(完整版)初中数学_巧添辅助线__解证几何题
巧添辅助线解证几何题

龙源期刊网
巧添辅助线解证几何题
作者:倪小芳
来源:《数理化学习·初中版》2013年第06期
在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的问题加以解决.值得注意的是辅助线的添加目的与已知条件和所求结论有关.下面我们分别举例加以说明.
一、倍角问题
二、中点问题
三、线段的和差问题
四、垂线段问题
五、梯形问题
[江苏省金坛市第五中学(213200)]。
巧添辅助线解几何题(辅导练习题目)

巧添辅助线解几何题(辅导练习题目)(答题时间:25分钟)1. 如图,求∠A +∠B +∠C +∠D +∠E 的度数。
AB EOC D2. 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F 。
求证:AF=EF 。
AFEB D C3. 已知E 是正方形ABCD 边CD 上的中点,点F 在BC 上,且∠DAE=∠FAE 。
求证:AF=AD +CF 。
A DEB F C4. 已知:在△ABC 中,∠BAC=90°,AB=AC ,BE 平分∠ABC ,CE ⊥BE 。
求证:CE=12BD 。
AEB C D【试题答案】1. 解:连结CDAB EOC D∵∠ECD+∠BDC=∠B+∠E=180°-∠BOE=180°-∠COD∴∠A+∠B+∠ACE+∠ADB+∠E=∠A+∠ECD+∠BDC+∠ACE+∠ADB=∠A+(∠ECD+∠ACE)+(∠BDC+∠ADB)=∠A+∠ACD+∠ADC=180°2. 证明:延长AD至G,使DG=AD,连结BGAFEB D CG∵BD=DC,∠BDG=∠ADC∴△BGD≌△CAD∴BG=AC=BE,∠G=∠CAD∴∠G=∠BEG=∠AEF∴∠AEF=∠CAD ∴AF=EF3. 过E作EG⊥AF于GA DEGB F C∵∠D=90°,∠AGE=90°AE平分∠DAF ∴ED=EG∵ED=EC ∴EG=EC∵∠EGF=∠C=90°EF=EF∴△EGF ≌△ECF (HL ) ∴GF=FC ∵ED=EG ,AE=AE ,∠D=∠AGE=90° ∴△ADE ≌△AGE (HL ) ∴AD=AG ∴AF=AG +GF=AD +FC即AF=AD +FC4. 证明:延长BA 交CE 的延长线于FFD AE B C∵BE 平分∠ABC ,CE ⊥BE∴CE=12CF又∵AB=AC ,∠BAC=∠CAF=90°∠ACF=∠ABD=90°-∠F∴△ACF ≌△ABD ∴CF=BD∴CE=12CF BD。
初中数学中考几何如何巧妙做辅助线大全

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
中考数学120分以上必须掌握的几何辅助线技巧

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
1按定义添辅助线:
如证明二直线垂直,可延长使它们相交后证交角为90°;
证线段倍半关系,可倍线段取中点或半线段加倍;
证角的倍半关系,也可类似添辅助线。
2按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下:
(1)在梯形内部平移一腰
(2)梯形外平移一腰
(3)梯形内平移两腰
(4)延长两腰
(5)过梯形上底的两端点向下底作高
(6)平移对角线
(7)连接梯形一顶点及一腰的中点
(8)过一腰的中点作另一腰的平行线
(9)作中位线
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
(5)两圆相交作公共弦
▌6、全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等。
初中数学几何辅助线经典100题

初中数学几何辅助线经典100题摘要:初中数学几何辅助线经典100题一、几何辅助线的概念和作用1.几何辅助线的定义2.几何辅助线在解题中的作用二、几何辅助线的常见类型及应用1.角平分线2.线段和差3.中点定理4.倍长中线5.相似三角形6.判定条件7.证明定理三、初中数学几何辅助线经典100题1.题目1-102.题目11-203.题目21-304.题目31-405.题目41-506.题目51-607.题目61-708.题目71-809.题目81-9010.题目91-100正文:初中数学几何辅助线经典100题一、几何辅助线的概念和作用几何辅助线是在解决几何问题时,通过在图形上添加一些特殊的线段,来帮助我们更好地理解和解题的一种工具。
