内置式平衡容器

合集下载

平衡容器的工作原理

平衡容器的工作原理

平衡容器的工作原理
首先,平衡容器的工作原理与物理学中的压力平衡原理密切相关。

在一个封闭的容器内部,当容器内部的压力与外部环境的压力相等时,容器就处于平衡状态。

这意味着容器内部的压力不会超过容器本身所能承受的极限,从而保证了容器的安全运行。

其次,平衡容器通常通过设计合理的结构和材料来实现其工作原理。

例如,容器的壁厚和材质需要能够承受内部压力的作用,以保证容器不会发生破裂或变形。

此外,容器的结构也需要考虑到内外压力的均衡分布,以确保容器在各种工作条件下都能保持稳定。

此外,平衡容器的工作原理还涉及到压力传感器和控制系统的应用。

通过实时监测容器内部和外部的压力变化,压力传感器可以及时发现压力失衡的情况,并通过控制系统进行相应的调节,以维持容器的平衡状态。

这种自动化的监测和调节系统可以大大提高生产过程中容器的安全性和稳定性。

最后,平衡容器在工业生产中的重要性不言而喻。

许多化工、制药、食品等行业都需要使用各种容器来进行原料储存、反应过程等操作。

如果这些容器不能保持压力平衡,就会出现安全事故和生产质量问题。

因此,平衡容器作为关键的安全设备,对于保障生产过程的安全和稳定起着至关重要的作用。

综上所述,平衡容器的工作原理是基于压力平衡原理,通过合理的结构设计和压力监测控制系统来实现。

在工业生产中,平衡容器的重要性不可忽视,它对于保障生产过程的安全和稳定起着至关重要的作用。

希望本文的介绍能够帮助大家更加深入地了解平衡容器的工作原理及其在工业生产中的重要性。

平衡容器水位测量原理..

平衡容器水位测量原理..

(2)汽包水位一般采用单平衡容器的原因 现在单室平衡容器用的比较多,它把压力与密度的关系、 温度与密度的关系等计算公式保存补偿电路里的ROM里面,温 度和汽包压力变化后,由压力变送器、温度变送器把信号传 输到补偿电路,自动计算汽包水位变化。目前是测量汽包水 位的最好方法。双室平衡容器也测量水位,一般在汽包压力 恒定的状态下才能测得比较准确。在负荷出现变化,汽包压 力改变的时候,尽管有压力补偿(压力变化的时候,温度也 会随着变化),但存在绝对误差,所以克服不了,仍然存在 误差。所以现在用单室平衡容器的比较多。
2018/9/4
宁夏枣泉发电有限公司8月份技术交流
23
2018/9/4
宁夏枣泉发电有限公司8月份技术交流
24
2018/9/4
宁夏枣泉发电有限公司8月份技术交流
14
(2)对于平衡容器差压式液位计,其变送器的正负压 侧接的都是液相,但是其负压侧的压力是变化的,正 压侧压力是基本恒定的。当变送器输出为4mADC时, 测的是容器的最高液位;而当其输出为20mADC信号 时,测的是容器的最低液位。
2018/9/4
2018/9/4
宁夏枣泉发电有限公司8月份技术交流
17

3.量程调整
量程调整的目的是使变送器的输出信号的上限值与测量 范围的上限值相对应。量程调整相当于改变变送器的输出特 性曲线的斜率,可以提高测量的准确度。
2018/9/4
宁夏枣泉发电有限公司8月份技术交流
18
6、温电#4炉平衡容器式差压液位计的使用

2.减小或消除这些误差的方法:
(1)对于汽包水位测量系统,应采取正确的保温、伴热及防 冻措施,以保证汽包水位测量系统的正常运行及正确性。 对于高低加、除氧器等水位测量系统,根据环境情况,采 取正确的保温、伴热及防冻措施。 (2)改进平衡容器的结构,以得到仅与水位有关的差压值。 比如过去由于差压式水位测量回路不具备压力修正的能力, 而出现了使用多种压力修正功能的平衡容器,如双室平衡 容器、具有加热套的平衡容器、内置式平衡容器等。 (3)对单室平衡容器的输出信号引入压力和温度校正,即采 用自动补偿运算装置。

