2016高教社杯全国大学生数学建模竞赛B题评阅要点

合集下载

2016数学建模国赛B题湖北赛区省一等奖论文详解

2016数学建模国赛B题湖北赛区省一等奖论文详解

小区开放对道路通行的影响摘要城市不断发展,小区不断增多,城市交通要道拥堵,开放小区能否达到优化路网结构的目的一直是人们热议的话题,封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通堵塞。

为此针对上述问题,建立如下模型:将所有开放的小区道路和无信号道路都看作是次要无信号干道,使问题尽可能的简化,周边和小区的交通情况就能看作只拥有“主干道”和“次干道”的假设。

来具体分析小区开放对道路通行的影响。

针对问题一,对于能否良好的改善交通,本文将道路模型和影响的参变量都联系起来,将“穿越间隙理论”作为主要参变量,比如交通量、车距、穿越时间等的因素考虑进去得到了初步的模型,并且为了使情况更贴合实际,模仿泰勒公式并引入了修正系数,这样问题一的模型在大致基础上得到了解决。

针对问题二,引入了TPI、TBI、TCR三个评价指标,从不同的方面来研究小区开放对周边道路的影响。

分别对应道路运行指数、时程可靠性指数,交通拥堵率指数。

完全从通行的角度来研究,使得问题更加的具有针对性。

针对问题三,面对具体的问题,也就是开放小区的综合效果。

需要考虑的细节也就越多,增添了司机想要达到路程与时间都少的“最短路”的条件,利用图论的知识从拓扑结构角度完成了考量,另一方面,又从几何结构方面,考虑了圆形的路程对于开放小区的影响,得到了圆形路程可以“拉直”成梯形直线,对于该问题的影响较小。

最后又根据每天的交通高峰期,考虑了在拥堵时间行人也会影响机动车、自行车等的车辆行驶,由此得到了新的修正系数。

针对问题四,根据上述的模型,由于实际复杂程度和理想情况相去甚远,可以采用修建地铁,立交桥,小区出入口方式也变成像红外线灯的自动感应等方法以加快速度,从而减少交通拥堵现象。

本文常用的两个思想方法就是:“修正”,“加权”。

通过这两种思想,得到的模型更加客观、全面、具有可信度。

不仅用了理论分析,而且根据实际数据进行了验算,在此过程中使用到了Excel、Matlab等软件。

高教社杯全国大学生数学建模竞赛B题参考答案.docx

高教社杯全国大学生数学建模竞赛B题参考答案.docx

交巡警服务平台的设置与调度优化分析摘要本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。

并分别对题目的各问,作了合理的解答。

问题一:(1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd 算法及 matlab 编程求出两点之间的最短距离,使其尽量满足能在 3 分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。

(2)、我们对进出该区的 13 条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用 0-1 变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。

(3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。

我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。

问题二:(1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、 D、 E、F区域平台设置不合理。

并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E 区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。

(2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。

关健字: MATLAB软件, 0-1 规划,最短路, Floyd 算法,指派问题一、问题重述“有困难找警察” ,是家喻户晓的一句流行语。

2014-高教社杯全国大学生数学建模竞赛AB题评阅要点

2014-高教社杯全国大学生数学建模竞赛AB题评阅要点

2021 高教社杯全国大学生数学建模比赛A 题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。

对本问题应该给出合理的建模假定, 譬如: 惯性坐标、二体问题等, 并加以分析说明。

问题1: 在已知的条件下, 确定嫦娥三号在环月轨道上近月点与远月点的相对位置和速度(1) 建立合理适用的坐标系。

(2) 对嫦娥三号进行受力分析, 建立其运动学和准备轨道的数学模型(譬如: 微分方程等模型) 。

(3) 通过求解数学模型得. 到数值结果。

问题2: 确定软着陆轨道与6 阶段的控制策略由问题对着陆轨道 6 个阶段的要求, 每个阶段都应给出起止状态(速度和位置) 和最优控制策略(推力大小和方向) , 以满足各阶段起止状态的需求。

(1) 建立各阶段的最优控制模型, 明确给出控制变量、状态变量、状态方程、约束条件和目标函数。

(2) 在粗避障和精细避障阶段挑选落点时, 需要综合考虑月面的平整度、光照条件、着陆控制误差等因素, 确定最理想的着陆地点。

(3) 各阶段的控制问题是一个无穷维的优化问题, 可以通过合理的简化(譬如离散化为有限维的优化问题) 求解得. 到合理的数值结果, 即最优的控制策略。

(4) 若未按题目要求按6 阶段设计最优控制策略, 而照抄某些文献的两阶段或三阶段的处理方法, 不能视为较好的论文。

问题3: 着陆轨道设计和控制策略的误差分析与敏感度分析对问题的稳定性有影响的误差包括:(1) 着陆准备轨道参数(近月点位置和速度) 的误差;(2) 分阶段分析发动机推力(大小和方向) 的控制误差;(3) 模型的简化假定、模型的近似与求解过程等综合分析误差;加入能针对以上几个因素对问题结果的影响及程度做相应的敏感度分析, 应给予肯定。

