单室平衡容器原理doc资料
内置式平衡容器

内置式平衡容器1、差压水位计(老式单室平衡容器)下面就单室平衡容器的测量误差作一简要分析:如图三所示:当ΔP2=0时,有公式(5)成立H =(r- r //)g.L-ΔP1 -----(5)g(r / - r // )式中ΔP1:变送器所测参比水柱与汽包内水位的差压值(ΔP2=0时)L:参比水柱高度 r :参比水柱的平均密度ΔP2:正、负压侧仪表管路的附加差压这里饱和蒸汽和饱和水的密度(r //、r /)是汽包压力P的单值非线性函数,通过测量汽包压力可以得到,而参比水柱中水的平均密度r 通常是按50℃时水的密度来计算的,而实际的r 具有很大的不确定性与50℃时水的密度相差很大是造成测量误差的主要原因之一。
单室平衡容器参比水柱温度与DCS 修正补偿的50℃或60℃相差很大,带来不确定的附加误差,其误差在100mm 以上。
由于云母水位计和单室平衡容器的误差方向不一致,所以要保证各水位计之间的偏差在30mm 以内是不可能的,现行是以云母水位计为准,通过改变变送器或DCS 软件修正来拼凑的,只能从数值上在一个特定的工况和小范围内使其偏差在30mm 以内,是自欺欺人的做法,不能保证锅炉的安全运行。
从上可见要全过程全范围的实现汽包各水位计之间的偏差小于30mm 是不可能的。
由于汽包水位测量不准,造成汽包长期高水位运行,降低了旋风分离器的工作效率,使饱和蒸汽带水过多,增加了过热器和汽轮机的结垢,降低了机组的工作效率,加速了过热器的爆管泄漏,存在着很大的事故隐患。
21图三单室平衡容器测量原理图2、内置式单室平衡容器如图四所示:H=L-ΔP /g(r / - r // ) --- (6) (6)式是(5)式中,参比水柱的平均密度r 等于饱和水的密度r / 转换而来,L 、g 为常数,r / - r //是汽包压力的单值函数,ΔP 是变送器测得的差压值,故此消除环境温度对参比水柱密度的影响,从而克服了这一误差。
内置式平衡容器特点:1 、精确度高,不受汽包内水欠饱和以及外置平衡容器参比水柱温度变化的影响,从公式)S W /(0 -∆--=∆p H L h 可以看出变送器所测得的差压值p ∆为汽段参比水柱(饱和水)和相同高度的饱和汽静压之差,这一点与以往的任何一种外置式平衡容器不同,而采用外置式平衡容器测量汽包水位不仅受平衡容器下参比水柱温度变化的影响,而且由于补偿公式是假定汽包内水是饱和状态下推算出来,而实际上汽包内的水是欠饱和的,而且随着负荷变化欠饱和度也是变化的,由此可见,采用内装平衡容器的测量精确度远比外置式平衡容器要高。
关于汽包水位测量问题

就地水位计有:玻璃板式水位计、就地双色水位计、电接点式水位计几种。
原理都是通过连通器原理,即在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。
见下图。
只不过看的方式不同而已对于就地水位计来讲,存在着散热误差,导致读数不准。
上面公式推导过程:(假定饱和蒸汽密度与水H*ρ’=H 位计中蒸汽的密度相同) 管向周围空间散热,其水柱温度实际上低于容器内水的温度,直接影响水位计误差值|△h |与水位值H 成正比,即水位值H 越高(以水侧连通高,ρ'减少, ρ"增大,即在同样的散热条件下 (ρ1-ρ')变大,(ρ1-ρ上讲,当ρ1=ρ'时,(1)式可以简化为H1=H ,也就是说水位计水位值等于容器内水MW 机组)在高水位运行时,汽包水位计的“散热”误差值达100~150取样孔及连通管): 方向倾斜,水侧取样管应向下向容器方向倾斜,一般的上部不用保温: 一、个凸面安装法与高压容器上所对应的安装法兰相连接,组成一个高压二、1*ρ1+(H-H 1) *ρ’’ H*ρ’=H 1*ρ1+H*ρ’’-H 1* ρ’’H*ρ’- H*ρ’’=H 1*ρ1 -H 1*ρ’’ H*(ρ’- ρ’’)=H 1*(ρ1-ρ’’) H 1=[(ρ’- ρ’’)/ (ρ1-ρ’’)]*H (1)直接“散热”误差由于测量筒及其引位计测量筒内水的密度ρ1,即测量筒内水的密度ρ1大于容器内水的密度ρ',由(1)式可知水位计显示的水位H ,比容器内水位H 低。
