地铁车地无线通信实施方案探讨
轨道交通车地无线安全解决方案

技术创新,变革未来
目录
• 一、建设中的机场轨道线 • 二、轨道交通通信安全现状 • 三、轨道交通车地无线安全解决方案 • 四、几个工程问题
二、轨道交通通信安全现状
1
通信分类
2
安全现状
3
新需求
有线通信和无线通信
有线通信主要是骨干网搭建的 传输系统,一般采用MSTP、 OTN、RPR技术
WLAN技术采用ISM频段标 准协议,易受干扰和攻击
LTE技术采用专用频段,并使 用128位加密算法,确保空口 数据传输安全
既有、在建、新建、改造线路 采用车地无线通信系统承载 CBTC、PIS、CCTV、车辆状 态监测、集群调度等核心业 务,“连续、可靠、安全、不间 断”成为最基本的要求
越来越多的新建地铁线路采用 全自动运行技术,对通信安全 提出新的要求,通信安全尤为 重要
轨道交通车地无线为通信网络安全的薄弱环节
三、轨道交通车地无线安全解决方案
加密卡读写卡 器
密钥管理终 端
密钥管理中心 KMC
Tet ra 基 站
调度台
调度台密码 机
传输网
WLAN AP
P IS 服 务 器 C C T V 服 务 器 C B T C 服 务 器
安全网关
数据分发服务 器
LTE基 站
密文 明文 混合
手持终端
车载台
TA U
TF卡 密 码 机
TF卡 密 码 机
TAU密 码 模 块
PIS
CCTV
CBTC
车地无线安全解决方案使得车地无线通信更安全、更可靠
四、几个工程问题
• 考虑主办单位偏重视频技术应用,谈几个实际问题 • (一)共构区间安全防范 • (二)行李运送车视频智能优化 • (三)机器人(人工智能)视频技术应用需求
浅析上海轨道交通5号线无线双网车地通信系统

浅析上海轨道交通5号线无线双网车地通信系统上海轨道交通5号线是上海地铁系统的一条重要线路,是连接闵行区到浦东新区的重要交通干线。
为了提高乘客的通信体验,5号线采用了无线双网车地通信系统。
无线双网车地通信系统是指在地铁运营过程中,车辆与地面控制中心之间通过无线通信方式进行数据传输和交互的系统。
这样的系统具有快速、稳定、可靠的特点,能够保证地铁列车的正常运行和安全。
上海轨道交通5号线的无线双网车地通信系统采用了两种网络技术,即移动通信网络和无线局域网。
移动通信网络主要是指基于GSM-R技术的移动通信网络,它主要用于列车与列车之间以及列车与地面控制中心之间的语音和数据传输。
无线局域网主要是指基于Wi-Fi技术的无线局域网,它主要用于列车内乘客的上网和通信需求。
无线双网车地通信系统的优势主要体现在以下几个方面:1. 高速通信:无线双网车地通信系统采用了高速率的无线通信技术,可以实现高速的数据传输,满足地铁列车运行和乘客通信的需求。
2. 可靠稳定:无线双网车地通信系统采用了多种技术和协议,通过冗余设计和自动切换机制,保证了通信的可靠性和稳定性,防止通信中断和故障。
3. 节约成本:无线双网车地通信系统的建设和维护成本相对较低,相比于传统的有线通信系统,无线通信系统省去了大量的布线和设备维护成本。
4. 灵活扩展:无线双网车地通信系统具有良好的扩展性,可以根据需求进行灵活的扩展和升级,以适应未来地铁运营的需求变化。
上海轨道交通5号线的无线双网车地通信系统采用了移动通信网络和无线局域网的技术,具有高速通信、可靠稳定、节约成本和灵活扩展等优势。
这样的系统可以为地铁列车的运营提供良好的通信保障,提高乘客的通信体验和安全性。
这也是上海地铁系统不断引进新技术、提升服务水平的一种体现。
地铁PIS系统车地无线技术研究与分析

地铁PIS系统车地无线技术研究与分析地铁PIS(列车信息显示系统)是一种用于地铁列车上显示车次信息的系统,通过显示屏或者扬声器播放车次信息、站点信息、列车运行信息等。
而车地无线技术是PIS系统中必不可少的一种技术,它实现了列车和地面控制中心之间的无线通信。
本文将对地铁PIS 系统中的车地无线技术进行研究与分析,探讨其技术原理、特点和发展趋势。
一、车地无线技术的原理车地无线技术是地铁PIS系统中的重要技术之一,它能够实现列车和地面控制中心之间的无线通信,从而实现车次信息的传输和显示。
车地无线技术主要包括车载通信设备和地面基站两部分。