它可以将复杂的几何问题简化为更简单的形式,使问题更容易解决。
几何辅助线在解题中的作用主要体现在以下几个方面:1.揭示图形中隐含的性质:通过添加辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的。
2.聚拢集中原则:通过添置适当的辅助线,将图形中分散、远离的元素相对集中、聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。
3.化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,通过添加辅助线,将复杂图形转化为简单图形,从而简化问题,使解题更加顺利。
二、几何辅助线的常见类型及应用几何辅助线有很多种,这里我们列举几种常见的类型及其应用:1.角平分线:角平分线是将一个角平分成两个相等的角的线段。
在解题中,我们常常利用角平分线的性质来证明两个角相等或求解某个角的度数。
2.线段和差:线段和差是指通过两个线段的和与差来求解几何问题。
在解题过程中,我们通常利用线段和差的性质来证明线段相等或求解线段的长度。
3.中点定理:中点定理是指在一个线段上,如果有一个点是线段中点,那么这个点到线段两端的距离相等。
在解题中,我们常常利用中点定理来证明线段相等或求解线段的长度。
常见全等辅助线添加秘籍 解析版-初中数学

常见全等辅助线添加秘籍-精准解读《学习目标分解》1.会添加倍长中线模型、截长补短模型的辅助线构造三角形全等;2.会利用全等三角形的性质和判定进行相关的计算和证明.《重难点精准分析》1.全等辅助线的添加;2.全等三角形的性质和判定的综合应用.《专题精准分析》全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.证明思路:延长AD至点E,使得AD=DE.若连结BE,则ΔBDE≅ΔCDA;若连结EC,则ΔABD≅ΔECD;2、中点型:如图2,C为AB的中点.证明思路:若延长EC至点F,使得CF=EC,连结AF,则ΔBCE≅ΔACF;若延长DC至点G,使得CG=DC,连结BG,则ΔACD≅ΔBCG.3、中点+平行线型:如图3,AB⎳CD,点E为线段AD的中点.证明思路:延长CE交AB于点F(或交BA延长线于点F),则ΔEDC≅ΔEAF.倍长中线型辅助线倍长中线型辅助线一般跟中点相关,在初中阶段与中点相关的辅助线大体分成三大类:倍长中线(这里的中线指的是过中点的任意线段)、直角三角形斜边中线、中位线.其中后两种辅助线会在初二下学期的四边形章节中讲到,在此不做过多讲解,本节所讲的中点相关的辅助线主要是倍长中线型辅助线(这里的中线指的是过中点的任意线段),此种模型的本质都是构造“8字型”全等,主要分成三类处理方法:(1)倍长中线型--这里的中线指的是标准的三角形的中线,具体模型如下:已知:点D为AC边的中点作法:延长BD至E,使得DE=BD,连结AE.(2)倍长过中点的任意线段型--这里只需要出现中点即可构造,具体模型如下:已知:点D为AC边的中点作法:延长FD至E,使得DE=DF,连结AE.(3)平行线构造“8字型”--中点不是三角形的边的中点,具体模型如下:已知:点E为DF的中点作法:过点D作DM⎳AF,交AC于点M.另外,平行线构造“8字型”的模型还可以有以下两种类型:1.如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.【答案】证明:∵AD是△ABC的中线,∴BD=CD.方法一:延长AD至点M,使DM=AD,连接BM,在△ADC 和△MDB 中,BD =CD∠BDM =∠CDA DM =DA,∴△ADC ≌△MDB (SAS ),∴∠M =∠MAC ,BM =AC ,∵EA =EF ,∴∠CAM =∠AFE ,而∠AFE =∠BFM ,∴∠M =∠BFM ,∴BM =BF ,∴BF =AC .方法二:延长AD 至点M ,使MD =FD ,连接MC ,在△BDF 和△CDM 中,BD =CD∠BDF =∠CDM DF =DM,∴△BDF ≌△CDM (SAS ).∴MC =BF ,∠M =∠BFM .