BP神经网络模型

合集下载

神经网络模型

神经网络模型

J. McClelland
• BP算法基本原理 • 利用输出后的误差来估计输出层的直接前导层的误差, 再用这个误差估计更前一层的误差,如此一层一层的 反传下去,就获得了所有其他各层的误差估计。
• 三层BP网络
二、Hopfield网络模型
Hopfield网络是神经网络发展历史上的一个重要 的里程碑。由美国加州理工学院物理学家 J.J.Hopfield教授于1982年提出,是一种单层反馈 神经网络。 Hopfield神经网络模型是一种循环神经网络,从 输出到输入有反馈连接。
谢谢!
三种典型的神经网络模型及其应用
一、BP神经网络模型 二、Hopfield网络模型 三、Elman网络模型 四、应用案例
一、BP神经网络模型
• Rumelhart,McClelland于1985年提出了BP网络的误差 反向后传BP(Back Propagation)学习算法
David Rumelhart
上下文单元
输出
输入 隐层单元 输入单元 输出单元
四、应用案例
预测和评价大气质量: 近些年来, 我国学者在利用神经网络进行环境质 量评价方面做了不少的工作。神经网络在环境评价 中表现出的优越性受到越来越多的重视。 随着神经网络本身以及相关技术的不断发展, 其在环境质量 评价中的应用将更加深入和广泛。
z 1
z 1
z 1
z 1
网络模型表1
+
I1
R10
u1
C1
1
v1
wi1
+
Ii
Ri 0
ui
Ci
i
vi
w j1
+
Ij Rj0
uj
Cj
j

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。

BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。

BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。

具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。

3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。

6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。

BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。

下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。

我们训练集中包含一些房屋信息和对应的价格。

1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。

3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

BP神经网络算法预测模型

BP神经网络算法预测模型

BP神经网络算法预测模型
BP神经网络(Back Propagation Neural Network,BPNN)是一种常
用的人工神经网络,它是1986年由Rumelhart和McClelland首次提出的,主要用于处理有结构的或无结构的、离散的或连续的输入和输出的信息。

它属于多层前馈神经网络,各层之间存在权值关系,其中权值是由算法本
身计算出来的。

BP神经网络借助“反向传播”(Back Propagation)来
实现权值的更新,其核心思想是根据网络的输出,将错误信息以“反馈”
的方式传递到前面的每一层,通过现行的误差迭代传播至输入层,用来更
新每一层的权值,以达到错误最小的网络。

BP神经网络的框架,可以有输入层、隐含层和输出层等组成。

其中
输入层的节点数即为输入数据的维数,输出层的节点个数就是可以输出的
维数,而隐含层的节点数可以由设计者自由设定。

每一层之间的权值是
BP神经网络算法预测模型中最重要的参数,它决定了神经网络的预测精度。

BP神经网络的训练步骤主要有以下几步:首先,规定模型的参数,
包括节点数,层数,权值,学习率等;其次,以训练数据为输入,初始化
权值,通过计算决定输出层的输出及误差;然后,使用反向传播算法,从
输出层向前,层层地将误差反馈到前一层。

bp网络

bp网络
20310192
一、简介
BP(Back propagation)神经网络又称为 BP( propagation) 多层前馈神经网络, 多层前馈神经网络,为三层前馈神经网 络的拓扑结构。它是当前最为广泛的一 络的拓扑结构。它是当前最为广泛的一 种人工神经网络,可用于语言综合、识 别和自适应控制等系统。这种神经网络 别和自适应控制等系统。这种神经网络 模型的特点是:结构简单,工作状态稳 模型的特点是:结构简单,工作状态稳 定,易于硬件实现;各层神经元仅与相 定,易于硬件实现;各层神经元仅与相 邻层神经元之间有连接;各层内神经元 之间无任何连接;各层神经元之间无反 馈连接。输入信号先向前传播到隐结点,
经过变换函数之后,把隐结点的输 出信息传播到输出结点,再给出输 出结果。结点的变换函数通常选取 Sigmoid型函数。 Sigmoid型函数。
图1 BP网络 BP网络
BP算法的原理 BP算法的原理
BP算法是用于前馈多层网络的学习算法, BP算法是用于前馈多层网络的学习算法, 前馈多层网络的结构如图1 前馈多层网络的结构如图1所示。它包含 有输入层、输出层以及处于输入输出层 之间的中间层。中间层有单层或多层, 由于它们和外界没有直接的联系,故也 称隐层。在隐层中的神经元也称隐单元; 隐层虽然与外界不连接,但它们的状态 影响输入输出之间的关系。也就是说, 改变隐层的权系数,可以改变整个多层 神经网络的性能。
BP算法的数学描述 BP算法的数学描述
BP算法实质是求取误差函数的最小值问 BP算法实质是求取误差函数的最小值问 题,这种算法采用最速下降法,按误差 函数的负梯度方向修改权系数。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

