计量经济学经济模型分析

合集下载

计量经济学回归分析模型

计量经济学回归分析模型
共计
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元)
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 1100 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629
称i为观察值Yi围绕它旳期望值E(Y|Xi)旳离差
(deviation),是一种不可观察旳随机变量,又称 为随机干扰项(stochastic disturbance)或随机误 差项(stochastic error)。
例2.1中,个别家庭旳消费支出为:
(*)
即,给定收入水平Xi ,个别家庭旳支出可表达为两部分之和: (1)该收入水平下全部家庭旳平均消费支出E(Y|Xi),称为 系统性(systematic)或拟定性(deterministic)部分。
注意: 这里将样本回归线看成总体回归线旳近似替代

样本回归函数旳随机形式/样本回归模型:
一样地,样本回归函数也有如下旳随机形式:
Yi Yˆi ˆ i ˆ0 ˆ1 X i ei
式中, ei 称为(样本)残差(或剩余)项(residual),代表
了其他影响Yi 的随机因素的集合,可看成是 i 的估计量ˆ i 。
相应旳函数:
E(Y | X i ) f ( X i )
称为(双变量)总体回归函数(population regression function, PRF)。

计量经济学分析模型

计量经济学分析模型

计量经济学分析模型摘要改革开放以来,我国经济呈迅速而稳定的增长趋势,由于分配机制和收入水平的变化,城镇居民生活水平在达到稳定小康之后,消费结构和消费水平都出现了一些新的特点。

本文旨在对近几年,我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。

首先,我们综合了几种关于收入和消费的主要理论观点;本文根据相关的数据统计数据,运用一定的计量经济学的研究方法,进而我们建立了理论模型。

然后,收集了相关的数据,利用EVIEWS软件对计量模型进行了参数估计和检验,并加以修正。

最后,我们对所得的分析结果和影响消费的一些因素作了经济意义的分析,并相应提出一些政策建议。

并找到影响居民消费的主要因素。

关键词:居民消费;城镇居民;回归;Eviews目录摘要 (II)前言 (1)1 问题的提出 (2)2 经济理论陈述 (3)2.1西方经济学中有关理论假说 (3)2.2有关消费结构对居民消费影响的理论 (4)3 相关数据收集 (6)4 计量经济模型的建立 (9)5 模型的求解和检验 (10)5.1计量经济的检验 (10)5.1.1模型的回归分析 (10)5.1.2拟合优度检验: (11)5.1.3 F检验 (11)5.1.4 T检验 (12)5.2 计量修正模型检验: (12)5.2.1 Y与的一元回归 (13)5.2.2拟合优度的检验 (13)5.2.3 F检验 (14)5.2.4 T检验: (15)5.3经济意义的分析: (15)6 政策建议 (16)结论 (17)参考文献 (19)城镇居民消费模型分析前言近年来,改革开放的影响不断加大,人民的物质文化生活水平日益提高,消费水平和消费结构都有了一定的调整,随着城镇化程度的提高,城镇居民消费在整个国民经济中的地位日益重要,因此,对其进行计量经济分析的十分有必要的。

本文旨在对近15年我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。

人均收入和消费支出的有关数据进行了计量经济的检验,通过两者之间的动态关系研究发现,居民人均收入与消费支出有长期的均衡关系,据此建立了居民人均收入和消费支出之间的长期均衡模型。

计量经济学分析模型

计量经济学分析模型

计量经济学分析模型摘要改革开放以来,我国经济呈迅速而稳定的增长趋势,由于分配机制和收入水平的变化,城镇居民生活水平在达到稳定小康之后,消费结构和消费水平都出现了一些新的特点。

本文旨在对近几年,我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。

首先,我们综合了几种关于收入和消费的主要理论观点;本文根据相关的数据统计数据,运用一定的计量经济学的研究方法,进而我们建立了理论模型。

然后,收集了相关的数据,利用EVIEWS软件对计量模型进行了参数估计和检验,并加以修正。

最后,我们对所得的分析结果和影响消费的一些因素作了经济意义的分析,并相应提出一些政策建议。

并找到影响居民消费的主要因素。

关键词:居民消费;城镇居民;回归;Eviews目录摘要 (II)前言 (1)1 问题的提出 (2)2 经济理论陈述 (3)2.1西方经济学中有关理论假说 (3)2.2有关消费结构对居民消费影响的理论 (4)3 相关数据收集 (6)4 计量经济模型的建立 (9)5 模型的求解和检验 (10)5.1计量经济的检验 (10)5.1.1模型的回归分析 (10)5.1.2拟合优度检验: (11)5.1.3 F检验 (11)5.1.4 T检验 (12)5.2 计量修正模型检验: (12)5.2.1 Y与的一元回归 (13)5.2.2拟合优度的检验 (13)5.2.3 F检验 (14)5.2.4 T检验: (15)5.3经济意义的分析: (15)6 政策建议 (16)结论 (17)参考文献 (19)城镇居民消费模型分析前言近年来,改革开放的影响不断加大,人民的物质文化生活水平日益提高,消费水平和消费结构都有了一定的调整,随着城镇化程度的提高,城镇居民消费在整个国民经济中的地位日益重要,因此,对其进行计量经济分析的十分有必要的。