平衡容器

平衡容器

获ISO9001国际质量标准认证证书HL-2512P单双室平衡容器长春锅炉仪表程控设备股份有限公司■目 录■1 用途------------------------------------------1 2结构特点及工作原理--------------------------13 主要技术参数----------------------------------34 安装-----------------------------------------35 调试------------------------------------------56 维护-----------------------------------------57 订货须知--------------------------------------5 8附录平衡容器选型说明------------------------61 用途平衡容器是差压式水位计的一次仪表。

它与水位指示器或差压变送器配套使用,用来控制给水流量,测量水位、水温,并可做容器的压力以及报警用,可以在锅炉正常运行情况下反映汽包内的质量水位。

我厂生产的平衡容器分双室平衡容器和单室平衡容器两种,压力等级分为中压、高压、超高压、亚临界及超亚临界,这些产品已成系列(特殊参数也可重新设计),并随锅炉配套使用。

选用时可根据汽包(或受压容器)内介质的压力和温度、观测范围、水管中心到正常水位的距离(H O)以及汽水中心距(H)而定。

2结构特点及工作原理2.1双室平衡容器是由正压补偿管、负压管、水杯、漏斗等零件焊接而成。

工作过程中,饱和蒸汽因为凝结而释放的热量同时对正压补偿管和负压管加热,并且平衡容器的外层保温减少了热量的损失,从而使正压补偿管内水的重度在任何工况下都近似等于汽包(或受压容器)内水的重度;又由于正确的选用正压补偿管的高度,不论容器内压力如何变化,正压补偿管的压力与负压管的压力变化值均相等,因此双室平衡容器输出的差压不变,即低置水位指示的水位不变。

差压式水位计-课件PPT

差压式水位计-课件PPT
汽包水位测量的优选逻辑为提高汽包水位控制和保护的可靠性在水位测量中必须采用三套独立的差压式测量系统经汽包压力自动校正后再经过三选中的优选逻辑才能作为水位监视和控制的信号使用在水位保护中为防止误动作和拒动作必须采用三取二的逻辑提供保护信息29四差压式水位测量系统一差压式水位测量系统的组成作用
复习
1、汽包水位的特点 (1)水位很不平稳。(2)汽水界面模糊不清。(3 )沿汽包轴向及横向各处水位不一致。(4)虚假水 位。(5)汽水共腾现象。 2、电厂中常用的几种差压计 就地式水位计 差压式水位计 电接点水位计 3、就地式水位计的工作原理 连通器原理:测量管与汽包组成连通器直接反应被测 水位。 4、显示方法:汽红水绿 5、汽包水位电视监视系统
(3)双室平衡容器的疏水管应单独引至汽包水循环最快的 下降管,并在疏水管上加装截止阀,疏水管的竖直长度应大 于10m,以保证平衡容器内无水而又不至于抽空。若发生抽 空现象时应关小截止阀的开度。该管路不做保温。
33
(4)差压变送器的引压管应在水平方向引出足够距离(一般 不小于1m)后向下敷设,以保证引压管内的水温等于环境 温度。
7
8
一、平衡容器的工作原理 差压式水位计是将水位的高低信号转换为差压信
号来实现水位测量的。水位-差压转换容器(平衡容 器)是仪表的感受部件。
凝汽筒式平衡容器
双室平衡容器9
10
(1)正压管是从平衡容器中引出,负压管是从 汽包水侧连通管中引出。
(2)平衡容器的水面高度L是一定的。当水面 要增高时,水便通过汽侧连通管溢流入汽包;要降低 时,由蒸汽冷凝水来补充。因此当平衡容器中的水密 度一定时,正压管压力为定值,负压管与汽包连通的, 输出压力的变化反映了汽包水位的变化。
目的:为了消除环境温度变化对密度凝结水密度ρ1的影响, 可采用内置式平衡容器。

新一代平衡容器简介,附图

新一代平衡容器简介,附图

新一代平衡容器简介1.差压式平衡容器概述差压式水位计测量系统见图1。

原理是,由平衡容器形成参比水柱,比较汽包内水柱与,从而实现“水位-差压”变换,再由传输参比水柱的高度差,将高度差转换为静压差△P1环节将差压送至变送器,测量显示水位。

