恒成立的,所以可以认为点P 在A B 为弦的圆上.假设弦A B 所在圆的圆心为O ,连接O P ,O A ,O B ,根据圆的性质㊁әA B C 的边长为3可计算出圆O 的半径O A =3,然后计算出点P 的运动路径长度为233π,C P 的最小值为3.解:由A B =B C ,øA B D =øB C E ,B D =C E 得әA B D ɸәB C E .由øC B E +øA B P =60ʎ,得øB A P +øA B P =øA P E =60ʎ.所以øA P B =120ʎ.故点P 的运动轨迹是以A B 为弦的圆上的一段弧.图6如图6所示,作әA B P 的外接圆,圆心为O ,连接O A ,O B ,O P ,O C .由O A =O B ,A C =B C ,得әA O C ɸәB O C .所以øO A C =øO B C ,øA C O =øB C O =12øA C B =30ʎ,øA O C =øB O C =12øA P B =60ʎ.故øO A C =90ʎ.根据勾股定理,可得O A =3,O C =23.所以,弦A B 所对的弧长为3ˑ23π=233π;当O ,P ,C 三点共线时,C P 最小,且最小值为3.在三角形的动点问题中,如果动点与一条线段所构成的角度固定,则说明这个动点的轨迹是以这个线段为弦的圆上的一段弧,通过这个关系可以构造辅助圆,然后利用圆的性质来求解问题.本题给定的是正三角形,当然不同的三角形中所呈现的关系可能会存在差别,但是本质没有变化.例如,在例题2中通过计算所得到的角度为90ʎ的特殊角,这个辅助圆的圆心就在直角三角形的斜边上.例4中这个角度为120ʎ,圆心在三角形的外部,通过辅助圆来充分利用圆的相关性质,能够更好地对问题进行求解,实现问题的解决.本文中对辅助圆在初中数学平面几何中的应用进行了总结,并通过相关例题对其用法进行了说明.在初中数学平面几何问题中巧用辅助圆能够优化试题解法,实现快速求解.因此,教师在解题教学的过程中需要对学生进行有效地引导,让学生掌握辅助圆的应用,从而提升解题能力;提升数学素养.Z08。
【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】

第一章 圆专题1巧构圆,妙解题知识解读在处理平面几何中的许多问题时,常常需要借助圆的性质,问题才能解决.而有时候我们需要的圆并不存在,这就需要我们能利用已知的条件,借助图形的特点把实际存在的圆找出来,从而运用圆中的性质来解决问题,往往有事半功倍的效果,使问题获得巧解或简解,这是我们解题必须要掌握的技巧. 作辅助圆的常用依据有以下几种:①圆的定义:若几个点到某个固定点的距离相等,则这几个点在同一个圆上; ②有公共斜边的两个直角三角形的顶点在同一个圆上;③对角互补的四边形四个顶点在同一个圆上,简记为:对角互补,四点共圆;④若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,则这两个三角形有公共的外接圆,简记为:同旁张等角,四点共圆.培优学案典例示范例1将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转(0120)αα<<得到线段AD ,连接CD . (1)连接BD .①如图1-1-1①,若α=80°,则∠BDC 的度数为;②在第二次旋转过程中,请探究∠BDC 的大小是否改变?若不变,求出∠BDC 的度数;若改变,请说明理由;(2)如图1-1-1②,以AB 为斜边作Rt △ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图1-1-1②①EDCBADBA【提示】(1)①∠BDC =∠ADC -∠ADB ,利用“等边对等角及三角形内角和为180°”可求出∠BDC 为30°; ②由题意知,AB =AC =AD ,则点B ,C ,D 在以A 为圆心,AB 为半径的圆上,利用“一条弧所对的圆周角等于它所对的圆心角的一半”可快速求出∠BDC 仍然为30°;(2)过点A 作AM ⊥CD 于点M ,连接EM ,证明“点A ,C ,D 在以M 为圆心,MC 为半径的圆上”.跟踪训练如图1-1-2,菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.若∠EAF =60°,求证:△AEF 是等边三角形.角相等”获证.图1-1-2BFEDC A例2 (1)如图1-1-3①,正方形ABCD 中,点E 是BC 边上的任意一点,∠AEF =90°,且EF 交正方形外角平分线CF 于点F .