中考数几何巧画辅助线的技巧
数学辅助线做法技巧初中

数学辅助线做法技巧初中
数学辅助线是初中数学教学中常用的一种画图方法,可以帮助学生更好地理解和掌握各种数学概念和计算方法。
以下是数学辅助线做法技巧的一些要点:
1. 准确选择辅助线:在做题前,需要仔细分析题目要求和给定条件,准确选择适合的辅助线。
一般来说,辅助线的作用是使问题简化、明了,因此应当选择能够达到这一目的的辅助线。
2. 画图精细:辅助线的画法需要精细,尽量避免出现误差和混淆。
画线时建议使用铅笔轻轻勾画,检查无误后再用黑色笔进行加粗。
3. 辅助线的使用顺序:通常情况下,先画出重要的线条,如角平分线、垂线等,然后再考虑是否需要添加其他的辅助线。
4. 计算过程中注意标注:在使用辅助线进行计算时,需要注意清晰标注各个线段的长度、角度大小等信息,以方便后续的计算和验证。
5. 练习熟练度:数学辅助线是需要经验和技巧的,需要多进行练习和掌握。
可以通过做题、模拟考试等方式提高熟练度。
总之,数学辅助线是初中数学教学中重要的画图方法,能够帮助学生更好地理解和掌握各种概念和计算方法。
在使用辅助线时,需要准确选择、精细画图、注意标注、按顺序使用,同时也需要进行反复训练和提高熟练度。
中考数学几何辅助线技巧

中考数学几何辅助线技巧中考数学几何辅助线技巧辅助线对于同学们来说都不陌生,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
所以我们要学会巧妙的添加辅助线。
一、添辅助线有二种情况:1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
中考几何辅助线解题技巧

中考几何辅助线解题技巧以下是 7 条关于中考几何辅助线解题技巧的内容:1. 哎呀呀,遇到角度问题别慌张呀!看到那种怎么都不好找关系的角度,就大胆去作辅助线呀。
就像有个题目,已知一个三角形里的角度,怎么都算不出另一个角,咱就果断在合适的地方连上一条线,嘿,一下子答案就清晰可见啦!比如在那个三角形里,把一条边延长,是不是豁然开朗了呀?2. 嘿,中线问题有诀窍哦!当遇到中线的时候,毫不犹豫地延长它呀。
我记得有个题,三角形里有条中线,怎么都解不出来,一延长中线,奇迹就出现啦,各种关系都理顺了,就像打通了任督二脉一样爽呀!是不是很神奇呀?3. 哇塞,遇到特殊图形要敏感呀!比如等边三角形、正方形啥的,这时候辅助线就得巧妙画起来呀。
像有个等边三角形的题,感觉少点啥,那就根据它的特点添上那么几条线,立马就柳暗花明啦!这就像给它穿上了合适的衣服,一下子就精神啦!4. 注意啦注意啦,面积问题也可以用辅助线来解决呀!有时候就那么轻轻一画,面积关系就出来了。
比如说有个图形,要求两块面积的比值,划上那么一条线,把它们巧妙地联系起来,哇,答案呼之欲出呀,是不是很厉害呀?5. 哎呀,对称图形里辅助线更重要哦!看到对称,就要想到顺着对称轴来做文章呀。
有个对称的图形,怎么都解不下去,突然灵机一动,沿着对称轴画画线,嘿,就解决啦!这不就像是找到了打开宝藏的钥匙吗?6. 碰到中点问题咋办呀?当然是作辅助线啦!就像一道题里有个点是中点,感觉条件不够用,那就大胆地通过它作辅助线,一下子问题就变得好简单呀!这简直就是点石成金嘛!7. 别小瞧那几条线呀,辅助线真的是解题神器呀!有时候感觉题目很难,无从下手,可是一旦画出合适的辅助线,就像黑暗中的一盏明灯呀。
比如在一个复杂的图形里,东画画西画画,说不定就找到出路啦!大家一定要好好掌握辅助线技巧哟!我的观点结论:掌握好中考几何辅助线解题技巧,那可真是如虎添翼呀,能让我们在考场上更加得心应手,轻松应对各种难题呢!。
2024年中考复习初中数学几何辅助线口诀+技巧全部掌握考试稳拿满分