车载通信设备安装在列车上,通过无线信号与地面基站进行通信。
地面基站则是地面控制中心的设备,负责与列车进行通信并传输车次信息。
车载通信设备主要由天线、无线模块、数据处理模块等部分组成。
当列车行驶时,车载通信设备能够自动搜索和连接最近的地面基站,并建立通信连接。
一旦连接成功,车载通信设备就可以通过无线信号传输车次信息、列车运行信息等到地面基站。
地面基站收到信息后,会将其传输至控制中心,并借助地面通信网络将信息分发至各个车站的PIS系统中,最终通过显示屏或者扬声器显示给乘客。
1. 实时性强:车地无线技术能够实现列车和地面控制中心之间的实时通信,能够保证车次信息和列车运行信息的及时传输和显示。
2. 高可靠性:车地无线技术采用了先进的无线通信技术,能够在复杂的地下环境中保持稳定的通信连接,具有很高的可靠性和稳定性。
3. 系统集成性强:车地无线技术与地铁PIS系统中的其他设备进行了紧密的集成,能够实现与车站系统、列车系统等设备的无缝连接和通信。
4. 节能环保:相比传统的有线通信方式,车地无线技术能够减少线缆的使用,减少对环境的影响,具有较好的节能环保特点。
1. 高速通信技术的应用:随着5G技术的逐渐成熟,未来车地无线技术将更加注重高速通信技术的应用,提升数据传输速度和通信稳定性。
2. 多模态通信技术的发展:未来车地无线技术可能会采用多种通信模式,如蜂窝网络、卫星通信等,以满足不同地区和地下环境下的通信需求。
地铁无线通信系统方案设计论文

地铁无线通信系统方案设计论文一、项目背景近年来,我国城市化进程不断加快,地铁作为一种高效、便捷的交通工具,已经成为大中型城市交通系统的重要组成部分。
然而,地铁运行过程中,通信信号的覆盖和稳定性一直是个难题。
为了解决这一问题,我们需要设计一套地铁无线通信系统,确保地铁运行过程中通信信号的稳定性和可靠性。
二、系统需求1.信号覆盖:地铁无线通信系统需要覆盖地铁隧道、车站、车辆段等区域,保证通信信号的无缝对接。
2.信号稳定性:在高速行驶的地铁上,通信信号要具备较强的抗干扰能力,确保通信质量。
3.通信带宽:地铁无线通信系统需要提供足够的通信带宽,满足语音、数据等多种业务需求。
5.系统安全性:地铁无线通信系统要具备较强的安全性,防止恶意攻击和非法接入。
三、方案设计1.通信技术选择(1)传输速率高,满足多种业务需求。
(2)抗干扰能力强,适应地铁环境。
(3)组网灵活,易于扩展。
2.网络架构设计(1)接入层:主要由无线接入点(AP)组成,负责将地铁隧道、车站等区域的通信信号接入网络。
(2)汇聚层:主要由交换机组成,负责将接入层的数据进行汇聚和转发。
(3)核心层:主要由路由器组成,负责实现地铁无线通信系统与外部网络的连接。
3.信号覆盖方案(1)地铁隧道:采用漏缆作为传输介质,通过无线接入点(AP)实现信号覆盖。
(2)车站:采用室内分布系统,通过天线实现信号覆盖。
(3)车辆段:采用室外分布系统,通过天线实现信号覆盖。
4.通信带宽保障(1)采用高性能无线接入点(AP),提高数据传输速率。
(2)采用多通道技术,提高通信带宽利用率。
(3)合理规划无线网络资源,避免带宽拥堵。
5.系统兼容性(1)2G/3G/4G/5G移动通信制式。
(2)WLAN通信制式。
(3)专用通信制式。
6.系统安全性(1)采用加密技术,防止数据泄露。
(2)采用防火墙技术,防止恶意攻击。
(3)采用身份认证技术,防止非法接入。
四、项目实施1.项目筹备:成立项目组,明确项目任务、进度、预算等。
城市轨道交通车地无线通信组网及应用探讨

城市轨道交通车地无线通信组网及应用探讨李颀北京地铁运营四分公司北京摘要:随着城市轨道交通的快速发展,车地无线通信技术作为城市轨道交通的关键性技术也越来越受到各方面的重视。
轨道交通车地无线通信一般包含列车信号系统(CBTC)和乘客信息系统(PIS)两个部分。
而在国内目前在建轨道交通项目中,PIS系统和CBTC系统的无线网络均采用WLAN技术,因此就需要避免其在各种隧道环境中产生相互干扰以及其他系统对它们的影响。
本文从组网、占用带宽、应用特点等方面对比了PIS系统和CBTC系统的车地无线通信部分,并提出了建设和运营中应注意的一些问题以及车地无线通信技术的发展趋势。
