中考数几何巧画辅助线的技巧

中考数几何巧画辅助线的技巧
中考数几何巧画辅助线的技巧

中考数几何巧画辅助线的技巧

中考数学少不了几何问题的考察,而涉及作图题,一般都要做辅助线完成,马上就要中考了,下面给大家带来辅助线的画法秘籍,在中考考场,祝你一臂之力!

基本图形的辅助线的画法

1

三角形问题添加辅助线方法

〔1〕有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

〔2〕含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

〔3〕结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

2

平行四边形中常用辅助线的添法

平行四边形〔包括矩形、正方形、菱形〕的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有以下几种,举例简解如下:

〔1〕连对角线或平移对角线;

〔2〕过顶点作对边的垂线构造直角三角形;

〔3〕连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;

〔4〕连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;

〔5〕过顶点作对角线的垂线,构成线段平行或三角形全等。

3

梯形中常用辅助线的添法

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:〔1〕在梯形内部平移一腰;

〔2〕梯形外平移一腰;

〔3〕梯形内平移两腰;

〔4〕延长两腰;

〔5〕过梯形上底的两端点向下底作高;

〔6〕平移对角线;

〔7〕连接梯形一顶点及一腰的中点;

〔8〕过一腰的中点作另一腰的平行线;

〔9〕作中位线。

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。

4

圆中常用辅助线的添法

在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。

要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我

还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。〔1〕见弦作弦心距。有关弦的问题,常作其弦心距〔有时还须作出相应的半径〕,通过垂径平分定理,来沟通题设与结论间的联系。

〔2〕见直径作圆周角。在题目中假设圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

〔3〕见切线作半径。命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。

〔4〕两圆相切作公切线。对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。

〔5〕两圆相交作公共弦。对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。

〝教书先生〞恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,〝教书先生〞那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的〝先生〞概念并非源于教书,最初出现的〝先生〞一词也并非有传授知识那般的含义。?孟子?中的〝先生何为出此言也?〞;?论语?中的〝有酒食,先生馔〞;?国策?中的〝先生坐,何至于此?〞等等,均指〝先生〞为父兄或有学问、有德行的长辈。其实?国策?中本身就有〝先生长者,有德之称〞的说法。可见〝先生〞之原意非真正的〝教师〞之意,倒是与当今〝先生〞的称呼更接近。看来,

〝先生〞之本源含义在于礼貌和尊称,并非具学问者的专称。称〝老师〞为〝先生〞的记载,首见于?礼记?曲礼?,有〝从于先生,不越礼而与人言〞,其中之〝先生〞意为〝年长、资深之传授知识者〞,与教师、老师之意基本一致。

初中数学辅助线的添加方法

初中数学辅助线的添加方法 一、添辅助线有二种情况 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形: 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形:

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形: 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角: 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。 二、基本图形的辅助线的画法

初中几何辅助线技巧秘籍

初中几何辅助线技巧大全 一初中几何常见辅助线口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 注意点 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 二 由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地 去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 图1-1 O A B D E F C A D E

梯形中添加辅助线的六种常用技巧

梯形中添加辅助线的六种常用技巧 浙江唐伟锋 梯形是不同于平行四边形的一类特殊四边形, 解决梯形问题的基本思路是通过添加辅助 线,将梯形进行割补、拼接转化为三角形、平行四边形问题进行解决。一般而言,梯形中添 加辅助线的常用技巧主要有以下几种—— 一、平移一腰 从梯形的一个顶点作一腰的平行线, 将梯形转化为平行四边形和三角形, 从而利用平行 四边形的性质,将分散的条件集中到三角形中去,使问题顺利得解。 例1、如图①,梯形 ABCD 中AD // BC , AD=2cm , BC=7cm , AB=4cm ,求CD 的取值范围。 解:过点D 作DE // AB 交BC 于E , ?/ AD // BC , DE // AB ???四边形ABED 是平行四边形(两组对边分别平行的四边形是平行四边形) /? DE=AB=4cm , BE=AD=2cm ? EC=BC — BE=7 — 2=5cm 在厶DEC 中,EC — DE v CD v EC + DE (三角形两边之和大于第三边,两边之差小于 第三边) ? 1cm v CD v 9cm 。 、延长两腰 将梯形的两腰延长,使之交于一点,把梯形转化为大、小两个 三角形,从而利用特殊三角形的有关性质解决梯形问题。 例2、如图②,已知梯形 ABCD 中,AD // BC , / B= / C ,求证: 图② 梯形ABCD 是等腰梯形。 图① E