因为差压变送器准确性与稳定性很高,所以差压水位计问题在于一次测量:传输附加的出现与变化是随机的,且不易彻底消除;“水位-差压”变换环节的参比静压问差压△P2题。

传统单室平衡容器测量系统问题:“水位-差压”变换稳定性较差,易零漂;必须进需较长时间,需升高行参比水柱温度修正,实测修正误差大;建立稳定的参比静压参△P1易受环境温度影响。

汽包水位“灌水”;参比静压参△P1图2传统双室平衡容器GJT-2000电接点测量筒取样水位已逼近汽包内的实际水位,表明汽包内的水温已极接近饱和水温度。

因此,热套式平衡容器设计思路合理之处在于,置参比水柱于饱和汽套中(见图2),如同在汽包内一样,参比水柱等于饱和汽温度,则不需要参比水柱温度修正。

但结构设计缺陷是:在汽包压力升降后,由于密度变化,参比水柱管缺水,需要较长时间才能补满水,参比水柱高度恒定性差,动态特性差;建立参比水柱需较长时间。

上述问题,使差压式水位计性能不能充分满足汽包水位监视主表和保护的需求。

2.新一代平衡容器为了提高自动调节系品质,提高CRT水位计准确性和稳定性,继而提高手动停炉准确性,研制出最新一代平衡容器。

图3GJT-DⅡ双恒平衡容器原理及测量系统GJT-DⅡ双恒平衡容器,由淮安维信仪器仪表有限公司新开发,国家知识产权局已正式受理发明专利,申请号:200310106148.5。

2.1GJT-DⅡ双恒单室平衡容“双恒”特点是:①参比水柱温度恒等于汽包内的饱和水温度;②参比水柱高度恒定,不受压力变化的影响。

2.2GJT-DⅡ双恒单室平衡容器原理GJT-DⅡ双恒平衡容器原理及测量系统见图3。

参比水柱温度恒等于饱和水温度的技术措施:1.结构独特的叉式参比水柱组件置于平衡容器的饱和汽室。

10.24-平衡容器水位测量原理.解析

10.24-平衡容器水位测量原理.解析

8
结论: (1)平衡容器的结构一定、密闭容器内压力一定及 ρ 1一定 的条件下,平衡容器的输出差压△P与容器水位H成线性关 系。 (2)密闭容器水位 H越高,平衡容器输出差压△P越小。
2018/10/6
宁夏枣泉发电有限公司8月份技术交流
9
3、一般单、双室平衡容器的存在的问题

1.存在的问题
(1)由于平衡容器的向外散热,凝汽室内凝结水温度由上至 下逐步降低,且温度分布不易确定,因此ρ 1很难确定。而且 当平衡容器的环境温度降低时,ρ 1会增大,使输出差压增大, 引起水位计指示下降,出现负误差。 (2)密闭容器内压力变化时,会引起ρ 1、ρ '、ρ "发生变化, 引起误差。 (3)差压式液位计中,双室平衡容器机械的部分补偿了压力 对水位测量的影响,在零水位及额定工况下较准确,当偏离 零水位或额定压力时,往往出现过补偿和欠补偿。所以双室 一般用来测小型锅炉的汽包液位或者本身压力变化不大的容 器。单室的平衡容器用来测量大型锅炉的汽包液位或者本身 2018/10/6 10 宁夏枣泉发电有限公司8月份技术交流 压力变化很大的容器。
2018/10/6
宁夏枣泉发电有限公司8月份技术交流
5
单室平衡容器
2018/10/6
双室平衡容器
宁夏枣泉发电有限公司8月份技术交流 6