2024年中考复习初中数学几何辅助线口诀+技巧
全部掌握考试稳拿满分
初中数学学习有很多难点,其中,几何知识就是难点之一,可以说,几何占据了初中数学的"半壁江山",几何部分包含了很多重难点,甚至中考考点。
"
初一不分上下,初二两极分化,初三一决上下",可
见,初二年级的学习是整个初中阶段学习的关键时期。
而几何知识的学习主要集中在初二,如果学不好,成绩将会直线下降,甚至拖累初三的数学学习。
想要学好初中几何,就必须要学会做辅助线。
几何辅助线可以说是解几何题的关键性内容,但是很多学生对于如何添加辅助线总是无从下手。
在遇到圆、三角形与几何结合起来的相关题目时,如果辅助线画得好,学生能轻松快速的解题,如果画不好,可能就会绕弯又出错。
数学圈还有"得辅助线者得几何,得几何者得初中数学"的说法,可见学会几何辅助线有多重要。
那么如何画辅助线呢?
当学生拿到题目时,先不要着急解题,首先要思考需不需要添加辅助线,千万别画蛇添足,反而把简单的问题
复杂化,如果需要辅助线,具体是连接那两个点,这些都要先思考清楚。
在添加时要考虑辅助线是否能构造出特殊的图形和线,是否能够满足已知条件,是否能让图形更有规律可循。
具体可以通过连接某两点,作某条线的垂线或平行线,截长补短,延长某条线段等方法进行添加。
下面,为了帮助初中阶段的学生在几何知识部分得到突破提升,老师整理了几何辅助线口诀和常见的辅助线做法,全部拿下,几何问题迎刃而解,考试不丢分,赶紧收藏!。
初中数学中考几何如何巧妙做辅助线大全

5
作辅助线的方法
一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使 延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达 到应用某个定理或造成全等的目的。
2
(8)特殊角直角三角形 当出现 30,45,60,135,150 度特殊角时可添加特殊角直角三角形, 利用 45 角直角三角形三边比为 1:1:√2;30 度角直角三角形三边比为 1:2:√3 进行证明 (9)半圆上的圆周角 出现直径与半圆上的点,添 90 度的圆周角;出现 90 度的圆周角则添 它所对弦 ---直径;平面几何中总共只有二十多个基本图形就像房子不外有一 砧,瓦,水泥,石灰,木等组成一样。 二.基本图形的辅助线的画法 1.三角形问题添加辅助线方法 方法 1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常 利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解 决了问题。 方法 2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性 质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 方法 3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关 于平分线段的一些定理。 方法 4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常 采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一 部分等于第一条线段,而另一部分等于第二条线段。 2.平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具 有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的
初中数学中考几何如何巧妙做辅助线大全

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中几何作辅助线的方法与口诀

初中几何作辅助线的方法一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
最新中考数学140分以上必须掌握的几何辅助线技巧

中考数学140分以上必须掌握的几何辅助线技巧辅助线对于同学们来说都不陌生,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
所以我们要学会巧妙的添加辅助线。
一、添辅助线有二种情况:1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数几何巧画辅助线的技巧
中考数学少不了几何问题的考察,而涉及作图题,一般都要做辅助线完成,马上就要中考了,下面给大家带来辅助线的画法秘籍,在中考考场,祝你一臂之力!
基本图形的辅助线的画法
1
三角形问题添加辅助线方法
〔1〕有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
〔2〕含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
〔3〕结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
2
平行四边形中常用辅助线的添法
平行四边形〔包括矩形、正方形、菱形〕的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有以下几种,举例简解如下:
〔1〕连对角线或平移对角线;
〔2〕过顶点作对边的垂线构造直角三角形;
〔3〕连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;
〔4〕连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;
〔5〕过顶点作对角线的垂线,构成线段平行或三角形全等。
3
梯形中常用辅助线的添法
梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:〔1〕在梯形内部平移一腰;
〔2〕梯形外平移一腰;
〔3〕梯形内平移两腰;
〔4〕延长两腰;
〔5〕过梯形上底的两端点向下底作高;
〔6〕平移对角线;
〔7〕连接梯形一顶点及一腰的中点;
〔8〕过一腰的中点作另一腰的平行线;
〔9〕作中位线。
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
4
圆中常用辅助线的添法
在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我
还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
〔1〕见弦作弦心距。
有关弦的问题,常作其弦心距〔有时还须作出相应的半径〕,通过垂径平分定理,来沟通题设与结论间的联系。
〔2〕见直径作圆周角。
在题目中假设圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
〔3〕见切线作半径。
命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
〔4〕两圆相切作公切线。
对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
〔5〕两圆相交作公共弦。
对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
〝教书先生〞恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,〝教书先生〞那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的〝先生〞概念并非源于教书,最初出现的〝先生〞一词也并非有传授知识那般的含义。
«孟子»中的〝先生何为出此言也?〞;«论语»中的〝有酒食,先生馔〞;«国策»中的〝先生坐,何至于此?〞等等,均指〝先生〞为父兄或有学问、有德行的长辈。
其实«国策»中本身就有〝先生长者,有德之称〞的说法。
可见〝先生〞之原意非真正的〝教师〞之意,倒是与当今〝先生〞的称呼更接近。
看来,
〝先生〞之本源含义在于礼貌和尊称,并非具学问者的专称。
称〝老师〞为〝先生〞的记载,首见于«礼记?曲礼»,有〝从于先生,不越礼而与人言〞,其中之〝先生〞意为〝年长、资深之传授知识者〞,与教师、老师之意基本一致。