BP神经网络预测模型

BP神经网络预测模型

BP 神经网络模型基本原理( 1) 神经网络的定义简介神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple-layer feedforward network, 简记为BP 网络), 是目前应用最成功和广泛的人工神经网络.( 2) BP 模型的基本原理[3]学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP 网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型.BP 网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网, 这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间. 见图( 1) .O 1 O 2 O i O m( 大于等于一层) W (1)…( 3) BP 神经网络的训练BP 算法通过“训练”这一事件来得到这种输入, 输出间合适的线性或非线性关系. “训练”的过程可以分为向前传输和向后传输两个阶段:输入层 输出层 隐含层图1 BP 网络模型[1]向前传输阶段:①从样本集中取一个样本,i j P Q , 将i P 输入网络;②计算出误差测度1E 和实际输出(1)(2)()21(...((())...))L i L iO F F F PW W W =; ③对权重值L W W W ,...,)2()1(各做一次调整, 重复这个循环, 直到i E ε<∑.[2]向后传播阶段——误差传播阶段:①计算实际输出p O 与理想输出i Q 的差;②用输出层的误差调整输出层权矩阵; ③211()2mi ij ij j E Q O ==-∑; ④用此误差估计输出层的直接前导层的误差, 再用输出层前导层误差估计更前一层的误差. 如此获得所有其他各层的误差估计;⑤并用这些估计实现对权矩阵的修改. 形成将输出端表现出的误差沿着与输出信号相反的方向逐级向输出端传递的过程.网络关于整个样本集的误差测度:i iE E =∑几点说明:一般地,BP 网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。

BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。

它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。

BP网络的训练过程可以分为两个阶段:前向传播和反向传播。

前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。

反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。

BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。

通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。

2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。

例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。

3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。

通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。

4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。

例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。

5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。

通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。

总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。

它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。

然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。

BP神经网络的优缺点

BP神经网络的优缺点

BP神经网络的优缺点BP神经网络,也称为“反向传播神经网络”,是一种常见的人工神经网络模型。

它是基于误差反向传播算法的一种机器学习方法,广泛应用于分类、回归、预测等场景中。

优点1. 非线性逼近能力强BP神经网络的非线性逼近能力优秀,可以逼近任何非线性的函数。

它的输入层、隐层和输出层之间的结构可以实现对高维非线性数据的拟合。

2. 适用 range 广泛BP神经网络可以应用于许多不同领域,如医药、自然语言处理、图像识别等。

它可以对各种形式的数据进行分类、回归、预测等。

3. 学习能力强BP神经网络可以通过大量的样本数据进行训练,并能够自动学习和自我适应。

可以对训练数据进行高效的学习和泛化,从而适应未知数据。

4. 适应动态环境BP神经网络可以适应不断变化的环境。

当模型和所需输出之间的关系发生变化时,网络可以自适应,自动调整权重和阈值,以适应新的情况。

缺点1. 学习速度慢BP神经网络的学习速度相对较慢。

它需要大量的时间和数据来调整权重和阈值,以达到稳定的状态。

2. 容易陷入局部极小值BP神经网络很容易陷入局部极小值,而无法达到全局最优解。

这可能会导致网络的准确度降低,并影响到后续的预测、分类和回归任务。

3. 需要大量的数据BP神经网络需要大量的数据进行训练,以使网络达到优秀的效果。

如果训练数据不充分,可能会导致网络过度拟合或欠拟合。

4. 对初始参数敏感BP神经网络对初始参数非常敏感。

如果初始参数不好,那么网络可能会无法进行训练,或者陷入局部最小值。

综合来看,BP神经网络具有良好的非线性逼近能力和学习能力,但也存在一些缺点,比如学习速度慢、容易陷入局部极小值等。

因此,在具体应用场景中,我们需要权衡BP神经网络的优点和缺点,选择合适的机器学习模型进行训练和预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
学习的过程: 学习的过程: 神经网络在外界输入样本的刺激下不断改变网 络的连接权值,以使网络的输出不断地接近期 望的输出。 学习的本质: 学习的本质: 对各连接权值的动态调整 学习规则: 学习规则: 权值调整规则,即在学习过程中网络中各神经 元的连接权变化所依据的一定的调整规则。
who
e <0, w ho
此时w 此时 ho>0
BP神经网络学习算法的MATLAB实现 神经网络学习算法的MATLAB 2.4.3 BP神经网络学习算法的MATLAB实现 MATLAB中BP神经网络的重要函数和基本 MATLAB中BP神经网络的重要函数和基本 功能
函数名 newff() tansig() logsig() traingd() 功 能 生成一个前馈BP网络 生成一个前馈 网络 双曲正切S型 双曲正切 型(Tan-Sigmoid)传输函数 传输函数 对数S型 对数 型(Log-Sigmoid)传输函数 传输函数 梯度下降BP训练函数 梯度下降 训练函数
i =1 n
wih
= xi ( k )
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
1 q ( ∑ (d o ( k ) yoo (k )) 2 ) e hoh ( k ) 2 o =1 = hih ( k ) hoh ( k ) hih ( k ) 1 q ( ∑ ( d o ( k ) f( yio ( k ))) 2 ) hoh ( k ) 2 o =1 = hoh ( k ) hih ( k )
BP神经网络模型 2.4.1 BP神经网络模型
输出的导数
1 1 f '(net ) = = y (1 y ) -net net 2 1+ e (1 + e )
根据S型激活函数的图形可知,对神经网络进行训练,应该将net的值 根据S型激活函数的图形可知,对神经网络进行训练,应该将net的值 net 尽量控制在收敛比较快的范围内
hoh ( k ) hih ( k )
= ( ∑ δ o ( k )who ) f ′( hih ( k )) δ h ( k )
o =1
q
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
第六步, 第六步,利用输出层各神经元的 δ o ( k ) 和 隐含层各神经元的输出来修正连接权 值 who (k ) 。 e who (k ) = = δ o ( k )hoh ( k ) who
o
(
1
2Байду номын сангаас
q
)
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