∵EA =EF ,∴∠EAF =∠EFA ,∵∠AFE =∠BFM ,∴∠M =∠MAC ,∴AC =MC ,∴BF =AC .【精准解析】有两种解法:①延长AD 至点M ,使MD =FD ,连接MC ,则可证△BDF ≌△CDM (SAS ),可得MC =BF ,∠M =∠BFM ,再得∠M =∠MAC ,得AC =MC =BF .②延长AD 至点M ,使DM =AD ,连接BM ,可证△ADC ≌△MDB (SAS ),方法与①相同.2.八年级一班数学兴趣小组在一次活动中进行探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD 是△ABC 的中线,延长AD 至点E ,使ED =AD ,连接BE ,写出图中全等的两个三角形【理解与应用】(2)填空:如图2,EP 是△DEF 的中线,若EF =5,DE =3,设EP =x ,则x 的取值范围是.(3)已知:如图3,AD是△ABC 的中线,∠BAC =∠ACB ,点Q 在BC 的延长线上,QC =BC ,求证:AQ=2AD .【答案】(1)证明:在△ADC与△EDB中,,∴△ADC≌△EDB;故答案为:△ADC≌△EDB;(2)解:如图2,延长EP至点Q,使PQ=PE,连接FQ,在△PDE与△PQF中,,∴△PEP≌△QFP,∴FQ=DE=3,在△EFQ中,EF-FQ<QE<EF+FQ,即5-3<2x<5+3,∴x的取值范围是1<x<4;故答案为:1<x<4;(3)证明:如图3,延长AD到M,使MD=AD,连接BM,∴AM=2AD,∵AD是△ABC的中线,∴BD=CD,在△BMD与△CAD中,,∴△BMD≌△CAD,∴BM=CA,∠M=∠CAD,∴∠BAC=∠BAM+∠CAD=∠BAM+∠M,∵∠ACB=∠Q+∠CAQ,AB=BC,∵∠ACQ=180°-(∠Q+∠CAQ),∠MBA=180°-(∠BAM+∠M),∴∠ACQ=∠MBA,∵QC=BC,∴QC=AB,在△ACQ与△MBA中,,∴△ACQ≌△MBA,∴AQ=AM=2AD.【精准解析】(1)根据全等三角形的判定即可得到结论;(2)延长EP至点Q,使PQ=PE,连接FQ,根据全等三角形的性质得到FQ=DE=3,根据三角形的三边关系即可得到结论;(3)延长AD到M,使MD=AD,连接BM,于是得到AM=2AD由已知条件得到BD=CD,根据全等三角形性质得到BM=CA,∠M=∠CAD,得到∠BAC=∠BAM+∠CAD=∠BAM+∠M,推出△ACQ≌△MBA,根据全等三角形的性质即可得到结论.《小结》当题目中出现中线时,常会考利用倍长中线型模型添加辅助线,构造“8字型”的全等.3.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=AC+AF.【答案】证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和△CEQ中,,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,AG=AF,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG=AG+AC=AF+AC.【精准解析】延长FE至Q,使EQ=EF,连接CQ,根据SAS证△BEF≌△CEQ,推出BF=CQ,∠BFE=∠Q,根据平行线性质和角平分线性质推出∠G=∠GFA=∠BFE,推出∠G=∠Q,推出CQ=CG即可.4.已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF= AC.求证:AE平分∠BAC.【答案】证明:如图,延长FE到G,使EG=EF,连接CG.在△DEF和△CEG中,∵,∴△DEF≌△CEG.∴DF=GC,∠DFE=∠G.∵DF∥AB,∴∠DFE=∠BAE.∵DF=AC,∴GC=AC.∴∠G=∠CAE.∴∠BAE=∠CAE,即AE平分∠BAC.【解析】延长FE到G,使EG=EF.连接CG,由于已知条件通过SAS证得△DEF≌△CEG得到DF=GC,∠DFE=∠G,由平行线的性质和已知条件得到∠G=∠CAE,故有∠BAE=∠CAE,结论可得.《小结》当题目中出现中点,而没有合适的中线可以倍长时,也可以考虑倍长过中点的任意一条线段,构造“8字型”全等. 5..