3.工作原理
通过测量平衡器中的静压力与容器中实际水位的静压力 (随水位升降而变化)的差压值,再通过差压变送器将差压 值转变成电流信号传输到DCS进行水位监视。 ( 1 )正压管是从平衡容器中引出,负压管是从密闭容器 水侧连通管中引出。 (2)对于单室平衡容器,其水面高度L是一定的,当水面 要增高时,水便通过汽侧连通管溢流入密闭容器;要降低时, 由蒸汽冷凝水来补充。因此当平衡容器中的水密度一定时, 正压管压力为定值,负压管与密闭容器连通的,输出压力的 变化反映了容器内水位的变化。对于双室平衡容器,其水面 高度L也是一定的,当水面增高时,其水是通过基准杯溢流至 溢流室;当降低时,基准杯内的水由凝汽室内蒸汽冷凝补充。

双室平衡容器原理

双室平衡容器原理

双室平衡容器原理双室平衡容器是一种常见的实验装置,用于研究气体的性质和行为。

它由两个连接在一起的玻璃球组成,每个玻璃球内部都有一种气体。

这种装置的原理在于,两个玻璃球内的气体在达到平衡状态时,其压强和温度会相等,从而可以进行一系列关于气体性质的实验。

首先,我们来看双室平衡容器的结构。

它由两个玻璃球和连接它们的细管组成。

每个玻璃球内都装有一种气体,通常是不同的气体。

通过打开细管,两个玻璃球内的气体可以互相扩散,最终达到平衡状态。

其次,双室平衡容器的原理在于气体分子的热运动。

当两个玻璃球内的气体分子开始扩散时,它们会不断地碰撞并交换动量和能量。

在这个过程中,气体分子的热运动会导致两个玻璃球内的气体最终达到相同的压强和温度。

这就是双室平衡容器实验的基本原理。

双室平衡容器在实验中有许多应用。

例如,我们可以利用它来研究气体的扩散速率。

通过记录两个玻璃球内气体的压强随时间的变化,我们可以得到气体分子的平均自由程和平均速率。

这对于研究气体的性质和行为非常重要。

此外,双室平衡容器还可以用来研究气体的混合物。

通过在两个玻璃球内放入不同种类的气体,我们可以观察它们在达到平衡状态时的行为。

这对于理解气体混合物的性质和组成也有很大的帮助。

总之,双室平衡容器是一种重要的实验装置,它通过气体分子的热运动实现了两个玻璃球内气体的平衡,为研究气体的性质和行为提供了重要的工具。

它在实验室中有着广泛的应用,对于气体物理学和化学的研究都具有重要意义。

通过对双室平衡容器的原理和应用进行深入的研究,我们可以更好地理解气体的行为规律,为相关领域的研究和应用提供重要的支持。

平衡容器工作原理

平衡容器工作原理

平衡容器的工作原理3.双室平衡容器的工作原理3.1.简介双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置.它的主要结构如图1所示.在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器.为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器.3.2.凝汽室理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯与后续环节使用.3.3.基准杯它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器〔后文简称变送器〕的正压侧.基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室.由于基准杯的杯口高度是固定的,故而称为基准杯.3.4.溢流室溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致.正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水.3.5.连通器倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧.毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的〔基准〕压力比较以得知汽包中的水位.它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结.连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响.3.6.差压的计算通过前面的介绍可以知道,凝汽室、基准杯与其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s .故而不难得到容器所输出的差压.本文以东方锅炉厂DG670-13.73-8A 型锅炉所采用的测量范围为±300mm 双室平衡容器为例加以介绍〔如图1所示〕.