本文旨在对近15年我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。

人均收入和消费支出的有关数据进行了计量经济的检验,通过两者之间的动态关系研究发现,居民人均收入与消费支出有长期的均衡关系,据此建立了居民人均收入和消费支出之间的长期均衡模型。

计量经济学模型应用分析

计量经济学模型应用分析

计量经济学模型应用分析计量经济学是一门以数据为基础,运用数学、统计学和经济学等相关学科分析和解释经济现象的学科。

在实践中,计量经济学主要通过建立各种经济模型来分析和预测现实经济问题。

在本文中,我们将探讨计量经济学模型的应用分析。

一、单因素模型单因素模型是一种简单的计量经济学模型,其特点是只考虑一个因素对经济变量的影响。

例如,研究公路通行费对公路使用量的影响,或者研究利率对消费者支出的影响。

在这种模型中,经济变量(因变量)被解释为一个单独的影响因素(自变量)的函数。

通常,单因素模型采用线性回归来描述变量之间的关系。

回归模型的基本形式为:Y= a + bX + ε其中,Y是因变量(例如,需求或价格),X是自变量(例如,收入或成本),a和b是常数,ε是误差项(通常性质是随机的)。

a反映了Y在X=0时的值,b反映了Y随X的变化。

单因素模型在经济学实践中应用广泛。

例如,研究收入水平对消费支出的影响,研究通货膨胀率对股票价格的影响,以及研究贸易政策对贸易流量的影响。

单因素模型提供了一个可靠的方法来评估影响因素对因变量的影响程度。

二、多重线性回归模型多重线性回归模型是一种计量经济学模型,它允许解释因变量在多个自变量(或因素)下的变化。

该模型的形式为:Y= a + b1X1 + b2X2 +......+ bnXn + ε在此模型中,Y是因变量,X1、X2、...、Xn是自变量(或因素),a、b1、b2等是回归系数,ε是观测误差。

回归系数反映了因变量与自变量之间的关系。

具体而言,回归系数越大,自变量对因变量的影响越大。

多重线性回归模型具有广泛的应用范围。

例如,它可以用于研究成本对价格的影响,对劳动力市场的影响以及对经济增长的影响。

此外,多重线性回归模型还可以用于评估因素之间的相互作用,这是单因素模型无法实现的。

三、时间序列模型时间序列模型是一种专门用于描述和预测时间序列数据的计量经济学模型。

时间序列数据是指按时间顺序收集的数据。

计量经济学模型分析论文 影响我国人均GDP的变量因素分析

计量经济学模型分析论文 影响我国人均GDP的变量因素分析

影响我国人均GDP的变量因素分析摘要人均国内生产总值,也称作“人均GDP",是衡量经济发展状况的重要指标,,它是人们了解和把握一个国家或地区的宏观经济运行状况的有效工具。

是衡量各国人民生活水平的一个标准,为了更加客观的衡量,经常与购买力平价结合。

文章从从城市化率、城镇居民家庭可支配收入、政府支出以及城镇居民消费水平四个方面作为出发点,通过往年的数据发展来观察它们对于人均GDP的影响,从而对我国目前的经济发展提供一些建议。