如图,△ABC中,AB=AC,D在AB上,F在AC的延长线上,且BD=CF,连接DE交BC于E.求证:DE=EF.【答案】证明:过D点作AF的平行线交BC于G点,∴∠ECF=∠DGE,∴∠DGB=∠ACB∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠DGB,∴DG=BD,∵BD=CF,∴DG=CF.由∠ECF=∠DGE,∠DEG=∠CEF,DG=CF可得△DGE≌△FCE(AAS),∴DE=EF.【精准解析】过D点作AF的平行线交BC于G点,利用等腰三角形的性质和平行线的性质,求证△DGE≌△FCE即可.6.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.【答案】证明:如图,过E点作EH∥AB交BD的延长线于H,故∠A=∠CEH,在△ABC与△EHC中,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180°∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.【精准解析】如图,过E点作EH∥AB交BD的延长线于H.构建全等三角形△ABC≌△EHC(ASA),则由全等三角形的性质得到AB=HE;然后结合已知条件得到DE=HE,所以AB=HE,由等量代换证得AB= DE.《小结》当题目中出现中点,但此中点不是三角形的某条边的中点,只是与三角形某条边有交点时,则可以考虑利用作平行线的方法构造“8字型”的全等.模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
(完整)八年级数学上册几何添辅助线专题

DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
2014年中考数学:如何巧妙的添加辅助线

2014年中考数学:如何巧妙的添加辅助线辅助线对于同学们来说都不陌生,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
所以我们要学会巧妙的添加辅助线。
一、添辅助线有二种情况:1.按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2.按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧添辅助线 解证几何题[引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。
值得注意的是辅助线的添加目的与已知条件和所求结论有关。
一、倍角问题研究∠α=2∠β或∠β=12∠α问题通称为倍角问题。
倍角问题分两种情形:1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=12∠α,然后证明∠1=∠β;或把∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一)2、 ∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。
倍角三角形问题常用构造等腰三角形的方法添加辅助线(如图二)[例题解析]例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。
求证:∠DBC=12∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。
证法一:∵在△ABC 中,AB=AC ,∴∠ABC=∠C=12(180°-∠BAC )=90°-12∠BAC 。
∵BD ⊥AC 于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-12∠BAC)= 12∠BAC 即∠DBC= 12∠BAC分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ½∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把½∠A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。