证明:延长BA 、CD ,使它们交于 E 点, ?/ AD // BC ???/ EAD= / B ,/ EDA= / C (两直线平行,同位角相等) 又??? B= / C ???/ EAD= / EDA ? EA=ED , EB=EC (等角对等边) ? AB=DC ?梯形ABCD 是等腰梯形(两腰相等的梯形是等腰梯形) 三、平移对角线 从梯形上底的一个顶点向梯形外作一对角线的平行线, 与下底延长线相交构成平行四边 形和一特殊三角形(直角三角形、等腰三角形等) 。 例3、如图③,已知梯形 ABCD 中,AD=1. 5cm, BC=3.5cm,对角线 AC 丄BD ,且BD=3cm , AC=4cm ,求梯形 ABCD 的面积。 解:过点D 作DE // AC 交BC 延长线于E ?/ AD // BC , DE // AC ?四边形 ACED 是平行四边形(两组对边分别平行的四 边形是平行四边形) ? CE=AD=1 . 5cm, DE=AC=4cm ???AC 丄 BD ? DE 丄 BD BC ) h 2(CE BC ) h -BE h (h 为梯形的高) 1 1 6cm 2 BD DE 3 4 2 2 四、作高线 梯形 ABCD = -(AD 2

初中数学几何辅助线常用方法

第一章 中点模型的构造 当已知条件中出现一个中点时,你首先想到的辅助线的解题方法是什么?如果已知两个中点呢? 介绍以下方法: 1) 倍长中线或类中线(与中点有关的线段)构造全等三角形; 2) 三角形中位线定理; 3) 已知直角三角形斜边中点,可以考虑构造斜边中线; 4) 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”。 例1 在△ABC 中,AB=5,AC=3,BC 边上的中线AD=2,求BC 的长. 例2 已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF=EF ,求证:AC=BE. 变式: 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 中点,EF//AD 交CA 的延长线于点F ,交AB 于点G ,若AD 为△ABC 的角平分线,求证:BG=CF. B C A D D B C D E B C

例3 在Rt △ABC 中,∠BAC=90°,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED ⊥FD. 以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形,还是直角三角形,或者是钝角三角形? 例4 已知在△ABC 中,BE 、CF 分别为边AC 、AB 上的高,D 为BC 的中点,DM ⊥EF 于点M. 求证:FM=EM. 例5 已知:△ABD 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°. 如图,连接DE ,设M 为DE 的中点,连接MB 、MC. 求证:MB=MC. D B A D B A B D

[全]初中几何辅助线添加技巧

初中几何辅助线添加技巧 许多初学者虽然知道辅助线的重要,但是,总不得法,常以侥幸心理盲目乱试,找不到适当的辅助线,问题不得解决。其主要原因是没有理解题意,不明白所增添的辅助线的作用,从而无从做起。下面分享初中常见的几种辅助线。 截长补短法是三角形全等证明中的一种常见辅助线做法,截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。

一般来说,出现以下几种情况需要考虑截长补短。当出现上面提到的证明两条线段的数量关系,三条或四条线段之间的和、差关系时,我们可以使用截长补短法来进行辅助线的添加; 当题目条件中出现这种数量关系时,也可以使用截长补短法进行添辅助线;碰到证明两角相加等于180°的题型其实也可以使用截长补短法。