Abstract: With the development of urban rail transit, train-ground wireless communication technology as a key technique for urban rail transit is becoming more and more attention of the various aspects. Rail transport in wireless communication generally contain signal system (CBTC) and passenger information system (PIS) two parts. In domestic rail transportation project under construction currently, PIS system and wireless network of CBTC system adopt WLAN technology, so they need to avoid the interference in the tunnel environment and other systems for their impact. In this paper, from the aspects of network, bandwidth, application characteristics compared the PIS system and train-ground wireless communication part of CBTC system, and puts forward some problems that should be paid attention to in the construction and operation as well as the trend of the development of the train-ground wireless communication technology.关键词:轨道交通车地无线通信乘客信息系统基于通信的列车自动控制系统WLANKey words: urban rail transit, train-ground wireless communication, PIS ,CBTC, WLAN1 城市轨道交通车地无线通信系统概述当前,随着我国城市化的不断发展,越来越多的城市已经开始建设或规划建设城市轨道交通线路。
轨道交通车地无线通信双网解决方案

应急处理效果
减少损失:降低事 故损失,保障人员
安全
增强安全:提高轨 道交通系统的安全
性和可靠性
快速响应:在紧急 情况下,能够快速
响应并采取措施
提高效率:提高应 急处理效率,缩短
恢复时间
6
实践与展望
实践案例
北京地铁16号线: 采用车地无线通 信双网解决方案, 实现列车运行控 制和乘客信息服
务。
上海地铁10号线: 采用车地无线通 信双网解决方案, 实现列车运行控 制和乘客信息服
功能实现
01
双网融合:实现车地无线通信网 02
实时监控:实时监控列车运行状
络的融合,提高通信效率
态,提高列车运行安全
03
数据传输:实现列车与地面之间
04
故障诊断:实现列车故障的自动
的数据传输,提高列车运行效率
诊断,提高列车维修效率
05
智能调度:实现列车智能调度,
06
乘客服务:提供乘客信息服务,
提高列车运行效率
性能和稳定性
实施效果
01
提高通信质量: 降低误码率, 提高传输速度
02
降低成本:减 少设备数量, 降低维护成本
03
提高安全性:增 强网络安全性,
防止数据泄露
04
提高效率:减少 部署时间,提高
系统稳定性
5
应急处理措施
应急预案
建立应急指挥中 心,统一协调指
挥
定期组织应急演 练,提高应急处
置能力
制定应急预案, 明确应急处置流
03
实时监控:实时监控列车运 行状态,提高行车安全
02
冗余设计:采用冗余设计, 提高系统可靠性和稳定性
04