由(2)式可以看出,水位计测量筒散热越多,ρ1也就越大,因而测量误差|△h |越大,这种误差我们称为直接“散热”误差。
为了减少直接“散热”误差|△h |,一般在水位计测量筒的下部至水侧连通管应加以保温,以减少测量筒水柱温度与容器内水的温度之差:同时水位计的汽侧连通管及水位计测量筒的上部不用保温,并让汽侧连通管保持一定的倾斜度,使更多的凝结水流入测量筒,以提高水位计测量筒内水的密度ρ1。
平衡容器工作原理

平衡容器的工作原理3.双室平衡容器的工作原理3.1.简介双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。
它的主要结构如图1所示。
在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。
为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。
3.2.凝汽室理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。
3.3.基准杯它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。
基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。
由于基准杯的杯口高度是固定的,故而称为基准杯。
3.4.溢流室溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。
正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。
3.5.连通器倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。
毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。
它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。
连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响。
3.6.差压的计算通过前面的介绍可以知道,凝汽室、基准杯及其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s 。
故而不难得到容器所输出的差压。
知识单双室平衡容器工作原理

知识单双室平衡容器工作原理一、单室平衡容器工作原理如下图,单室平衡容器测水位的原理非常简单,从汽包汽侧取样孔引一管至平衡容器(平衡容器又叫作凝结室,它是一个表面积很大的不加保温层的容器),进入平衡容器的饱和蒸汽通过与外界换热不断凝结成水,多余的水由于溢流原理自取样管流回汽包,使平衡容器内的水位保持恒定。
因此,差压变送器的正压头由于平衡容器有恒定的水柱而维持不变,负压头则随着汽包水位的变化而变化,通过测量正负管路差压,再根据公式P=ρ*g*h,就能很容易的得出汽包的真实水位。
二、双室平衡容器工作原理如下图,双室平衡容器结构较单室平衡容器复杂,它是由凝汽室、基准杯、溢流室和连通器等几个部件组成。
来自汽包的饱和水蒸汽经过凝汽室凝结成水流入基准杯,基准杯的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压变送器的正压侧。
基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室,溢流室收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。
而连通器是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。
三、单双室平衡容器工作特性比较单室平衡容器参比液柱内水温上下温差很大,密度差别也很大,所以误差比较大,但是可以通过温度补偿等等方法来减小误差;双室平衡容器参比水柱内的水一直在流动,温度较高,与汽包温度相差不大,密度也基本相同,而且其本身在一定的压力温度范围内有补偿水位的作用,所以误差较小。