输入层与中间层的连接权值: wih 隐含层与输出层的连接权值: who 隐含层各神经元的阈值: bh 输出层各神经元的阈值: bo 样本数据个数: k = 1, 2, m 激活函数: f() 1 q 误差函数: = ∑ ( d o ( k ) yoo ( k )) 2 e
BP神经网络学习算法的MATLAB实现 神经网络学习算法的MATLAB 2.4.3 BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本功能 MATLAB中BP神经网络的重要函数和基本功能
newff()
建立一个前向BP BP网络 功能 建立一个前向BP网络 newff(PR, S2...SN1], 格式 net = newff(PR,[S1 S2...SN1],{TF1 TF2...TFN1},BTF,BLF, TF2...TFN1},BTF,BLF,PF) net为创建的新BP神经网络 PR为网络输入 为创建的新BP神经网络; 说明 net为创建的新BP神经网络;PR为网络输入 取向量取值范围的矩阵; S2…SNl] SNl]表示网络 取向量取值范围的矩阵;[S1 S2 SNl]表示网络 隐含层和输出层神经元的个数; TF2…TFN1} 隐含层和输出层神经元的个数;{TFl TF2 TFN1} 表示网络隐含层和输出层的传输函数,默认为 表示网络隐含层和输出层的传输函数, tansig’;BTF表示网络的训练函数 表示网络的训练函数, ‘tansig ;BTF表示网络的训练函数,默认为 trainlm’;BLF表示网络的权值学习函数 表示网络的权值学习函数, ‘trainlm ;BLF表示网络的权值学习函数,默认 learngdm’;PF表示性能数 默认为‘mse’。 表示性能数, 为‘learngdm ;PF表示性能数,默认为‘mse 。
m
q
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
BP算法直观解释 BP算法直观解释 情况一直观表达
当误差对权值的偏 导数大于零时, 导数大于零时,权值 调整量为负, 调整量为负,实际输 出大于期望输出, 出大于期望输出, 权值向减少方向调整, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。 输出的差减少。
p
who
yio who
o
who
=
ho
h
o
h
who
= hoh ( k )
1q ( ∑(do (k) yoo (k)))2 e 2 o=1 ′ = =(do(k) yoo (k)) yoo (k) yio yio =(do(k) yoo (k))f ′( yio (k)) δo (k)
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
p 1 q ( ∑ (( d o ( k ) f( ∑ who hoh ( k ) bo ) 2 )) hoh ( k ) 2 o =1 h =1 = hoh ( k ) hih ( k )
= ∑ ( d o ( k ) yoo ( k )) f ′( yio ( k )) who
o =1
q
误差的反向传播
BP网络的标准学习算法 网络的标准学习算法2.4.2 BP网络的标准学习算法-学习过程
正向传播: 正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段: 判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
e
who
e >0,此时 ho<0 ,此时w w ho
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
BP算法直解释 BP算法直解释 情况二直观表达
e
当误差对权值的偏导数 小于零时, 小于零时,权值调整量 为正, 为正,实际输出少于期 望输出, 望输出,权值向增大方向 调整, 调整,使得实际输出与期 望输出的差减少。 望输出的差减少。
David Rumelhart
J. McClelland
BP算法基本原理 BP算法基本原理 利用输出后的误差来估计输出层的直接前导层的误差, 再用这个误差估计更前一层的误差,如此一层一层的反 传下去,就获得了所有其他各层的误差估计。
BP神经网络模型 2.4.1 BP神经网络模型
三层BP网络 三层BP网络 BP
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
网络结构 输入层有n个神经元,隐含层有p个神经元, 输出层有q个神经元 变量定义 x = ( x1 , x 2 , , x n ) 输入向量; 隐含层输入向量; h i = ( h i1 , h i 2 , , h i p ) 隐含层输出向量; ho = ( ho1 , ho 2 , , ho p ) 输出层输入向量; yi = ( yi1 , yi2 , , yiq ) 输出层输出向量; yo = ( yo1 , yo2 , , yo q ) 期望输出向量; d = d , d , , d
x (k ) = ( x1 (k ), x2 (k ),, xn (k ) )
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
第三步, 第三步,计算隐含层各神经元的输入和 输出
hih ( k ) =
n
∑w
i =1
ih
x i ( k ) bh
h = 1, 2, , p
hoh ( k ) = f( hih ( k ))
2.4 BP神经网络模型与学习算法 BP神经网络模型与学习算法
概述
Rumelhart,McClelland于1985年提出了BP网络的误差反 Rumelhart,McClelland于1985年提出了BP网络的误差反 年提出了BP 向后传BP(Back Propagation)学习算法 向后传BP(Back Propagation)学习算法
N N who+1 = who + ηδ o ( k )hoh ( k )
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
第七步, 第七步,利用隐含层各神经元的 δ h (k )和 输入层各神经元的输入修正连接权。 输入层各神经元的输入修正连接权。
e e hih(k) w (k) = = =δh(k)xi (k) ih w hih(k) w ih ih w = w +ηδh(k)xi (k)
BP神经网络模型 2.4.1 BP神经网络模型
激活函数 必须处处可导
一般都使用S 一般都使用S型函数
使用S型激活函数时BP网络输入与输出关系 使用S型激活函数时BP网络输入与输出关系 BP 输入
net = x1w1 + x2 w2 + ... + xn wn
输出
1 y = f (net ) = 1 + e net
2
o =1
BP网络的标准学习算法 2.4.2 BP网络的标准学习算法
第一步, 第一步,网络初始化 给各连接权值分别赋一个区间(-1,1) 内的随机数,设定误差函数e,给定计 算精度值ε 和最大学习次数M。 第二步, 第二步,随机选取第 k个输入样本及对应 期望输出
相关文档
最新文档