2021高教社杯全国大学生数学建模比赛B题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。

本题主要考查学生对直纹面的描述、建模和计算功底。

2016年数学建模B题答辩2016

2016年数学建模B题答辩2016
2016高教社杯全国大学生数学建模竞赛
《B题 小区开放对道路通行的影响》
• 学校名称:石家庄学院 • 参赛人:刘子渝、田圣普
• 报告人:田圣普
2020年8月13日星期四
CONTENTS
01 问题分析与重述
01 问题分析与重述
请选取合适的评价指标体系,用以 评价小区开放对周边道路通行的影 响。
请建立关于车辆通行的数学模型, 用以研究小区开放对周边道路通行 的影响。
4至6
部分环路,主干路拥堵
6至8
大量环路,主干路拥堵
8至10
全市大部分道路拥堵
交通指数 2 4 6 8 10
交通指数对照表
出行时间
可以按道路限速标准行驶 比畅通时多耗时0,2至0,5倍 比畅通时多耗时0,5至0,8倍 比畅通时多耗时0,8至1,1倍 比畅通时多耗时1,1倍以上
车速(km/h) 36km/h 30km/h 24km/h 20km/h 17km/h
如果C3 的值越接近1,说明小区路网的通行越畅通,越开放,小区居民出行就越方便; 如果C3的值接近0,小区呈现出封闭 性。一般而言,以小区的通行能力较高为宜。
3.1问题一的评价体系的建立及求解过程
以下是对我们所使用到的指标说明: 交通指数
对应路况
交通指数说明
0至2
基本没有道路拥堵
2至4
有少量道路拥堵
我们对不同的周边道路结构以及车流量数据进行对比。收集数据后使用Vissim进行开放小区增加路口模拟路况,通 过带入问题一的模型来计算道路通畅度K研究小区开放与其周边道路结构、车流量的关系,最终得到如下表结果:
地区类型 小区类型 开放状态 车流量 路段饱和度c1 交通路网复杂度c2 平均车速v 小区路网交通密度c3 k k增

2016建模国赛B题

2016建模国赛B题

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

■- - ■ I Ii '我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

II I II;Z 1.1 I ■|| J///我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章..I I程和参赛规则的行为,我们将受到严肃处理。

1 I 「J Z /我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B- ■ I 、、、'、\r我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):'、、■电■,I参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2017年9月17日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):“拍照赚钱”的任务定价摘要本文就企业做市场调查时采取的“拍照赚钱”模式的定价规律展开研究。

我们绘制了任务点在地图上的位置后,发现任务点围绕深圳、广州、佛山、东莞四个城市的中心点呈散射状分布,并根据城市具体情况及会员信息逐步建立更加适应实际情况的任务定价模型。

高教社杯全国大学生数学建模竞赛B题参考答案

高教社杯全国大学生数学建模竞赛B题参考答案

交巡警服务平台的设置与调度优化分析摘要本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。

并分别对题目的各问,作了合理的解答。

问题一:(1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd 算法及matlab编程求出两点之间的最短距离,使其尽量满足能在3分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。

(2)、我们对进出该区的13条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用0-1变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。

(3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。

我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。

问题二:(1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、D、E、F区域平台设置不合理。

并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。

(2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。

关健字: MATLAB软件,0-1规划,最短路,Floyd算法,指派问题一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

2005-2015高教社杯全国大学生数学建模竞赛A、B题评阅要点

2005-2015高教社杯全国大学生数学建模竞赛A、B题评阅要点

水质排序最差的地区不一定是污染源最严重的地区。 用长江干流上的 7 个观测站点将长江分 为 6 个江段,逐段计算各江段的排污量,找出主要污染源所在的区域。 首先研究每个江段中污染物浓度 C (mg/L) 的变化规律。由于题目中给出了污染物的降 解系数,附件 3 给出了每个月的污染物浓度、流量、流速等数据,若忽略污染物的局部扩散 (研究的是总体污染) ,在考虑固定时段(月)的污染物浓度时,可利用一般一维水质模型 的近似解 C = C 0 e
2008 A 题评阅要点 ............................................................................................................. 28 2008B 题 高等教育学费标准探讨 .................................................................................... 29
2009 B 题评阅要点 ............................................................................................................. 40
CUMCM-2009, A 题:第 1 页 / 共 42 页
2005A 题: 长江水质的评价和预测
水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源 的保护和治理应是重中之重。专家们呼吁: “以人为本,建设文明和谐社会,改善人与自然 的环境,减少污染。 ” 长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府 部门和专家们的高度重视。2004 年 10 月,由全国政协与中国发展研究院联合组成“保护长 江万里行”考察团,从长江上游宜宾到下游上海,对沿线 21 个重点城市做了实地考察,揭 示了一幅长江污染的真实画面,其污染程度让人触目惊心。为此,专家们提出“若不及时拯 救,长江生态 10 年内将濒临崩溃” (附件1) ,并发出了“拿什么拯救癌变长江”的呼唤(附 件 2) 。 附件 3 给出了长江沿线 17 个观测站(地区)近两年多主要水质指标的检测数据,以及 干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速) 。通常认为一个观测 站(地区)的水质污染主要来自于本地区的排污和上游的污水。一般说来,江河自身对污染 物都有一定的自然净化能力, 即污染物在水环境中通过物理降解、 化学降解和生物降解等使 水中污染物的浓度降低。反映江河自然净化能力的指标称为降解系数。事实上,长江干流的 自然净化能力可以认为是近似均匀的, 根据检测可知, 主要污染物高锰酸盐指数和氨氮的降 解系数通常介于 0.1~0.5 之间,比如可以考虑取 0.2 (单位:1/天)。附件 4 是“1995~2004 年 长江流域水质报告”给出的主要统计数据。下面的附表是国标(GB3838-2002) 给出的《地表 水环境质量标准》中 4 个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。 请你们研究下列问题: (1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染 状况。 (2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪 些地区? (3)假如不采取更有效的治理措施,依照过去 10 年的主要统计数据,对长江未来水 质污染的发展趋势做出预测分析,比如研究未来 10 年的情况。 (4)根据你的预测分析,如果未来 10 年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比 例控制在 20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水? (5)你对解决长江水质污染问题有什么切实可行的建议和意见。