但是当汽包压力突然下降时,双室平衡容器内的饱和水将汽化,从而导致参比液柱本身出现变化,直接带来测量错误!加剧虚假水位。
而单室平衡容器由于参比液柱的温度不够,所以不用考虑汽包压力突然下降所带来的一系列影响。
而且现在的DCS普遍带有比较完善的温度补偿办法,所以现在的新机组,比如绍电一般都采用单室平衡容器测量汽包水位。
(完整版)锅炉差压式水位计原理

差压式汽包水位测量装置主要由水位—差压转换容器(平衡容器)、压力信号表管及差压计3部分组成。
其工作原理是将水位的高、低信号转换为差压信号实现测量。
平衡容器是测量装置的感受部件,分为单室与双室两种。
以单室平容衡器的工作原理为例来说明其工作原理,如图1所示。
由于汽包内的饱和蒸汽在冷凝筒内不断散热凝结,筒内液面总是保持恒定,所以正压管内的水柱高度是恒定的。
负压管的水柱高度则随汽包水位的变化而变化。
这时,差压可按以下公式计算:——汽包重力水位;式中 Hw——冷凝筒中水的密度;ρ1ρ′、ρ″——汽包压力下饱和水、汽的密度;g——重力加速度。
当h、ρ′、ρ″、ρ为定值时,由正、负压引入口得到的差压信号与汽1包水位的变化成线性关系:水位愈高,差压值愈小;水位愈低,差压值愈大。
2.1.2 汽包压力对汽包水位测量的影响由于ρ′、ρ″的变化影响水位测量结果,而ρ′、ρ″与汽包压力有函数关系,因此汽包压力的变化也将影响差压式水位计的测量结果。
由水蒸汽状态图(或表)得知,(ρ-ρ″)、(ρ′-ρ″)与汽包压力p有近似的线性关系。
1以单室平衡容器为代表公式:ΔP=P+-P-=ρ凝*g*L-ρs *g*(L-(h0+h))-ρw *g*(h0+h)即:h=((ρ凝-ρS)*g*L-ΔP)/(ρW-ρS)*g式中: h——水位(单位:m)ΔP——差压(单位:Pa)ρw——饱和水密度(单位:kg/m3)ρS——饱和蒸汽密度(单位:kg/m3)ρ凝——汽包外水柱密度(单位:kg/m3)g——重力加速度汽包压力按表压计算;汽包水位按差压(Pa)值计算,若原为mmH2O,则换算关系为:1mmH2O=9.8Pa≈10Pa。
单室平衡容器原理

锅炉汽包水位测量误差分析汽包水位是电厂的主要监控参数之一,正确测量汽包水位是锅炉安全运行的保证。
传统的测量方式有:就地双色水位计、电接点水位计、差压式水位计(单室或双室平衡容器补偿式)。
就地水位计、电接点水位计的测量误差受锅炉压力、散热情况、安装形式、实际水位的影响,很难准确计算.因此高参数、大容量机组多以各种补偿差压水位计作为汽包水位测量的主要仪表,但这种水位计测量误差也同样受到诸多因素的影响。
本文通过分析汽包水位计的测量方式和水位测量误差的原因,并对特定工况下汽包水位的测量进行定量计算分析,提出减少水位测量误差的方法和措施。
一、就地水位计:就地水位计是安装在锅炉本位上的直读式仪表,是锅炉厂必配的基本设备,大容量机组均采用工业电视远传到集控室监视,一般都配有两套,分别安装在汽包的两端.就地水位计有玻璃、云母和牛眼之分,工作原理都是连通管原理,连通管原理是:在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。
就地水位计如图1所示。
式中:h——汽包正常水位距水侧取样的距离,mm△h-—水位计中的水位与汽包中水位的差值,mmPs——饱和蒸汽密度,kg/m3Pw——饱和水密度,kg/m3Pa——水位计中水的平均密度,kg/m3Ps'—-水位计中蒸汽的密度,kg/m3对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。
从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。
双室平衡容器工作原理

双室平衡容器工作原理
单/双室平衡容器是与压力变送器搭配使用对类似锅炉蒸汽等高温高压测量介质进行压力测量时所使用的容器。
以较为简单的单室平衡容器为例说明原理。
首选,下图一所示结构包括,气包(左侧),导压管,平衡容器(右侧),压力变送器。