5G通信技术在城市轨道交通信号车地通信中的应用探讨

5G通信技术在城市轨道交通信号车地通信中的应用探讨摘要:目前,城市轨道交通CBTC信号系统采用的车地无线通信技术主要有WLAN技术和TD-LTE无线移动通信技术。
WLAN技术具有成本低廉、技术成熟、极易网络化等优点,但其本身也存在较大缺点,它在列车高速行驶下带宽不足、切换频繁、极易受到外部干扰等,导致系统极易丢包,对城市轨道交通运营稳定性造成影响。
LTE作为第4代移动通信技术,可完成信号CBTC、车载PIS、CCTV等业务的综合承载,且使用1.8 GHz专用频率(1785 ~1805 MHz),在工程实施阶段经过严格的频段审批、规划和控制,完美地解决了WLAN技术方面的缺陷,在近几年内成为主流技术。
关键词:5G通信技术;轨道交通1 前言随着城市轨道交通在数字化、智慧化和绿色低碳发展领域的不断探索,城市轨道车地通信业务对通信带宽的需求不断提升,LTE系统带宽不足的问题逐渐凸显。
考虑网络建设成本,也迫切需求能够提供一个统一承载多种业务的通信系统,并能够兼顾不同业务对时延、带宽、传输可靠性等的特殊需求。
5G通信技术的出现为上述需求提供了新的解决方案。
2 5G移动通信技术5G作为新一代蜂窝移动通信技术,主要优势在于:增强型移动宽带,数据传输速率远远高于以前的蜂窝网络;较低的网络延迟,可满足用户具有低时延需求的无线传输;极高的可靠性(低于10-9的错误率),对城市轨道交通车地通信业务具有重大意义。
5G技术在城市轨道交通领域产业化发展将依赖于以下技术。
(1)MEC移动边缘计算。
采用基于移动通信网络的全新的分布式计算方式,部署在网络边沿,提供计算和存储等功能,使一定的网络服务和网络功能脱离核心网络,实现成本优化、时延降低、流量优化、物理安全和缓存效率增强等目标。
(2)切片技术。
将5G网络划分为不同特征的切片子网络,为不同应用场景提供SLA(服务等级协议)保障的连接、服务定制化、相互隔离、时延和丢包可控、端到端的“专网”,满足多样化的场景需求。
浅析上海轨道交通5号线无线双网车地通信系统

浅析上海轨道交通5号线无线双网车地通信系统上海轨道交通5号线是上海地铁系统中的一条重要线路,也是上海市地铁网络中的一部分。
无线双网车地通信系统是5号线的一个重要组成部分,它在保障列车运行安全和提高运行效率方面具有不可或缺的作用。
本文将对上海轨道交通5号线无线双网车地通信系统进行浅析,以便更好地了解和认识这一系统的重要性和作用。
一、系统概述无线双网车地通信系统是上海轨道交通5号线中的一个重要部件,它主要由列车载频通信系统和无线传输系统两部分组成。
列车载频通信系统是指列车通过车载设备与地面设备进行信息传输和通信,在列车运行过程中实现与地面基站的无线通信;无线传输系统则是指地面基站与列车之间的信息传输过程,包括基站与列车之间的无线信号传输和数据传输。
这两个部分共同构成了5号线无线双网车地通信系统的基本框架。
二、系统功能1. 数据传输功能:无线双网车地通信系统可以实现列车与地面设备之间的数据传输,包括列车运行状态、车载设备信息、乘客信息等数据的传输,确保列车运行过程中的信息及时、准确地传输和接收。
3. 通信功能:无线双网车地通信系统还具备通信功能,能够实现列车与地面设备之间的双向通信,包括列车的紧急报警、乘客求助、列车调度指令下达等通信功能,确保列车运行安全和乘客安全。
4. 监测功能:系统还具备对列车运行状态、设备运行状态和信号状态的实时监测功能,能够及时发现并处理各种异常情况,确保列车运行安全和线路畅通。
三、系统优势1. 高可靠性:无线双网车地通信系统采用了先进的无线通信技术和信号处理技术,能够实现高可靠性的数据传输和信号传输,确保列车运行过程中信息的准确性和及时性。
2. 高安全性:系统具备紧急报警、乘客求助等通信功能,能够在发生紧急情况时及时通知列车调度和相关部门,确保列车和乘客的安全。
3. 高智能化:系统采用了先进的自动控制技术和监测技术,能够对列车运行状态和线路状态进行智能监测和控制,提高运行效率和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁车地无线通信实施方案探讨