笔者认为,在提高城镇居民可支配收入、城市化率以及政府支出的基础上,更要调节好我国目前贫富差距过大的问题,这样才能保持经济的稳定发展。

关键词:人均GDP;城市化率;城镇居民可支配收入;城府支出引言一国的经济乃立国之本,而经济发展是以GDP增长为前提的。

影响人均GDP 的因素看似众多,究竟哪些因素对人均GDP的增长起关键性的影响作用呢?由此引出了本小组的研究课题——对我国人均GDP影响因素的计量分析。

随着2009年中国GDP赶超日本,成为世界排名第二,无疑吸引了国内外的目光。

然而,在如此大的总量之下,中国的人均GDP却一直在世界100名左右徘徊。

“国服民穷”的现状一直是我们的问题。

经我们数据搜寻,在人均GDP的增长过程中,城市化率、城镇居民家庭人均可支配收入、城市政府支出以及城镇居民消费水平都有了显著的上升。

同时,我们知道GDP的构成取决于消费、投资、政府支出。

因此,我们把城市化率、城镇居民人均可支配收入、城市政府支出、城镇居民消费水平这四个指标作为反映了人均GDP的自变量,认为这四个变量是影响人均GDP的关键性因素。

本实验主要选取1979—2009年的统计数据。

一、人均GDP的基本概念及特点1、人均GDP的基本概念和经济意义(1)人均GDP的基本概念人均国内生产总值(Real GDP per capita),也称作“人均GDP",常作为发展经济学中衡量经济发展状况的指标,是重要的宏观经济指标之一,它是人们了解和把握一个国家或地区的宏观经济运行状况的有效工具。

计量经济学回归分析模型

计量经济学回归分析模型

计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。

其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。

回归分析模型中的关系可以是线性的,也可以是非线性的。

线性回归模型是回归分析中最为常见和基础的模型。

它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。

回归模型的核心是确定回归系数。

通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。

最小二乘法通过使得误差的平方和最小化来估计回归系数。

通过对数据进行拟合,我们可以得到回归系数的估计值。

回归分析模型的应用范围非常广泛。

它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。

此外,回归分析模型还可以用于政策评估和决策制定。

通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。

在实施回归分析模型时,有几个重要的假设需要满足。

首先,线性回归模型要求因变量和自变量之间存在线性关系。

其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。

此外,回归模型要求误差项具有同方差性和独立性。

在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。

显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。

此外,还可以通过确定系数R^2来评估模型的拟合程度。

R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。

总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。

在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。

计量经济学模型分析方法

计量经济学模型分析方法

计量经济学上机模型分析方法总结一、随机误差项的异方差问题的检验与修正模型一:Dependent Variable: LOG(Y)Method: Least SquaresDate: 07/29/12 Time: 09:03Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.C 1.602528 0.860978 1.861288 0.0732LOG(X1) 0.325416 0.103769 3.135955 0.0040LOG(X2) 0.507078 0.048599 10.43385 0.0000R-squared 0.796506 Mean dependent var 7.448704 Adjusted R-squared 0.781971 S.D. dependent var 0.364648 S.E. of regression 0.170267 Akaike info criterion -0.611128 Sum squared resid 0.811747 Schwarz criterion -0.472355 Log likelihood 12.47249 F-statistic 54.79806 Durbin-Watson stat 1.964720 Prob(F-statistic) 0.000000(一)异方差的检验1、GQ检验法模型二:Dependent Variable: LOG(Y)Method: Least SquaresDate: 07/29/12 Time: 09:19Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.C 3.744626 1.191113 3.143804 0.0119LOG(X1) 0.344369 0.082999 4.149077 0.0025LOG(X2) 0.168904 0.118844 1.421228 0.1890R-squared 0.669065 Mean dependent var 7.239161 Adjusted R-squared 0.595524 S.D. dependent var 0.133581 S.E. of regression 0.084955 Akaike info criterion -1.881064 Sum squared resid 0.064957 Schwarz criterion -1.759837 Log likelihood 14.28638 F-statistic 9.097834 Durbin-Watson stat 1.810822 Prob(F-statistic) 0.006900模型三:Dependent Variable: LOG(Y)Method: Least SquaresDate: 07/29/12 Time: 09:20Sample: 20 31Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.C -0.353381 1.607461 -0.219838 0.8309LOG(X1) 0.210898 0.158220 1.332942 0.2153LOG(X2) 0.856522 0.108601 7.886856 0.0000R-squared 0.878402 Mean dependent var 7.769851Adjusted R-squared 0.851381 S.D. dependent var 0.390363S.E. of regression 0.150490 Akaike info criterion -0.737527Sum squared resid 0.203824 Schwarz criterion -0.616301Log likelihood 7.425163 F-statistic 32.50732Durbin-Watson stat 2.123203 Prob(F-statistic) 0.000076进行模型二和模型三两次回归,目的仅是得到出去中间7个样本点以后前后各12个样本点的残差平方和RSS1和RSS2,然后用较大的RSS除以较小的RSS即可求出F统计量值进行显著性检验。

计量经济学模型分析

计量经济学模型分析

城镇居民家庭人均可支配收入及城市政府支出驱动经济增长的计量分析:1979~2009一.问题的提出2010年上海世界博览会已经圆满落下帷幕,在“城市让生活更美好”的主题下,这场持续184天的盛会向世界呈现了中国城市化进程中所取得的成就。