求证:AE =EF ;(2)若把(1)中的条件“点E 是BC 边上的任意一点”,改为“点E 是BC 边延长线上的一点”,其余条件不变,如图1-1-3②,那么结论AE =EF 是否还成立?若成立,请证明;若不成立,请说明理由.①②图1-1-3A B E CFDFDCEBA【提示】连接AC ,AF ,显然∠ACF =∠AEF =90°,所以A ,E ,C ,F 四点在以AF 为直径的圆上. (1)如图1-1-4①,当点E 在BC 边上,则∠AFE =∠ACE =45°,于是△AEF 是等腰直角三角形,AE =EF 获证;(2)如图1-1-4②,当点E 在BC 边的延长线上,则∠F AE =∠FCE =45°,于是△AEF 是等腰直角三角形,AE=EF 获证.F图1-1-4②①【拓展】本题将“正方形”改为“正三角形”,“∠AEF =90°”相应改为“∠AEF =60°”,仍然可以运用构造“辅助圆”的思路.还可进一步拓展为“正n 边形”,360180AEF =-∠,仍然可延续这种思路,读者可自己完成.跟踪训练已知,将一副三角板(Rt △ABC 和Rt △DEF )如图1-1-5①摆放,点E ,A ,D ,B 在一条直线上,且D 是AB的中点.将Rt △DEF 绕点D 顺时针方向旋转角(090)αα<<,在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N ,分别过点M ,N 作直线AB 的垂线,垂足为G ,H . (1)如图1-1-5②,当α=30°时,求证:AG =DH ; (2)如图1-1-5③,当α=60°时,(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当090α<<时,(1)中的结论是否成立?请写出你的结论,并根据图1-1-5④说明理由.③④图1-1-5②①HGEAF D C (N )BFE DCBA【提示】本题除了常规解法外,还可考虑构造“辅助圆”.例3 已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边于点P (点P 不与点B ,点C 重合),△BMN 的边MN 始终在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时.①如图1-1-6①,当θ=45时,∠ANC 的度数为 ; ②如图1-1-6②,当45θ≠时,①中的结论是否发生变化?说明理由;(2)如图1-1-6③,当∠BAC =∠MBN ≠90°时,请直接写出∠ANC 与∠BAC 之间的数量关系,不必证明.③②C【提示】由于在旋转过程中不变的关系是:∠BAC =∠MBN ,AB =AC ,BM =BN ,易知∠ABC =∠ACB =∠BMN =∠BNM .由∠ACB =∠BNM 可知A ,B ,N ,C 四个点在同一个圆上(如图1-1-7),则∠ANC =∠ABC =1902BAC -∠,这样思考,所有问题都会迎刃而解.跟踪训练在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1-1-8①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图1-1-8②中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.①图1-1-8②DP BACMQQM (P )CB A例4如图1-1-9,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.图1-1-9【提示】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.跟踪训练已知,如图1-1-10①,,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=43,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图1-1-10②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.若四边形CDEF的周长用t表示,请直接写出t的取值范围.图1-1-10例5已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.、① ②③图1-1-11【提示】本题除了建立方程模型,将问题转化为方程是否有解的判断外,还可以通过构造辅助圆,将问题转化为直线与圆的位置关系来讨论.跟踪训练1.如图1-1-12,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC1m .图1-1-12【提示】(1)①由直线y=-x+3写出OA=3,OB=3;由等腰直角三角形的边长关系,可得AB2;由PC⊥y轴,可得QC=1,BC=2;由对称知A'B=AB2,OA'=0A=3,然后用勾股定理求出A'C的长,也就可以求出△A'BC的周长;(2)②如果选用上一题的思路求∠BMC的正弦值,会陷入计算的麻烦,这里采用转化的思想,找到外接圆的半径,另外还应分类讨论。