发表时间:2019-09-11T15:49:08.923Z 来源:《基层建设》2019年第17期作者:董招[导读] 摘要:目前国内轨道交通行业高速发展,地铁车地无线通信一直是地铁通信专业关注的焦点。
中建五局安装工程有限公司湖南省 410000摘要:目前国内轨道交通行业高速发展,地铁车地无线通信一直是地铁通信专业关注的焦点。
本文通过分析频段2.4G传输时钟同步车地无线通信方案、频段1.8G近远端机同步车地无线通信方案和频段5.8G-GSU同步车地无线通信方案,提出更适合的频段5.8G分组传输网时钟同步车地无线通信方案,以及未来车地无线通信发展的前景。
关键词:地铁通信;车地无线通信;方案
引言
车地无线通信系统是城市轨道交通的重要基础设施,是地铁安全运营所必须的信息交互系统,系统的通信质量和可靠性直接决定地铁的运营状况,与人们的出行体验息息相关,是城市进行地铁建设时需要重点考虑的问题。
近些年,随着车地无线通信技术的发展,形成多种无线通信技术,如何选择合适的车地无线通信技术,满足地铁运营的需要成为设计、施工人员需要重点思考的问题。
1地铁车地无线通信概述
车地无线通信网络是乘客信息系统(简称PIS系统)主干网络的延伸,PIS系统能通过组播方式实现线路播控中心到列车的信息下发,并能实现广播和寻址功能,将特定的信息发送给指定的一列或者几列列车;视频监控系统(简称CCTV系统)也能通过该网络实现将车辆客室监视信息实时上传至中心CCTV服务器,列车驾驶室显示终端能调看对应车站站台屏蔽门侧的监控图像。
车地无线网络提供的双向传输有效带宽应能满足列车与中心之间的实时双向数据传输的带宽要求,保证所传图像顺畅清晰,不出现画面中断或者跳播等现象,且系统具有QoS分级控制功能。
车地无线网络确保沿轨道线安装的无线接入点和在移动列车上的移动单元之间建立稳定、安全且能避免冲突的连接。
在列车高速运行时,不应丢失连接和引起画面质量降低,无线设备应遵循完善的切换机制无缝切换至最合适的接入点。
2地铁车地无线通信整体规划
2.1通信信号各自独立建设LTE单网
通信信号专业各自建设一套LTE硬件传输网络,通信专业单网承载无线调度业务和列车运行紧急数据业务。
考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,则由通信专业为信号专业配置冗余无线数据传输通道,以满足信号系统冗余需求。
优点:该方案同样整体降低本工程LTE车地无线信息传输网络的造价,实现资源的整合和充分利用,技术上满足信号系统对车地无线数据传输的要求,节约频带资源的使用宽度。
缺点:信号系统与通信系统在无线数据传输系统增加了接口,同时信号系统的冗余通道的可靠性和安全性需要由通信系统保障。
2.2通信独立建设单网,信号专业独立建设冗余双网
通信专业独立建设一套LTE硬件传输网络设备,承载无线调度业务和列车运行紧急数据业务。
考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,信号专业独立建设一套冗余无线数据传输网络设备。
优点:该方案通信信号两个系统在无线信息传输系统上完全独立,工程安装、调试,后期的设备维护都相对独立,降低了专业之间的依赖,管理上更为便利。
缺点:增加了工程建设的成本,增加了无线频带资源的使用宽度。
3地铁车地无线通信实施方案解析
3.1频段1.8G近远端机同步车地无线通信方案
该方案车地无线通信采用1.8G频段,通过地面无线发射网关+车站近端机+区间光远端发射机的组合模式,地面有线网络中心交换机通过光缆与各站地面无线网管相连,这样能保证无线发射信号的频率一致,基本不存在延时。
为解决列车高速在区间行驶时,列车基站信号接收器频繁切换信号源,出现不断跟信号源通讯握手的死循环模式,导致无法正常进行通信状态。
区间基站采用无线接收基站和光远端发射机,在对应列车内配置车载无线接收网关、车载无线发射网关和车载通信控制器。
该方案无线接收和发射通道分开,但能很好的解决高速行驶时无线信号越区切换通信故障问题。
该方案带宽仍然有限,一般为30M左右,其中控制中心设备可调看单列车6路监控图像(带宽需求在12M左右),而列车播控系统能播放直播信号(带宽需求在6M左右)。