所谓城市化,就是指随着社会生产力的发展,人类的生产和生活有农村向城市转化的过程,表现为城市数量的增加和规模的扩大,城市消费、投资持续增加,进而改变经济发展的空间方向和基本方式。

二.模型设定统计表明,改革开放以来,特别是进入21世纪之后,在中国的城市化进程中,城市化率、城镇居民家庭人均可支配收入、城市政府支出以及城镇居民消费水平都有了显著的上升,因此,我们把这四个指标作为反映城市化的变量。

根据GDP 的取决于消费、投资、政府支出的基本原理,这四个变量应该可以很好的解揭示城市化对经济的驱动作用。

本实验主要选取1979~2009年的以下数据:1.城市化率:该指标主要反映的是城市人口规模。

2.经济增长:大多数的研究采用的是以人均GDP表示经济增长,也有使用单位资本GDP 来体现的,我们采用了前者。

3.城镇居民家庭人均可支配收入:4.城市政府支出:这里较为理想的指标是城镇人均政府支出,限于数据的可获得性,我们采用的是人均政府消费支出作为替代。

这是因为,政府消费支出多集中于城镇级别的政府,而农村基层行政部门消费支出比重较低。

5.城镇居民消费水平:这里采用城镇人均消费水平,而不是全社会人均消费水平以便能更好的反映出城市消费对经济增长的拉动作用。

模型形式的设计:Y=β1+β2X1+β3X2+β4X3+β5X4+μ其中,Y:人均GDPX1:城市化率X2:城镇居民家庭人均可支配收入X3:城市政府支出X4:城镇居民消费水平三.数据的搜集本实验获取的是1979~2009年的数据,如下表:年份人均GDP 城市化率城镇居民家庭人均可支配收入政府支出城镇居民消费水平1978 381 17.92 343.4 1122.09 405 1979 419 18.96 405.0 1281.79 425 1980 463 19.39 477.6 1228.83 489 1981 492 20.16 500.4 1138.41 521 1982 528 21.13 535.3 1229.98 536 1983 583 21.62 564.6 1409.52 558 1984 695 23.01 652.1 1701.02 618 1985 858 23.71 739.1 2004.25 765 1986 963 24.52 900.9 2204.91 872 1987 1112 25.32 1002.1 2262.18 998 1988 1366 25.81 1180.2 2491.21 1311 1989 1519 26.21 1373.9 2823.78 1466 1990 1644 26.41 1510.2 3083.59 1596 1991 1893 26.94 1700.6 3386.62 1840 1992 2311 27.46 2026.6 3742.20 2262 1993 2998 27.99 2577.4 4642.30 2924 1994 4044 28.51 3496.2 5792.62 3852 1995 5046 29.04 4283.0 6823.72 4931 1996 5846 30.48 4838.9 7937.55 5532 1997 6420 31.91 5160.3 9233.56 5823 1998 6796 33.35 5425.1 10798.18 6109 1999 7159 34.78 5854.0 13187.67 6405 2000 7858 36.22 6280.0 15886.50 6850 2001 8622 37.66 6859.6 18902.58 7113 2002 9398 39.09 7702.8 22053.15 7387 2003 10542 40.53 8472.2 24649.95 7901 2004 12336 41.76 9421.6 28486.89 8679 2005 14185 42.99 10493.0 33930.28 9410 2006 16500 43.90 11759.5 40422.73 10423 2007 20169 44.94 13785.8 49781.35 11904 2008 23708 45.68 15780.8 62592.66 13526 2009 25575 46.59 17174.7 76299.93四.模型的估计与调整(一).散点图020000400006000080000100002000030000Y(二).OLS 回归结果:Dependent Variable: Y Method: Least Squares Date: 06/19/11 Time: 23:27 Sample(adjusted): 1979 2008Included observations: 30 after adjusting endpointsVariable Coefficient Std. Error t-Statistic Prob. C 1675.936 502.4538 3.335504 0.0027 X1 -85.42903 23.51347 -3.633196 0.0013 X2 0.694786 0.332357 2.090482 0.0469 X3 0.161081 0.034738 4.636982 0.0001 X40.3637490.2269861.6025140.1216R-squared0.998932 Mean dependent var 5882.433 Adjusted R-squared 0.998761 S.D. dependent var 6258.838 S.E. of regression 220.3462 Akaike info criterion 13.77929 Sum squared resid 1213812. Schwarz criterion 14.01282 Log likelihood -201.6893 F-statistic 5843.189Y=1675.936-85.42903X1+0.694786X2+0.161081X3+0.363749X4由此可见:该模型的R^2=0.998932,Adjusted R-squared=0.998761可决系数很高,F检验值为5843.189,明显显著。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国居民消费水平的变量因素分析
2010级工程管理赵莹 201000271120
改革开放以来,我国居民收入与消费水平不断提高,居民消费结构升级和消费需求扩张成为我国经济高速增长的主要动力,特别是进入20世纪90年代以来,居民消费需求对国民经济发展的影响不断增大,对国民经济产生了拉动作用。