气包中分为上下两层,下层为液体介质,上层为蒸汽和气体介质,从气包上层取样孔连通至平衡容器,进入平衡容器的包和蒸汽通过与外界交换热量不断凝结成水,多余的水由于溢流原理回流到气包之中,此时气包内气压与平衡容器内气压因没有密封阻隔而有相同压力值,而高温蒸汽却没有接触到压力变送器,实现了气压测的温度隔绝。
图一单室平衡容器
双室平衡容器的工作原理与单室平衡容器原理相通,但其结构更加复杂,如下图二所示,它是由凝汽室、基准杯、溢流室和连通器等几个部件组成。
图二双室平衡容器
来自汽包的饱和蒸汽通过冷凝器凝结成水,流入参考杯。
参考杯的作用是收集冷凝器中的冷凝液,并将冷凝液产生的压力输出到差压变送器的正压侧。
当冷凝水充满参考杯时,它会溢流到溢流室。
溢流室收集从基准杯溢出的冷凝水,并将其排放到锅炉的下降管中,这点与单室平衡容器的结构类似。
在流动过程中,对整个容器进行加热和蓄热,以保证桶内温度与桶内温度一致。
接头将汽包内动态水位产生的压力传递到变送器的负压侧,与正压侧的(参考)压力进行比较,以了解汽包内的水位。
使用平衡容器进行液位测量时使用的不一定是差压变送器,也会有和其它液位设备一起使用的情况。
图三平衡容器与电接点液位筒的联用。
单室平衡容器的工作原理是

单室平衡容器的工作原理是
单室平衡容器是一种用于容纳气体或液体的容器,其工作原理基于受力平衡的原理。
在单室平衡容器中,容器内部被分为两部分,上下两个相等大小的房间。
上半部分被称为"工作室",而下半部分被称为"储罐"。
当容器中装有气体或液体时,气体或液体会均匀地分布在整个容器内部。
由于重力的作用,液体或气体会下沉到容器的底部,即储罐部分,而容器的顶部则会相对较空。
这样,工作室与储罐之间就会产生一个垂直于容器底部的压力差。
当需要从容器中取出气体或液体时,只需在容器的工作室部分设置一个出口,并通过控制出口的开关来调节气体或液体的流动。
在开启出口的同时,上部的空间会让液体或气体进入工作室,并将其从出口处排出。
在这个过程中,容器内部的压力会始终保持平衡,因为工作室中的气体或液体会不断地从储罐中流入,以保持两个房间中的物质量相等。
这样,即使储罐中的气体或液体减少,容器的压力也不会发生变化。
总之,单室平衡容器的工作原理是通过保持容器内外部气体或液体的质量平衡来实现受力平衡,并通过控制出口的开关来控制物质的流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉汽包水位测量误差分析汽包水位是电厂的主要监控参数之一,正确测量汽包水位是锅炉安全运行的保证。
传统的测量方式有:就地双色水位计、电接点水位计、差压式水位计(单室或双室平衡容器补偿式)。
就地水位计、电接点水位计的测量误差受锅炉压力、散热情况、安装形式、实际水位的影响,很难准确计算。
因此高参数、大容量机组多以各种补偿差压水位计作为汽包水位测量的主要仪表,但这种水位计测量误差也同样受到诸多因素的影响。
本文通过分析汽包水位计的测量方式和水位测量误差的原因,并对特定工况下汽包水位的测量进行定量计算分析,提出减少水位测量误差的方法和措施。
一、就地水位计:就地水位计是安装在锅炉本位上的直读式仪表,是锅炉厂必配的基本设备,大容量机组均采用工业电视远传到集控室监视,一般都配有两套,分别安装在汽包的两端。
就地水位计有玻璃、云母和牛眼之分,工作原理都是连通管原理,连通管原理是:在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。
就地水位计如图1所示。
式中:h——汽包正常水位距水侧取样的距离,mm△h——水位计中的水位与汽包中水位的差值,mmPs——饱和蒸汽密度,kg/m3Pw——饱和水密度,kg/m3Pa——水位计中水的平均密度,kg/m3Ps'——水位计中蒸汽的密度,kg/m3对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。
从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。
