常用概率分布表
6.2数理统计中几种常用的分布.

性质3. 设T~t(n),则:T ~F(1,n) .
2
证明:
由t分布定义 T
2
X Y /n
其中X∼N(0,1),Y~χ (n),且X与Y相互独立. 2 2 (1) / 1 X /1 2 F T 2 Y /n ( n) / n
且 2 (1)与 2 ( n)相互独立.
由F分布定义, ∴ F = T2~F(1,n) .
2
条件: 的点χ
P ( n)
2 2
2
( n )
f ( x)dx
2
(n)为χ 2(n)分布的上分位点.
χ (n)分布 的上分位点 图形如右图.
χ2(n)分布的上分位点可以查 附表5.
2Hale Waihona Puke 13例1:求2 2 0 ( 10 ) , )。 .05 0.1 (20
1.) 因为
P X z0.05 1 P X z0.05 1 0.05 0.95.
P X 1.64 0.9495.
P X 1.65 0.9505.
z0.05 1.64 1.65 1.645. 2
4
2.)
P X z0.005 1 PX z0.005 1 0.005 0.995.
i 1 n i 1
n
EX i2 n.
2 DX i
D D(
2n.
10
4.应用中心极限定理可得,若 若 X ~ 2 (n) ,则当n充分大时, X n 2n 的分布近似正态分布N(0,1).
11
2 (n)
分布的密度函 数的图形如右 图.
z分布统计表常用

z分布统计表(可以直接使用,可编辑优质资料,欢迎下载)表B.1 正态分布表**A 列是正态分布的z 分数。
B 列是z 分数对应分布中本体的概率值。
C 列是z 分数对应分布中尾端的概率值。
主要:因为正态分布是对称分布,所以负的z 分数具有与正的z 分数相同的概率。
CC 0+zGeneratedbytheMinitabstatisticalprogramusingtheCDLcommand.入学率统计表表Ⅰ 0—17周岁儿童、少年统计表(2021至2021学年度)填表单位:(盖章)填表责任人: 填表时间:年月日注:“三残”指视力、听力语言和智力残疾。
表Ⅱ 0—17周岁儿童、少年花名册填表单位:乡(镇)村(盖章)填表责任人: 填表时间:年月日注:填入本表儿童、少年以户籍为准;乡(镇)每周岁一个分册。
第张(共张)表Ⅲ小学正常适龄儿童入学情况统计表(至学年度)填表单位:(盖章)填表责任人填表时间:年月日注:1、填报本学年初人数;2、适龄儿童以户籍和规定入学年龄为准;3、入学适龄人儿童数包括在本校和外校及初中就读的学生。
表Ⅳ初中正常适龄少年入学情况统计表(至学年度)填表单位:(盖章)填表责任人填表时间:年月日注:1、填报本学年初人数,2、入学适龄人口数包括在本校和外校及高中就读的学生。
表Ⅴ残疾儿童、少年入学情况统计表(至学年度)填表单位:(盖章)填表责任人: 填表时间:年月日注:1、填报本学年初数据;2、“三残”指:视力、听力语言和智力残疾;3、附“三残”儿童少年花名册员工加班登记表2021年月日填表加班登记表报销日期:部门总经理会计审核申请人出纳加班加点汇总表质量管部门主管:加班记录表部门:部门签字: 年月日1、使用流程:部门加班人填写加班加班后记录本核准确性每月统计表部门主管签字人事部门留存。
2、使用范围:公司普通员工加班登记。
3、使用要点:(1)公司中高级职员超时工作不算作加班;(2)核准人为有权签署加班意见的人;(3)严格控制加班。
常用概率分布间简介

其中 c 为常数,解方程(1)得
f ( ) c f ( )
f
(
)
k
e
1 2
c
2
,
k
为常数.
为使 f ( ) 为概率密度函数,
f
( )d
1,
即
k
e
1 2
c
2
dy
1
故必须 c 0 ,不妨令 c 1 ( 0 ),代入(2)解得 2
k 1 , 2 Biblioteka 于是f ( ) 1
2
e2 2 , R ,
2
这是均值为 0,方差为 2 的正态分布的概率密度函数.
.
X
~
N(0, 2)
,
则Y
X2
~
Ga(
1 2
,
1 2
2
)
.
(1) (2)
Ga( n , 1) 2(n) . 22
m
Xi ~ N(0,1) , i 1,2,,n 且相互独立 , 则 X
X
2 i
~
2(n) .
i 1
⒊ 相当误差(比率)的概率分布
m
设
Xi
~
N(0, 2 ) ,i
1,2,, m,m 1,,m n且相互独立,则
i 1
二、随机误差的概率分布
⒈ 高斯随机误差模型 随机变量的高斯分解
可观测的指标
X
不可观测的随机干扰
指标的标准值(生产控制参数,理论均值)
原始测量误差的概率分布
由棣莫弗提出,高斯推证,拉普拉斯再证,原始测量误差的概率分布为:
~ N (0 , 2 )
高斯的推证要点如下:
设测量误差 X 的密度函数为 f ( ) ,由“最大后验概率”的原则得
几种常见的概率分布率-(1)分解