中点是几何图形中比较特殊的点,图形中出现中点,我们学过哪些图形的性质与中点有关?(1)等腰三角形三线合一;(2)直角三角形斜边上的中线等于斜边的一半;(3)8字型全等图形。 所以,当我们看到图形中有中点这一条件,我们就可以开始联想了。看到中点,除了平分一条线段之外,我们还能联想到什么呢?中点又与三角形的中位线息息相关;中点还可以与中心对称相联系.解答中点问题的关键是通过联想恰当地添加辅助线,如作倍长中线、作直角三角形斜边上的中线、构造三角形中位线、构造中心对称图形等。

圆是初中数学的重点和难点,所以关于圆相关的辅助线也是重点掌握的对象。遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连接过弦的端点的半径;遇到有直径时,常常添加(画)直径所对的圆周角;遇到90度的圆周角时,常常连接两条弦没有公共点的另一端点;遇到弦时,常常联结圆心和弦的两个端点,构成等腰三角形,还可连接圆周上一点和弦的两个端点;遇到有切线时,常常添加过切点的半径(联结圆心和切点)。遇到证明某一直线是圆的切线时:(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段;(2)若直线过圆上的某一点,则联结这点和圆心(即作半径)。辅助线的添加是几何解题的关键和难点,是学生学习数学常用的手段,进行几何解题时,准确的添加辅助线可以使问题迎刃而解。

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”

托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。 六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。 如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。 有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想

初二数学辅助线常用做法及例题含答案)

D C B A 常见的辅助线的作法 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二 条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 法构造全等三角形. 3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂 线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等 例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD

相似三角形添加辅助线的方法举例有答案新

相似三角形添加辅助线的方法举例 例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2 =2CD ·AC . 例2.已知梯形ABCD 中,BC AD //,AD BC 3=,E 是腰AB 上的一点,连结CE (1)如果AB CE ⊥ ,CD AB =,AE BE 3=,求B ∠的度数; (2)设BC E ?和四边形AECD 的面积分别为1S 和2S ,且2132S S =,试求 AE BE 的值 例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点, AD AF 31= ,连E 、F 交AC 于G .求AG :AC 的值. 例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________. 例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC 于F ,若AB=a ,BC=b ,BE=c ,求BF 的长. 例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BD AC AB = . 相似三角形添加辅助线的方法举例答案 例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2 =2CD ·AC . 分析:欲证 BC 2=2CD ·AC ,只需证 BC AC CD BC = 2.但因为结论中有“2”,无法直接找到它们所在的相似三角形,因此需要结合图形特点及结论形式,通过添加辅助线,对其中某一线段进行倍、分变形,构造出单一线段后,再证明三角形相似.由“2”所放的位置不同,证法也不同. 证法一(构造2CD ):如图,在AC 截取DE =DC , ∵BD ⊥AC 于D , ∴BD 是线段CE 的垂直平分线, ∴BC=BE ,∴∠C=∠BEC , 又∵ AB =AC , ∴∠C=∠ABC . ∴ △BCE ∽△ACB . ∴ BC AC CE BC =, ∴BC AC CD BC =2 ∴BC 2 =2CD ·AC . 证法二(构造2AC ):如图,在CA 的延长线上截取AE =AC ,连结BE , ∵ AB =AC , ∴ AB =AC=AE . ∴∠EBC=90°, 又∵BD ⊥AC . ∴∠EBC=∠BDC=∠EDB=90°, B C B C E B C

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

三角形中做辅助线的技巧

三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD 图1-2 D B C 图 1-4

(二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180 例2. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求证:∠BA C 的平分线也经过点P 。 练习: 1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA , 如果PC=4,则PD=( ) A 4 B 3 C 2 D 1 2.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。求证:AF=AD+CF 。 3.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。求证CF=BH 。 图2-1 B 图2-3 A B C 图2-6 E C D 图 2-7 D B A

初中数学常见辅助线做法

初中数学常用辅助线 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形, 添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律 可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三 角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线 组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关 系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三 角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 *(7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角