证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC ∵BD ⊥AC 于D∴∠DBC+∠C=90°∴∠EAC=∠DBC (同角的余角相等)即∠DBC=12∠BAC 。
证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE ∵BD ⊥AC∴BD 是线段CE 的垂直平分线 ∴BC=BE ∴∠BEC=∠C∴∠EBC=2∠DBC=180°-2∠C ∵AB=AC ∴∠ABC=∠C∴∠BAC=180°-2∠C ∴∠EBC=∠BAC ∴∠DBC=12∠BAC 说明:例1也可以取BC 中点为E ,连接DE ,利用直角三角形斜边的中线等于斜边的一半和等腰三角形的性质求解。
同学们不妨试一试。
例2、如图4,在△ABC 中,∠A=2∠B求证:BC 2=AC 2+AC •AB 分析:由BC 2=AC 2+AC •AB= AC (AC+AB ),启发我们构建两个相似的三角形,且含有边BC 、AC 、AC+AB.又由已知∠A=2∠B 知,构建以AB 为腰的等腰三角形。
证明:延长CA 到D,使AD=AB,则∠D=∠DBA ∵∠BAC 是△ABD 的一个外角 ∴∠BAC=∠DBA+∠D=2∠D ∵∠BAC=2∠ABC ∴∠D=∠ABC又∵∠C=∠C ∴△ABC ∽△BDC ∴AC BCBC CD∴BC 2=AC •CD AD=AB∴BC 2= AC (AC+AB )=AC 2+AC •AB二、中点问题已知条件中含有线段的中点信息称为中点问题。
这类问题常用三种方法添加辅助线 (1) 延长中线至倍(或者倍长中线),如图一。
若图形中没有明显的三角形的中线,也可以构造中线后,再倍长中线,如图二。
(2) 构造中位线,如图三 (3) 构造直角三角形斜边上的中线,如图四。
ECABDA B C图一 图二 图三 图四[例题解析]例3.已知:如图,△ABC 中,AB=AC,在AB 上取一点D ,在AC 的延长线上取一点E,连接DE 交BC 于点F,若F 是DE 的中点。
求证:BD=CE分析:由于BD 、CE 的形成与D 、E 两点有关, 但它们所在的三角形之间因为不是同类三角形,所以 关系不明显,由于条件F 是DE 的中点,如何利用这个 中点条件,把不同类三角形转化为同类三角形式问题的关键。
由已知AB=AC,联系到当过D 点或E 点作平行线,就可以形成新 的图形关系——构成等腰三角形,也就是相当于先把BD 或CE 移动一下位置,从而使问题得解。
证明:证法一:过点D 作DG ∥AC,交BC 于点G (如上图) ∴∠DGB=∠ACB, ∠DGF=∠FCE ∵AB=AC ∴∠B=∠ACB ∴∠B=∠DGB ∴BD=DG ∵F 是DE 的中点 ∴DF=EF在△DF G 和△DEFC 中,DFG= EFC DGF= FCE DF=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△DF G ≌EFC∴DG=CE ∴BD=CE证法二:如图,在AC 上取一点H,使CH=CE,连接DH ∵F 是DE 的中点∴CF 是△EDH 的中位线 ∴DH ∥BC ∴∠ADH=∠B, ∠AHD=∠BCA ∵AB=AC ∴∠B=∠BCA ∴∠ADH=∠AHD ∴AD=AH ∴AB-AD=AC-AH ∴BD=HC ∴BD=CE说明:本题信息特征是“线段中点”。
也可以过E 作EM ∥BC,交AB 延长线于点G ,仿照证法二求解。
例4.如图,已知AB ∥CD ,AE 平分∠BAD ,且E 是BC 的中点求证:AD=AB+CD证法一:延长AE 交DC 延长线于F ∵AB ∥CD ∴∠BAE=∠F, ∠B=∠ECF ∵E 是BC 的中点 ∴BE=CE 在△ABE 和△CEF 中BAE= FB= ECF BE=CE ∠∠⎧⎪∠∠⎨⎪⎩∴△ABE ≌△CEF ∴AB=CF∵AE 平分∠ABD ∴∠BAE=∠DAE ∴∠DAE=∠F ∴AD=DF ∵DF=DC+CF CF=AB ∴AD=AB+DC证法二:取AD 中点F ,连接EF ∵AB ∥CD ,E 是BC 的中点 ∴EF 是梯形ABCD 的中位线∴EF ∥AB , EF=12(AB+CD ) ∴∠BAE=∠AEF ∵AE 平分∠BAD ∴∠BAE=∠FAE ∴∠AEF=∠FAE ∴AF=EF ∵AF=DF∴EF=AF=FD=12AD ∴12 (AB+CD)= 12AD∴AD=AB+CD三.角平分线问题已知条件中含有角平分线信息称为角平分线问题。