巧构辅助圆 妙解中考题
巧构辅助圆 妙解中考题作者:河北省张家口市第十九中学 贺峰常言道:“兵无常势,水无常形”,面对千变万化的中考试题,同学们常常感觉到思维受阻,此时适当地运用转化的思维策略,换个角度去分析问题、思考问题,可使问题轻松获解。
现以中考试题为例,为同学们谈谈辅助圆的妙用:一、利用“同(等)弧所对的圆周角等于其所对圆心角的一半”确定满足条件的点的个数 例1如图1,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线l 上取一点P ,使得∠APB =30°,则满足条件的点P的个数是( ) (A )3个 (B )2个 (C )1个 (D )不存在 分析:因为直线l 与AC 成60°的角,欲确定满足条件的点P ,使得∠APB =30°,我们不妨通过构造辅助圆,利用“同(等)弧所对的圆周角等于其所对圆心角的一半”解决,如图2,以AB 为边作等边△ABO ,以点O 为圆心,AB 为半径作圆交直线l 与点P 1、P 2,∵∠AOB =600 ∴∠AP 1B =300,∠AP 2B =300,因此满足条件的点P 的个数是2个。
解:选B 。
二、利用 “直径所对的圆周角为直角”确定直角的个数例2如图3,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P 的个数是( )(A )0 (B )1 (C )2 (D )3分析:由题意,欲确定∠APE =900时点P 的个数,我们不妨连接AE 、以AE 的中点O 为圆心,12AE 为半径构造辅助圆,利用“直径所对的圆周角为直角”解决。
如图4,连接AE 、取AE 的中点O ,然后以点O 为圆心,以OA 为半径作圆O 与BD 交于点C 、P ,∵AE 为直径,∴∠ACE =90°,∠APE =90°∴使∠APE 为直角的点的个数有2个。
巧构辅助圆难题也简单
巧构辅助圆 难题也简单安徽省灵璧县黄湾中学(234213) 华腾飞在解(证)几何问题的过程中,为了沟通条件与结论之间的联系,常要作出一些辅助线,而辅助圆便是辅助线中的一种,对于有些问题,从题设和结论来看似乎与圆没有什么关系,此时如果受到思维定势的影响,可能解题就会束手无策。
若能构造辅助圆,然后再运用圆的定义、性质,便能够顺利地建立起条件与结论之间的联系,进而找到简捷、巧妙的解题方法,从而“圆”满地解决问题。
下面举例说明,相信同学们会从中受到有益的启示。
例1 如图1所示,已知在△ABC 中,∠C =2∠B 。
求证BC AC AC AB ⋅+=22 分析 只要把所求的等式改写为BC AC AC AB ⋅=-22,即BC AC AC AB AC AB ⋅=-+))((,然后设法利用相交弦定理问题容易得证。
证明 以A 为圆心,AB 为半径作圆,BC 的延长线交圆于D ,向两侧延长AC 分别交圆于E 、F 。
∵AB =AD∴∠B =∠D∵∠ACB =2∠B =2∠D又∠ACB =∠D +∠CAD ,∴∠D =∠CAD ,AC =CD∵CD BC CF EC ⋅=⋅,即AC BC AC AF AC AE ⋅=-+))((, AC BC AC AB AC AB ⋅=-+))((则AC BC AC AB ⋅=-22故BC AC AC AB ⋅+=22点评 通过作辅助圆,利用相交弦定理,不仅使复杂的问题简单化,而且解题过程简单、明了,令人欢欣鼓舞。
例2 在正五边形ABCDE 所在的平面内,能找到点P 使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为( )(A ) 2 (B) 3 (C ) 4 (D ) 5解析 点P 只能在直线1l (即直线BE )与直线2l 上,其中2l 与直线C D 的距离等于1l 与直线CD 的距离,所以在等腰三角形PAB 中:⑴当AB 为底边时,AB 的垂直平分线与1l 交于1P ,与2l 交于2P⑴当PA 为底边时,以B 为圆心,AB 为直径的圆在直线1l 上截得3P 、4P⑶当PB 为底边时,E 符合条件。