全国大学生数学建模竞赛B题评阅要点

全国大学生数学建模竞赛B题评阅要点

高教社杯全国大学生数学建模竞赛B题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

命题思路:本题来源于人们常见的实际问题,问题本身比较容易理解,学生很自然地会将其归类于排队论问题,但由于问题本身存在较多的细节需要处理,如直接应用排队论理论解决问题可能会比较困难,可以考虑应用仿真方法解决问题。

本题的主要考点为:(1)分布拟合检验;(2)合理的评价指标体系;(3)仿真方法应用;(4)满足一定置信度的统计预测模型的建立;(5)排队论优化模型的建立。

本题解题方法可能会比较多,结果也未必一致,评阅时主要应以解题过程中体现出的对问题的理解程度与建模能力为依据。

必要的假定与数据检验根据数据和文献资料,对病人预约排队的分布以及手术后住院时间的分布作适当拟合和检验,做出必要的假定。

因数据中无男女性别数据,可假定无性别限制。

第一问:在一般的排队系统中,系统内平均逗留时间是主要的优化指标,但我们当前面临的是一个超拥挤系统,服务员(病床)始终没有空闲时间,因此,从长期来看,这一指标是一个常值,由系统服务能力及病人到达数量所决定,无法优化。

本问题中需要优化的主要指标是病床有效利用率和公平度,这两个指标可以有各种不同的定义,其合理性是评分依据。

此问主要考核对问题的考虑是否全面、周到,对问题实质的理解是否到位。

第二问:主要优化目标为:提高病床有效利用率以及提高公平度。

由于问题的复杂性,很难利用现成的排队论结论来处理,采用仿真方法是一种选择。

就提高病床有效利用率而言,病人术后住院时间是一个不可优化的量,所以只能在术前等待时间上作文章。

经对问题的分析可知:对白内障病人的入院时间加以限制成为提高效率的必然选择。

需要制定一种对白内障病人的“可入院日”加以一定限制的方案,并与FCFS(First Come, First Serve,先来先服务)方案进行比较。

本问主要考核能否协调处理好提高病床有效利用率及提高公平度之间的关系,给出一个相对合理的病床安排模型,以及仿真计算的能力,仿真步骤应清晰交代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016高教社杯全国大学生数学建模竞赛B题评阅要点
本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅
本题要求通过建立数学模型,讨论小区开放对周边道路通行的影响,并根据研究结果向城市规划和交通管理部门提出小区开放的合理化建议。

本题目主要考察学生在复杂环境因素下,针对小区开放的实际情况,建立合理简化的交通流模型。

第1问
评价小区开放对车辆通行的影响的指标体系一般应包括以下三类指标:高效性、安全性和稳健性。

如何合理地选取评价指标,以及如何度量指标值,是本问的主要考察点。

评价指标可以有各种定义方式,依据其合理性与可计算性判断其价值。

第2问
本问要求建立交通流模型研究小区开放对周边道路通行的影响,重点考虑因素有交通流量及流量分配、车辆的行驶规则、小区开放规则等。

尤其需要注意小区开放对道路通行的特殊影响因素,例如,小区道路与主路形成的交叉路口一般无交通信号设置,主路与小区内部道路的车速不同,小区内部车辆进出等。

未考虑这类特殊影响的交通模型,对本问题的价值不大。

第3问
根据小区开放对周边道路通行的影响不同,小区应分类型讨论,主要分类因素有小区的大小、居住人口的密集度、进出小区路口的数量等,另外,周边道路上车流量的分布状况也会影响小区开放的效果。

评判时应注意,本问是否根据第二问所建立的模型进行计算,是否根据第一问的指标体系进行效果评价。

第4问
本问主要考察:1.论文的合理化建议是否来自于模型计算结果;2.合理化建议是否充实。

相关文档
最新文档