但通过地面无线发射网关+车站近端机+区间光远端发射机的模式,控制中心能够实时调看低码流列车监控图像。
该方案,区间光远端发射机一般800m左右安装一个,天线覆盖范围较远,但是为保持同步并解决信号越区切换问题,各站无线发射网关需敷设光缆与地面有线网络中心交换机相连,光缆数量非常大,施工成本较高。
3.2频段2.4G传输时钟同步网车地无线通信方案
该方案车地无线通信采用2.4G频段,轨旁基站与车载基站之间无线使用IEEE802.11n用于覆盖列车运行沿线,无线骨干连接带宽可达到15Mbps,而区间基站与车站交换机有线信息传输网之间的连接有效带宽为100Mbps。
传输系统采用数字同步多业务传送平台(简称MSTP)和时钟同步网络(简称BITS),即MSTP+BITS同步传输方案。
车站车地无线系统通过传输系统分配的1000M光通道传输至控制中心,关键在于该传输系统能提供严格的时钟同步功能,保证区间基站发射信号的同步,以至于列车行驶跨越无线覆盖区间时,基站发射信号保持同步。
区间无线基站与无线管理交换机无线控制器模块之间通过有线网络进行互联,采用CAPWAP标准隧道协议,同时,在保证802.11安全的前提下采用集中控制分布式转发。
4城市轨道交通中常见的车地无线通信技术 4.1TRainCom-MT技术
该技术是由德国公司研发的城市轨道交通专用通信系统,能够在高速移动环境下保持良好的通信效率和质量,车地最大通信传输速度可达16Mb/s。
但是,该系统受到保密性协议的限制,其系统升级和开发只能依靠德国公司实现,市场维护和选择方面相对教差,在国内中的应用相对较少。
4.2LTE无线传输技术
LTE无线传输技术是当前应用最为广泛的车地无线通信技术,是在3G的基础上发展而来的,通过对空中接入技术的改进和增强,在保有3G原有技术优势的同时,实现无线传输的低延迟、高传输速度、分组传输、向下兼容和光域覆盖。
因其技术优势,LTE无线传输技术在郑州、深圳等多个城市轨道交通中有所应用。
4.34G技术的地铁专用无线通信系统的应用
为统一铁路列车调度管理,促进列车调度工作朝向规范化、标准化方向驶进,铁路部门明确要求列车调度管理人员必须加强列车调度管理的组织和指挥能力,为列车运行安全提供保障。
对于地铁列车运行而言,若想确保调度管理效果,往往需要立足于地铁无线通信系统功能实行调度管理方案。
一般来说,主要针对行车调度无线通信子系统、车辆段和停车场无线通信子系统以及维修调度无线通信子系统等调度管理工作而言,通过集中管控,确保地铁列车运行质量,防止安全事故。
针对于此,本人主要结合相关经验,提出关于优化4G 地铁专用无线通信系统运行管理的相关建议,以供参考。
首先地铁列车各级调度人员必须努力学习有关 4G 地铁专用无线通信系统运行管理的技能知识,树立安全管理意识,始终坚持实事求是原则,严格贯彻与落实各项工作内容。
根据列车运行状态开展相关调度管理作业,确保列车运行安全。
对于行车调度通话而言,必须满足服务质量等级QCI3,以期最大限度地加强行车调度通话之间的高效性与质量性。
最后运营管理人员必须肩负起对地铁专用无线通信系统运行问题的管理重任。
与此同时,调度管理人员与列车司乘人员也必须强化自身的主体责任,强化辅助管理效果。
根据列车实际情况,提供合理的语音通信业务,确保列车行车安全。
在无线基站、核心交换机等地铁专用无线通信系统基本设施的管理方面,必须实行定期检查工作,杜绝止运行故障问题。
结语
未来高清时代,对车地无线网络的带宽和稳定性要求更好,随着新一代传输网络的MSTP+设备和区间基站设备的应用,在不断探索和解决当前车地无线通信方案实施过程中的问题中,也将会产生新一代的车地无线通信方案。
另外区间信号通信和车地无线通信都单独设置,为共享资源和降低施工成本,相关通信厂商正在考虑结合LTE-4G技术,提出将区间信号通信和车地无线通信合用一套LET系统综合承载平台。
再者随着5G时代的到来,更高速率的传输模式也将会给地铁车地无线通信带来巨大的变革。
参考文献:
[1]安彬.地铁信号系统中车地无线通信传输抗干扰分析[J].科技创新与生产力,2015(12).
[2]肖清华,等.D-LTE网络规划设计与优化[M].北京:人民邮电出版社,2013.。