巧作辅助圆 妙解几何题
巧作辅助圆妙解几何题【摘要】数学教学是中小学教学的重点,也是很多学科的基础,讲求的是逻辑推理,原理定理的运用,其中在中学教学中圆的运用很重要,文章就中学数学教学过程中辅助圆在解答几何题中的运用,主要以例题为主进行分析。
【关键词】辅助圆;几何;数学教学;圆有一类几何问题,表面上纯属直线型问题的题型,而利用直线型的有关知识解答很繁杂,甚至有的很难找到解决问题的思路和途径,如果对题设进行认真分析,仔细观察图形,可挖掘题设中所蕴含的内在条件潜力,其中有与圆的知识相关联的背景条件,巧添辅助圆,沟通与圆的内在联系,为解题提供了新的途径,把圆的有关性质在解题中适用,可化繁为简,化难为易。
下面举例予以说明。
例一:如图一,等腰△ABC中,AC=BC,∠C=70°,点P在△ABC的外部,且与C点均在AB的同侧,如果BC=PC,那么∠APB=_____分析:显然,条件中有BC=PC=AC,由圆的定义可知,B、A、P三点在以C为圆心,BC为半径的圆上。
解:以C为圆心,BC为半径作图∵BC=PC=AC∴B、P、A三点在圆上∴∠APB=∠ACB=×70°=35°例二:如图二,在ABC中,AB=AC=7cm,点P是BC边上的一点,AP=5cm,求BP·CP的值。
分析:若以A为圆心,AB为半径作圆,则可构成相交弦的结构特征,可直接求BP·CP的值。
解:以A为圆心,AB为半径作圆,双向延长AP分别交圆于M、N,可知,AN=AM=AB=7cm,由相交弦定理得:BP·CP=PM·PN=(AM-AP)(AP+AN)=(AB-AP)(AB+AP)=AB2-AP2=72-52=24例三:如图三,四边形ABCD,AB//CD,AB=AC=AD=a,BC=b,求BD 的长。
分析:注意题设AB=AC=AD=a,易知:B、C、D在以A为圆心,a为半径的圆上,因此,添辅助圆,一下打开了思路,使隐蔽在题中的关系跃然纸上。
巧作辅助圆解决问题
巧作辅助圆解决问题在近几年中考试卷中,常出现这样一类题目,从表面上看是一个三角形或四边形问题,用三角形或四边形的知识来解决非常困难,甚至根本无法解决,但我们可以从已知条件中发现蛛丝马迹,也就是发现图形中的隐含特征,从而通过构造辅助圆,借助圆的知识来解决问题这样的问题一般具有以下特征一、到定点的距离等于定长例1如图1,在正方形ABCD外侧作直线DE,使45°<∠CDE<90°,点C关于直线DE的对称点为M,连接CM,AM,其中AM交直线DE 于点N,若MN=4,AN=3,则正方形ABCD的边长为( )。
A. B.5C.5D.解析:如图2,连接DM,由于点C、M关于直线DE对称,故直线DE垂直平分线段CM,因而DC=DM.四边形ABCD是正方形,故DA=DC=DM,即点A、C、M到点D的距离相等,根据这一特征,我们可以想到,以点D为圆心,DA的长为半径画圆,则点C、M必在⊙D上.由∠ADC=90°,可得∠AMC=45°.连接CN,则CN=MN=4,故∠MCN=∠AMC=45°,从而∠ANC=90°,连接AC,我们不难求出AC=,选D。
点评:随着直线DE位置的变化,点M的位置也在变化,但它一定在以点D为圆心,DA的长为半径的圆上,这就是运动变化中的不变关系,解决这类问题的关键是抓住“A、C、M三点到点D的距离相等”这一特征,但这个特征比较隐蔽,不容易发现,要综合考虑本题中的所有条件,而且要有一定的洞察力和解题经验.事实上,这类问题中的隐含条件往往都不是一眼就能看出来的。
二、张角为直角例2如图3,在等腰R△ABC中,∠BAC=90º,AB=AC,BC=2,点D 是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为()。
A、2-2B、C、-1D、-1解析:本题中点D在动,直径AD的大小在变,线段BD在动,点E也在动,运动变化中有不变的量吗?有!如图4,连接AE,由于AD为直径,故∠AED的大小保持不变,为直角,从而∠AEB始终为直角,∠AEB的两边经过线段AB的两个端点,我们不妨称∠AEB为线段AB所对的张角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧用辅助圆,妙解几何题
在一些数学题中,看似与圆毫无关系但是用常规的解题方法却无法解决问题,而通过题中的某些条件构造辅助圆,运用圆的知识进行解答,往往就会使题目简单化,从而使难题迎刃而解.本文结合一些实例,探析如何巧用辅助圆妙解几何题.