为了给电厂提供参考,有的锅炉厂给出了就地水位计和汽包正常水位差值的参考数据见表1。
从表1所列数据,对于亚临界锅炉来说,在额定汽压下,就地水位计的水位比汽包内的水位要低100~150mm。
下面以我厂(东方锅炉厂)在汽包额定压力18.2MPa下时汽包水位偏离正常水位的情况进行分析,根据式(1),取汽包水位为零时h=400mm,计算水位变化±1OOmm时水位计显示情况。
Pw、Ps为定值,假设Pa也为定值,取平均温度为300℃时的值。
h'=h—△h,为就地水位计中的水柱高度,计算结果如表2所示。
从表中计算结果来看,汽包水位变化±100mm时,就地水位计的显示值只变化±68mm,还是假定水位计中水的温度不变,即Pa是定值的情况下计算的。
实际上,当汽包内水位变化时,水位计中水的平均温度和密度均会随着变化的,汽包水位升高时,由于水的散热面增加,平均温度会下降,密度增大,水位计的指示也比表中计算的要低;而当汽包水位降低时,水的散热面减小,其平均温度升高,密度减小,水位计的指示应比表中计算的要高。
当汽包水位变化±100mm时,就地水位计的变化还达不到±68mm,只是±50mm左右,并且就地水位计的误差并非是恒定值,在不同条件下有所变化,同一锅炉,在不同工况下,在不同的季节里,误差的变化还相当显著。
所以依靠就地水位计来监视汽包水位是不安全、不准确的。
必须改变运行中认为就地水位计的指示是准确的,并要求其它水位计的指示要与其一致。
就地水位计可作为额定压力下核对其它水位计正常水位值(零位)的参考。
二、电接点水位计电接点水位计的工作原理与就地水位计的完全相同,属于连通管式,利用与受压容器相连通的测量筒上的电接点浸没在水中与裸露在蒸汽中的导电率的差异,通过显示仪表显示水位。
一般只配有一套,安装在汽包的一端,通过信号线传到集控室监视,也有的将接点信号引入停炉保护系统。
电接点水位计的工作原理与就地水位计相同,所以就地水位计存在的问题,它同样存在,即电接点水位计显示的水位与汽包实际水位存在偏差,且不是固定的,汽包水位波动时其显示不能与之对应。
电接点水位计与就地水位计因结构、材料、形状、安装、散热情况的不同,它们之间的显示值也必然存在偏差;电接点水位计还存在电接点因挂水而误发信号的问题。
所以在亚临界的锅炉上采用电接点水位计测量水位是不安全的、不准确的,作为保护用信号是更不可取的。
三、差压式水位计差压式水位计的工作原理是在汽包水位取样管上安装平衡容器,利用液体静力学原理使水位转换成差压,用引压管将差压信号送至差压计,由差压计显示汽包不位。
经过发展现在采用智能式差压变送器来测量汽包水位,特别计算机控制技术的引入,从技术性能、安全性、可靠性都有了极大的提高,现在亚临界锅炉均采用差压式水位计作为汽包水位测量的主要手段,并作为汽包水位控制、保护信号用。
平衡容器又叫凝结球,根据测量准确性的要求不同,有以下几种平衡容器:单室平衡容器、双室平衡容器、带蒸汽罩补偿式平衡容器。
随着计算机控制技术的引入,智能变送器的采用,其运算环节得出的结果远比通过补偿修正的结果准确,所以亚临界锅炉均采用了结构简单的平衡容器测量水位。
下面就介绍单室平衡容器测量水位的方式。
单室平衡容器测量水位的原理如图2所示:从汽包汽侧取样孔引一管至平衡容器,进入平衡容器的饱和蒸汽不断凝结成水,多余的水由于溢流原理自取样管流回汽包,使平衡容器内的水位保持恒定。
因此,差压变送器的正压头由于平衡容器有恒定的水柱而维持不变,负压头则随着汽包水位的变化而变化。
为了避免汽包水位变化时,影响平衡容器内水位变化,而影响汽包水位测量的准确性,容器的面积应足够大。
由图2可得差压变送器差压和汽包水位之间的关系如下式所示:式中:H——汽水侧取样孔距离,mmL——汽侧取样孔与汽包零水位的距离,mmh——汽包水位偏差零水位的值,mm△P——汽包水位对应的差压值,mmH2OPs——饱和蒸汽密度,kg/m3Pw——饱和水密度,kg/m3Pa——平衡容器参考水柱密度,kg/m3式(2)中,H、L均是定值,Ps、Pw是汽包压力的函数,Pa除了受汽包压力的影响,还和平衡容器的散热情况、环境温度等有关。