梯形中添加辅助线的六种常用技巧

梯形中添加辅助线的六种常 用技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

梯形中添加辅助线的六种常用技巧 浙江唐伟锋 梯形是不同于平行四边形的一类特殊四边形,解决梯形问题的基本思路是通过添加辅助线,将梯形进行割补、拼接转化为三角形、平行四边形问题进行解决。一般而言,梯形中添加辅助线的常用技巧主要有以下几种—— 一、平移一腰 从梯形的一个顶点作一腰的平行线,将梯形转化为平行四边形和三角形,从而利用平行四边形的性质,将分散的条件集中到三角形中去,使问题顺利得解。 例1、如图①,梯形ABCD中AD∥BC,AD=2cm ,BC=7cm,AB=4cm,求CD的取值范围。 解:过点D作DE∥AB交BC于E, ∵AD∥BC,DE∥AB ∴四边形ABED是平行四边形(两组对边分别平行的四边形是平行四边形) ∴DE=AB=4cm,BE=AD=2cm ∴EC=BC-BE=7-2=5cm 在△DEC中,EC-DE<CD<EC+DE(三角形两边之和大于第三边,两边之差小于第三边) ∴1cm<CD<9cm。 二、延长两腰 将梯形的两腰延长,使之交于一点,把梯形转化为 大、小两个三角形,从而利用特殊三角形的有关性质解决 梯形问题。 例2、如图②,已知梯形ABCD中,AD∥BC,∠B=∠

C ,求证:梯形ABC D 是等腰梯形。 证明:延长BA 、CD ,使它们交于E 点, ∵AD ∥BC ∴∠EAD=∠B ,∠EDA=∠C (两直线平行,同位角相等) 又∵B=∠C ∴∠EAD=∠EDA ∴EA=ED ,EB=EC (等角对等边) ∴AB=DC ∴梯形ABCD 是等腰梯形(两腰相等的梯形是等腰梯形)。 三、平移对角线 从梯形上底的一个顶点向梯形外作一对角线的平行线,与下底延长线相交构成平行四边形和一特殊三角形(直角三角形、等腰三角形等)。 例3、如图③,已知梯形ABCD 中,AD=,BC=,对角线AC ⊥BD ,且BD=3cm ,AC=4cm ,求梯形ABCD 的面积。 解:过点D 作DE ∥AC 交BC 延长线于E ∵AD ∥BC ,DE ∥AC ∴四边形ACED 是平行四边形(两组对边分别平 行的四边形是平行四边形) ∴CE=AD=,DE=AC=4cm ∵AC ⊥BD ∴DE ⊥BD ∴S 梯形ABCD =111()()222 AD BC h CE BC h BE h +?=+?=?(h 为梯形的高) 211346cm 22 BD DE =?=??= 。

初中数学全等三角形辅助线技巧范文

初中数学全等三角形辅助线技巧范文 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识。 2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。 解答过程: 证明:延长AD到E,使DE=AD,连接BE。 又因为AD是BC边上的中线,∴BD=DC 又∠BDE=∠CDA ΔBED≌ΔCAD, 故EB=AC,∠E=∠2, ∵AD是∠BAC的平分线 ∴∠1=∠2, ∴∠1=∠E, ∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。 解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。 (3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。 思路分析:

初中数学常见辅助线的添加方法

初中数学常见辅助线的 添加方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

中考数学复习专题 ——几何论证题中辅助线的添加方法 例1: ADBC 中AB ∥CD ,底角∠ABC=450 AC 、BD 交于点O ,且∠BOC=1200 分析:在已知条件中,底角∠ABC=450,有的同学想到延长两腰,出现一个等腰直角三角形。而在本题中这样添辅助线,反而增加解题困难,因为 ∠BOC=1200 的条件不能很好的运用。故本题添辅助线时,应考虑过上底顶点D (或A )作对角线的平行线,把梯形问题转化为平行四边形及顶角为1200的等腰三角形问题,而解等腰三角形时,常添的辅助线是作底上的高,这样不难求BC AD 的比值。 证明:过D 点作DF ∥AC 交BC 的延长线于F ,作DE ⊥BC 于E AD ∥BC AD=CF AC ∥DF ??ACFD 平行四边形 AC=DF 等腰梯形ABCD ? DB=AC ?BD=DF AC ∥DF ?∠BDF=∠BOC=1200 DE ⊥BF ∠BDE=600 ? BE=EF ?BE=EF=a 3 ∠BED=900 设a DE =