➢ 标准正态分布的偏斜度γ1和峭度γ2均为零。
以下一些特征值很重要:
-3 -2 -1
1 23
68.27%
95.45%
99.73%
P(-1≤u<1)=0.6826 P(-2≤u<2)=0.9545 P(-3≤u<3)=0.9973
4.822),求:
(1)X<161cm的概率; (2)X>164cm的概率; (3)152<X<162的概率。
x-
=
161 - 156.2 4.82
=
1.00
x
=
164 - 156.2 4.82
=
1.62
x
=
152 - 156.2 4.82
=
-0.87
x
=
162 - 156.2 4.82
=
1.20
四、 正态分布的单侧分位数和双侧分位数
x
[(1-
-1
p) ]p - p(n-x)
(当n→∞时,系数的极限为1,且nφ =μ)Βιβλιοθήκη x!= x e-x!
1
-1
e = lim (1 z) z,lim (1 - p) p = e
z0
p0
二、 服从泊松分布的随机变量的特征数
➢ 平均数:μ=λ ➢ 方差: σ2 = λ
➢ 偏斜度: 1=
1
➢
峭度:
标轴从-∞到u所夹的面积,该曲线下的面积即表示随机 变量U 落入区间(-∞,u)的概率;
➢ 标准正态分布查表常用的几个关系式:
• P(0<U <u1)=F(u1)-0.5 • P(U >u1)=F(-u1)=1-F(u1) • P(∣U∣>u1)=2F(-u1) • P(∣U∣<u1)=1- 2F(-u1) • P(u1<U <u2)=F(u2)-F(u1)
第5章 常用概率分布2

正态分布的参数
1
2
3
图9 标准差相同、均数不同的正态分布曲线
正态分布的参数
σ1 σ2 σ3 σ1<σ2<σ3
图10 均数相同、标准差不同的正态分布曲线
正态分布
二、正态概率密度曲线下的面积规律
正态曲线下面积总和为1;
正态曲线关于均数对称;对称的区域内面积相等; 对任意正态曲线,按标准差为单位,对应的面积相 等;
计算z值:
z1 x1
( 1.96 )
1.96
z2
x2
( 1.96 )
1.96
0.025 1.96
查附表1:确定概率 结论:95%
0.025 -1.96
正态分布
例 已知X服从均数为 、标准差 为的正态分布, 1 .96 试估计:(1)X取值在区间 上的概率; (2)X 取值在区间 上的概率。 2.58
记为N(0,1)。 标准正态分布是一条曲线。
标准正态分布曲线下的面积
μ±1范围内的面积为68.27% μ±1.96范围内的面积为95%
μ±2.58范围内的面积占99%
图12 正态曲线下的面积分布示意
标准正态分布曲线下的面积的计算
求z值,用z值查表,得到所求区间面积占总面
积的比例。 曲线下对称于0的区间,面积相等。 曲线下总面积为100%或1。
计算z值:
Z 130 123 .02 1.46 4.79
查附表1:确定概率
0.0721 0.0721 1.46
结论:7.21%
-1.46
泊松分布表格

泊松分布是一种离散概率分布,常用于描述在给定时间间隔或空间内发生的事件的数量。
以下是泊松分布表格,其中λ表示事件发生的平均发生率,表格中的数字表示在给定λ值下,不同k值(事件发生的次数)的概率。
k λ=1 λ=2 λ=3 λ=4 λ=5
0 0.3679 0.2706 0.1821 0.1253 0.0864
1 0.2419 0.3477 0.2704 0.1888 0.1309
2 0.135
3 0.2453 0.2987 0.2446 0.1868
3 0.0732 0.1599 0.2362 0.2675 0.2353
4 0.041
5 0.1118 0.1849 0.2562 0.2684
... ... ... ... ... ...
以上表格中的数字是泊松分布的概率值,这些数字可以用来说明在给定λ值下,不同k值所对应的概率。
例如,当λ=2时,k=1时的概率为0.3477。
需要注意的是,泊松分布在一些情况下可能不适用。
例如,当事件的发生不是相互独立时,或者当事件发生的概率随时间变化时,泊松分布可能不准确。
在这种情况下,可能需要使用其他概率模型来描述事件的发生。
常见概率分布表(超全总结)

指数分布 (负指数分布)
Γ(1, ������)
������ > 0
������
������ 2
注:指数分布是Γ分布的特殊情况
n
2n
χ2 分布
������ 2 (������)
������ ≥ 1
f(x) = {
2n⁄2 Γ(������⁄2) 0 ,
������ ≥ 1
������ > 0
均匀分布
U(a, b)
a<b
K=0,1,2,… 1 , ������ < ������ < ������ f(x) = {������ − ������ 0, 其它 f(x) = 1 f(x) = {√2������������������ 1 √2������������ ������ ������ −(������−������)
非中心χ 分布
2
������ f(x) = {
������+������ −( 2 ) ∞
������ (������, ��� 0
2������⁄2
������ 2+������−1 ������������ ∑ ������ , (������ > 0) 2������ ������=0 Γ (2 + ������) 2 ������! 0 , 其它
逆高斯分布
N (μ, λ)
−1
λ, μ > 0
Γ分布
连 续 型
(伽玛分布)
Γ(������, ������)
������, ������ > 0
1 ������ ������−1 ������ −������⁄������ , ������ > 0 f(x) = {������ ������ Γ(������) 0 , 其它 1 −������ ������ ������ , ������ > 0 f(x) = { ������ 0 , 其它 1 ������ 2 −1 ������ −2 , ������ > 0 其它