一、几何问题中的求线段长度
求线段的长度是初中数学比较常见的问题.该问题的常规解法是通过做垂直线构建直角三角形从而运用勾股定理或是巧用面积公式.但是在一些问题中,通过直接作出垂线,往往会使图形更加复杂,从而不能成功解题
例 1 如图所示,在四边形ABCD 中,//AD BC ,已知BC CD AC ===,
AB =.则BD = .
解析 通过题干中的条件BC CD AC ==,我们可以想到以C 为圆心,BC 为半径作圆.根据圆的性质:直径对应的圆周角为直角,可以延长BC 交于⊙C 于点E ,连接DE ,
如图所示,此时BDE V 为直角三角形.//AD BC Q ,AB DE ∴==,由勾股定理得
BD =BD.
点拨 根据题干中的线段相等,从而构建辅助圆,接着利用圆的性质进行解题.其中需要注意的是,虽然辅助圆能做出,但是要想解题,就要对圆的性质有一个深刻的理解.
二、几何问题中的求角的度数
求角的度数问题一般都是以三角形为载体,该问题的常规解法是利用三角函数的知识去解答,但是由于初中数学只学习了一些特殊的三角函数值且在直角三角形的载体中.当遇到一般的三角形,此时学生往往会无计可施
例 2 如图所示,在ABC V 中,其中AB AC =,BD 是ABC ∠的平分线,BD AD BC +=,则A ∠= .
解析 由题意得,本题要求的是A ∠,由于此题告知任意一个角的大小且ABC V 也不是直角三角形,因此运用三角函数的知识是很难解答该题的.由题干中BD 平分ABC ∠,可
得ABD DBC ∠=∠.作ABC V 的外接圆,如图所示.根据圆的性质可得,AD DE =.因为四边形ABED 为内接四边形,所以ABC EDC C ∠=∠=∠,所以2C DEB ∠=∠,DE EC =.因为BD AD BC BE EC +==+且AD DE EC ==,所以BE BD =.因为2DEB BDE C ∠=∠=∠,在BDE V 中,180DEB BDE DBE ∠+∠+∠=︒,即
141802
C C ∠+∠=︒,得40C ∠=︒.在ABC V 中,180A ABC C ∠+∠+∠=︒,得100A ∠=︒.
点拨 此题是根据角平分线从而想到画出三角形的外接圆,然后找出各角之间的关系进行解答的.因此,在求解角的度数时,要充分运用辅助圆,找出相等的角,最后通过运用三角形内角和为180︒列出式子求解.此类题型的难点在于,如何画出辅助圆.
三、几何问题中的求最值
求最值的问题在中考中是常见问题,其一般的思路就是设未知数,然后寻找关系列出函数表达式,即可解答出.虽然解题思路清晰,但是此类题型的难点就是在如何将条件整合起来,找出其之间的关系,
例3 如图所示,在Rt ABC V 中,30BAC ∠=︒,AB =动点P 、Q 分别在AB 、AC 上,90CPQ ∠=︒,则min CQ = .
解析 经过审题后,感觉CQ 就是独立的,无法向已知条件上靠,唯一可以用的就是90CPQ ∠=︒,但是无法运用勾股定理,因为三条边都是未知的.但是通过仔细审题,从条件90CPQ ∠=︒出发,可以想到圆的直径对应的圆周角为直角此时可以试一下,看画出辅助圆对解题有无帮助.通过图可以看出,要想CQ 最小,AB 与⊙O 要相切.此时就可以根据OP AB ⊥,OP OC =,可得30APQ ∠=︒,此时设PQ OQ OP OC r ====,3cos303r AC AB ==︒=g ,解得1r =,所以min 2CQ =.
点拨 根据题干中条件画出辅助圆,借助圆的性质:圆心到切点之间的线段最短是解答本题关键,可见辅助圆对题目的综合分析起了很大的作用.其中需要特别注意的是,当题中
给出直角时不能单单的只想到勾股定理也要联想到圆.
综上所述,在解答几何问题时,如若发现运用常规方法不能解决问题或是解决过程比较繁琐,此时可以通过仔细审题,挖掘题干中与圆有联系的条件,从而做出辅助圆进行分析解题.由于做出辅助圆的关键就是善于捕捉题干的细节之处,这对学生的要求比较高,因此学生要在以后的学习中勤总结.。