DE ⊥BC a CE DE == a AD CF )13(-== ∠BCD=450 EF=a 3 a CE BE BC )13(+=+= PQ 是线段AB 的中垂线, OD ⊥BC OD 的中点 是线段AB 的中垂线,同学们肯定想到连结AC 运用线段中垂线性质,但证明此题这样的添线与其它已知条件的应用没有多大关系,这种添线不能解答本题,而图中出现“母子三角形”,使我们想到能否运用三角形相似及线段成比例来解本题。而要证CM ⊥AD ,从图中观察到如能证得∠1=∠A ,那么CM ⊥AD 即可成立;而∠A 除了在Rt △AON 中,它还在△AOD 中,若把∠1也放到与△AOD 相似的三角形中,结论就可成立。因此构筑一个与△AOD 相似的三角形是本题解答的关键。而已知条件M 是OD 的中点,想到增添中点(或添平行线)的方法,故取OC 的中点为G ,想法证明△AOD ∽ △CGM 。通过基本图形分析,发现∠2=∠3,故∠AOD=∠CGM 。因此证:GM CG OD AO =是本题又一关键。 证明:取OC 的中点为G ,连GM, ∵PQ 是AB 的中垂线, ∴∠BOC=900设OA=OB=a ,OD=b . ∵OD ⊥BC, ∴∠CDO=∠ODB=900

三角形中做辅助线的技巧

三角形中做辅助线的技巧口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD

(二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180? 例2. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求证:∠BA C 的平分线也经过点P 。 练习: 1.如图2-4∠AOP=∠BOP=15?,PC//OA ,PD ⊥OA , 如果PC=4,则PD=( ) A 4 B 3 C 2 D 1 2.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。求证:AF=AD+CF 。 3.已知:如图2-7,在Rt △ABC 中,∠ACB=90?,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作F H//AB 交BC 于H 。求证CF=BH 。 (三):作角平分线的垂线构造等腰三角形 从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。 例1. 已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H 是BC 中点。求证:DH= 2 1 (AB-AC ) 分析:延长CD 交AB 于点E ,则可得全等三角形。问题可证。 图2-3 B 图2-6 E C D B

初中数学全等三角形辅助线技巧

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识。 2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。 解答过程:

初中数学辅助线添加技巧:弦图

初中数学辅助线添加技巧:弦图 勾股的几个重要证明方法 证法一(赵爽证明):以a 、b 为直角边(b >a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于1 2 ab .把这四个直角三角形拼成如图所示形状. c b a H G F E D C B A ∵ Rt △DAH ≌ Rt △ABE , ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a ,∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 b a -. ∴()2 2142 ab b a c ?+-= . ∴ 222a b c +=. 证法二(邹元治证明):以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于1 2 ab . 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. c b a H G F E D C B A ∵ Rt △HAE ≌ Rt △EBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o,

∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的正方形.它的面积等于c 2. ∵ Rt △GDH ≌ Rt △HAE , ∴ ∠HGD =∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 a b +. ∴ ()2 2142 a b ab c +=?+. ∴ 222a b c +=. 证法三(陈杰证明):直角边长分别为a 、b 的四个三角形全等,斜边长为c ,图中有3个正方形边长分别为a 、b 、c ,设整个图形的面积为S . c b a I c b a H G F E D C B A ∵△ABH ≌ △HEF , ∴BAH EHF ∠=∠, ∴90BAH AHB EHF AHB ∠+∠=∠+∠=?, ∴90AHF ∠=?, ∴四边形AHFI 是正方形. ∵22221 22S a b ab a b ab =++?=++, 221 22 S c ab c ab =+?=+, ∴222a b ab c ab ++=+, ∴222a b c +=. 证法四(1876年美国总统Garfield 证明):

相关文档
最新文档