饱和蒸汽进入平衡容器不断凝结为水,容器内表面的水温接近于汽包内的饱和温度,平衡容器及其下部取样管受环境的冷却,温度不断下降,随着高度的下降,取样管内的温度将接近环境温度。
参比水柱的水温高于环境温度,但远低于汽包内的饱和温度。
参比水柱的水温一般采用取平均值的方法,按照常数考虑,一般取50℃或60℃;现在一些电厂也采用直接测量参比水柱温度的方法进行修正。
由于汽水密度都是随压力改变的,因此同一汽包水位在不同的压力工况下所产生的压差是不同的。
以我厂自然循环汽包炉为例,已知汽包内径1792mm,零水位在汽包机械中心线以下50mm,水侧取样孔距零水位以下400mm,汽侧距零水位以上360mm,H=400+360=760mm,取参比水柱水的平均温度为60℃,计算得出表3所示结果。
表3的结果显示:在大气压下,汽包水位到汽侧取样孔时,压差最小,等于零;降至水侧取样孔时,压差最大,等于760mmH2O。
因此,测量汽包水位的变送器量程为760~0mmH2O,即是汽水侧取样孔之间的距离。
随着汽压的升高,同样的汽包水位变化量所对应的压差变化量减小。
汽包水位变化土250mm,大气压下压差变化500mmH2O,压力升到9Mpa时压差变化为329mmH2O,升高到18Mpa 时,压差变化仅为205mmH2O,而且水位越高,受压力的影响越大,水位越低受的影响相对较小。
因此,压力的变化会给水位的测量带来相当大的误差,但该误差只是因为压力的变化而产生的,所以,在差压式水位计的测量回路中加入压力修正,可以将压力引起的测量误差消除。
压力修正原理如下:由(2)式可得根据(3)式,可得出图3所示的修正回路,修正汽包水位测量受汽包压力影响造成的误差。
修正回路中的F1(x)、F2(x)两函数,通过计算机控制系统能很方便的实现和完成。
修正回路如图三所示。
平衡容器参比水柱因受环境的影响,温度分配不均,平衡容器上部温度接近饱和温度,向下逐渐减小直到接近环境温度,按平均温度来计算,也必然存在误差;且参比水柱的高度受汽包压力、工况、安装等的影响,也会产生误差。
当参比注柱平均密度变化△pa时,汽包水位测量误差将为:参比水柱平均温度变化时,相对于20℃时产生的误差如表4所示。
从表4看出,参比水柱平均温度变化时对汽包水位测量误差的影响,随着汽包压力的升高而增大,并且随着平均温度的增大而增大,50℃及以下影响相对小些;因此,参比水柱平均温度应尽量小,并且分布应均匀。
参比水柱高度变化时,设高度误差为△H汽包水位测量产生的误差为:四、影响汽包水位测量的原因根据对几种水位测量方式的分析,影响水位测量的原因主要有以下几个方面:4.1 汽包水位计安装条件、位置、环境的影响,水位计定位偏差一般在10~50mm,各水位计所处的环境存在着差别,影响散热;4.2 汽包安装条件的影响,汽包安装时的水平度要求应≤5mm,但在锅炉运行几年后,均会发生变化,达到15~20mm,水位计安装时是依据汽包中心线为标准,致使水位计安装时产生误差;4.3 从给水、水冷壁进入汽包内的水的影响,给水温度因受各加热环境的影响,不可能恒定不变,且水温低于相应压力下的饱和温度;水冷壁进入的水含大量的汽泡,并不断蒸发,其密度将小于相应温度、压力下水的密度;4.4 下降管的影响,锅炉运行中,汽包内的水不断地高速进入下降管,使得汽包内的水位不是一个理想的水平面,会随着下降管的布置位置产生高低不同的差别,差别可达40~60mm;4.5 测量仪表本身固有的误差,虽然仪表的精度已很高,但仍存在着测量、安装误差。
五、减小汽包水位测量误差的方法和措施5.1 合理的取样位置,应高于水位保护定值的高度,并有一定的余量;5.2 合适的取样管路管径,以减小流通阻力,防止水位显示滞后;5.3 尽量缩短连接管路的长度,减小流通阻力,提高连通管内的介质温度,平衡容器前的水平段应有足够的长度,以利于汽的凝结;5.4 在汽水取样管之间加一连通管作为阻尼,缓冲汽包水位波动大时对水位测量的影响;5.5 每个水位计应采用独立的取样孔、取样管路、平衡容器,以免相互产生干扰;5.6 汽侧取样管向汽包倾斜,以利于凝结的水回流,保证平衡容器内的水面恒定;5.7 合理的管路保温,既能保证介质的温度,又能充分散热。