常用的辅助线有两种:1. 以角平分线所在直线为对称轴,构造全等三角形,如图一、二所示。
2. 由角平分线上的点向角的两边做垂线,构造全等三角形,如图二所示。
图一 图二 图三[例题解析]例5.如图(1),OP 是∠MON 的平分线,请你利用图形画一对以OP 所在直线为对称轴的全等三A BCEFDA BCEF角形。
请你参考这个全等三角形的方法,解答下列问题。
(1) 如图(2),在△ABC 中,∠ACB 是直角,∠B=60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F,请你判断并写出EF 与FD 之间的数量关系。
(2) 如图(3),在△ABC 中,如果∠ACB 不是直角,而(1)中的其他条件不变,请问,你在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
分析:本题属于学习性题型。
这类题型的特点是描述一种方法,要求学生按照指定的方法解题。
指定方法是角平分问题的“翻折法”得全等形。
解:(1)EF=FD (2)答:(1)结论EF=FD 仍然成立理由:如图(3),在AC 上截取AG=AE,连接FG 在△AEF 和△AGF 中,AE=AG EAF= FAG AF=AF ⎧⎪∠∠⎨⎪⎩∴△AEF ≌△AGF∴EF=GF, ∠EFA=∠GFA由∠B=60°,AD 、CE 分别是∠BAC ∠BCA 的平分线 可得∠FAG+∠FCA=60° ∴∠EFA=∠GFA=∠DFC=60° ∴∠GFC=60°在△CFG 和△CFD 中GFC= DFC CF=CF DCE= ACE ∠∠⎧⎪⎨⎪∠∠⎩∴△CFG ≌△CFD ∴FG=FD 又因为EF=GF ∴EF=FD说明:学习性问题是新课程下的新型题,意在考查学生现场学习能力和自学能力。
抛开本题要求从角平分线的角度想,本题也可以利用角平分线的性质“角平分线上的点到角的两边的距离相等”达到求解的目的。
解法二:(2)答(1)中的结论EF=FD 仍然成立。
理由:作FG ⊥AB 于G,FH ⊥AC 于H,FM ⊥BC 于M ∵∠EAD=∠DAC ∴FG=FH∵∠ACE=∠BCE ∴FH=FG ∵∠B=60° ∴∠DAC+∠ACE=60° ∴∠EFD=∠AFC=180°- 60°=120°在四边形BEFD 中 ∠BEF+∠BDF=180°∵∠BDF+∠FDC=180° ∴∠FDC =∠BEF 在△EFG 和△DFM 中FDC = BEF EGF= DMF=90FG=FM ∠∠⎧⎪∠∠⎨⎪⎩∴EFG ≌△DFM ∴EF=DF四、线段的和差问题已知条件或所求问题中含有a+b=c 或a=c-b ,称为线段的和差问题,常用的辅助线有两种:1. 短延长:若AB=a,则延长AB 到M,使BM=b,然后证明AM=c ;2. 长截短:若AB=c,则在线段AB 上截取AM=a,然后证明MB=b 。
[例题解析]例6 如图,在△ABC 中,AB=AC,点P 是边BC 上一点,PD ⊥AB 于D,PE ⊥AC 于E,CM ⊥AB 于M,试探究线段PD 、PE 、CM 的数量关系,并说明理由。
分析:判断三条线断的关系,一般是指两较短线段的和与较长线段的大小关系,通过测量猜想PD+PE=CM.分析:在CM 上截取MQ=PD ,得□PQMD,再证明CQ=PE 答:PD+PE=CM证法一:在CM 上截取MQ=PD ,连接PQ. ∵CM ⊥AB 于M, PD ⊥AB 于D ∴∠CMB=∠PDB=90° ∴CM ∥DP∴四边形PQMD 为平行四边形 ∴PQ ∥AB∴∠CQP=∠CMB=90°∠QPC=∠B∵AB=AC ∴∠B=∠ECP ∴∠QPC=∠ECP ∵PE ⊥AC 于E ∴∠PEC=90°在△PQC 和△PEC 中PQC= PEC QPC= ECP PC=PC ∠∠⎧⎪∠∠⎨⎪⎩∴△PQC ≌△PEC ∴QC=PE ∵MQ=PD ∴MQ+QC=PD+PE ∴PD+PE=CM分析2:延长DF 到N 使DN=CM,连接CN,得平行四边形再证明PN=PE 证法2:延长DF 到N ,使DN=CM ,连接CN同证法一得平行四边形DNCM ,及△PNC ≌△PEC ∴PN=PE ∴PD+PE=CM分析3:本题中含有AB=AC 及三条垂线段PD 、DE 、CM , 且PABPAC ABC SS S +=V V V ,所以可以用面积法求解。