我国经济逐步由短缺经济走向过剩经济、由卖方市场转向买方市场,社会消费需求不足,居民消费问题显得更加突出。

特别市对于如何启动内需,扩大居民消费变得越来越重要。

因此,及时把握国民经济发展格局中居民消费需求变动趋势,制定符合我国现阶段情况的国民消费政策,对于提高我国经济增长速度和质量都有
重要意义。

我选取了全国1990年-2009年居民消费水平及其影响因素的统计资料,详
一、建立回归模型并进行参数估计
导入数据后得到下表:
表2
由表2可知,模型估计的结果为:
550.78004.0023.0403.0ˆ3
21-+-=X X X Y (0.046) (0.016) (0.006) (50.521) t= (8.743) (-1.442) (0.802) (-1.555)
999564.02=R 999483.02=R F=12239.64 n=20 D.W.=0.9217
二、异方差性的检验
用怀特检验进行异方差性的检验,得出下表:
表3
由表3可知,35292.11n 2
=R ,由怀特检验,在α=0.05的情况下,查可
知92.16905
.02
=)(χ
>35292.11n 2=R ,表明模型不存在异方差性。

三、序列相关性的检验
由表2中结果可知D.W.=0.9217,D.W.检验结果表明,在5%的显著性水平下,n=20,k=2,查表得20.1d =L ,41.1d =U ,由于0<D.W.=0.9217<20.1d =L ,故存在正自相关。

得出残差图如下:
表4
由残差图可知,残差的变动有系统模式,连续为正和连续为负,表明残差项存在一阶正自相关。

接下来确定是否存在序列相关性,得出结果如下表:
表5
由表5可知8.4142n 2
=R ,
查表可得3.84105.02=)(χ,8.414207n 2=R > 3.84105
.02=)(χ,RESID(-1)未通过5%的显著性检验,表明存在一阶序列相关性。

表6
由表6可知,8.826830n 2
=R > 5.99205
.02=)(χ
, RESID (-2)未通过5%
的显著性检验,说明不存在二阶序列相关性。

表7
由表7可知,一阶广义差分的估计结果为
0.707AR(1)36.626012.0039.0321.0ˆ3
21+++-=X X X Y (0.083) (0.029) (0.010) (163.732) (0.273) t= (3.889) (-1.336) (1.271) (0.224) (2.587)
999686.02=R 999597.02=R D.W.=1.454231
由于 1.40d =U <D.W.< 1-U d ,判断是不存在序列相关性。

表8
由表8可知, 2.730207n 2
=R < 3.84105
.02=)(χ
, RESID(-1)未通过5%的显
著性检验,说明不存在一阶序列相关性。

此时经过修正后的模型为
0.707AR(1)36.626012.0039.0321.0ˆ3
21+++-=X X X Y (0.083) (0.029) (0.010) (163.732) (0.273) t= (3.889) (-1.336) (1.271) (0.224) (2.587)
999686.02=R 999597.02=R D.W.=1.454231
四、多重共线性的检验
由消除序列相关性后的模型可知,145.2)5-19()-(t 025.02/==t k n α,其中X2、和常数的参数估计值未能通过t 检验,故认为解释变量间存在多重共线性。

计算各解释变量的相关系数
表9
由相关系数矩阵可以看出,个解释变量相互之间相关系数较高,证实存在多重共线性。

分别作Y对X1、X2、X3的一元回归,结果如下:
表10
由表10可知,22X321
2R X X R R >>,以X1为基础,顺次加入其他变量逐
步回归。

结果如下:
表11
由表11可知,X1、X2回归时通过t 检验。

再加入X3进行检验。

表12
由表12可知,X3不能通过t 检验,因此剔除解释变量X3。

此时的模型为
101.269011.0439.0ˆ2
1--=X X Y (0.011) (0.004) (41.380) t= (40.664) (-2.910) (-2.447)
999547.02=R 999494.02=R D.W.=1.009424
五、随机解释变量问题
因为该数据中的变量均为确定型变量,因此不存在随机解释变量问题。

因此,最后建立的经济模型为101.269011.0439.0ˆ21--=X X Y。

相关文档
最新文档