通过图1可知,容器正压侧输出的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口至L 形导压管的水平轴线之间这段垂直区间的凝结水压力,再加上L 形导压管的水平轴线至连通器水平轴线之间,位于容器的外部的这段垂直管段中的介质产生的压力.显而易见,其中的最后部分压力,由于其中的介质为静止的且距容器较远,因此其中的介质密度应为环境温度下的密度.因此 P += P J +320 γ w +<580-320> γ c式中P + —— 容器正压侧输出的压力γw —— 容器中的介质密度〔γ w = γ `w 〕γc —— 环境温度下水的密度P J —— 基准杯口以上总的静压力负压侧的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口水平面至汽包中汽水分界面之间的饱和水蒸汽产生的压力,再加上汽包中汽水分界面至连通器水平轴线之间饱和水产生的压力,即P -= P J +<580-h w > γ s + h w γw式中P-——容器负压侧输出的压力hw——汽水分界线至连通器水平管中心线之间的垂直高度γs——汽包中饱和水蒸汽的密度因此差压ΔP=P+-P-=320 γw+260 γc-<580-hw> γs-hwγw即ΔP=260 γc + 320 γw-580 γs-<γw-γs >hw〔1〕这里有一点需要说明,<1>式中环境温度下水的密度γc,通常情况下它会随着季节的变化而变化,它的变化将会影响汽包水位测量的准确性.就本例中的容器而言,当环境温度由25℃升高到50℃时,由于密度的变化对于差压产生的影响为-2.3mm水柱,经过补偿系统补偿后对最终得到的汽包水位的影响将为+2.3~5.5mm之间.通常情况下这样的误差是可以忽略的,也就是说可以认为这里的温度是恒定的.但是为了尽量减小误差,必须恰当地确定这里的温度.确定温度可以遵循这样一条原则,就高不就低,视当地气候与冬季伴热等因素确定.比如此处的环境温度一年当中通常在0~50℃之间变化,平均温度为25℃,则可以令这里的温度为35℃.这是因为水的密度随着温度升高它的变化梯度越来越大,确定的温度高些,将会使环境温度变化对整个系统的影响更小.就本例中的容器而言,当温度从0℃升高到25℃时,温度的变化对测量系统的最终结果影响只有1mm左右,而环境温度从25℃升高到50℃所带来的影响却为+2.3~5.5mm之间.故而,确定温度应就高不就低.4.双室平衡容器的工作特性容器的工作特性对于汽包水位测量和补偿系统来说非常重要,了解这种特性利于用户的应用和掌握应用中的技巧.查《饱和水与饱和水蒸汽密度表》可以获得各种压力下饱和水与饱和水蒸汽的密度.把0、±50、±100mm等汽包水位分别代入〔1〕式,可得到容器输出的一系列差压,见下表1《双室平衡容器固有补偿特性参照表》.通过表1可以得知双室平衡容器的工作特性.从表1中可以看到,各水位所对应的由容器所输出的差压随着压力的变化〔相关饱和汽、水密度〕各自发生着不同的变化.这里首先注意0水位所对应的差压,它的变化规律较其它水位有明显不同,只在一个较小的范围内波动.由于该容器的设计压力为13.73MPa,因此14.5MPa以下它的波动范围更小,仅在±5mm水柱以内.也就是说当汽包中的水位为0水位时,无论压力如何变化,即使在没有补偿系统的情况下,对0水位测量影响都极小或者基本没有影响.关于其它水位,则当汽包水位越接近于0水位,其对应的差压受压力的变化影响越小,反之则大.因此,双室平衡容器是一种具有一定的自我补偿能力的汽包水位测量装置.它的这种能力主要体现在,当汽包中的水位越接近于0水位,其输出的差压受压力变化的影响越小,即对汽包水位测量的影响越小.毫无疑问,容器特性由于容器的自身结构决定的,故又称为固有补偿特性.表1中,0MPa对应两行差压值,其原因后文将会提到.之所以双室平衡容器会有这种特性其实质,是由于双室平衡容器在设计制造时采取了特殊的结构,这种结构最大限度地削弱了汽水密度变化对常规运行水位差压的影响.但是尽管如此,它并不能完全满足生产的需要,仍然需要继续补偿.5.补偿系统5.1.基础知识与基本概念从容器的特性中可以看到,双室平衡容器不能完全满足生产的需要.究其原因,是由于介质密度的变化所造成的.因此,必须要采取一定的措施,进一步消除密度变化对汽包水位测量的影响.这种被用来消除密度变化带来的影响的措施就叫做补偿.通过补偿以准确地测定汽包中的水位.汽包水位测量补偿的方法通常有两种,一种是压力补偿,另一种是温度补偿,无论采取哪种方法补偿效果都一样.但是它们之间略有区别,即温度补偿可以从0℃开始,而压力补偿只能从100℃开始.这是因为温度可以一一对应饱和密度以与100℃以下时的非饱和密度,而压力却只能一一对应饱和密度,即最低压力0MPa只能对应100℃时的饱和密度.故而由这两种方法构成的补偿系统各自对应的补偿起始点有所不同,即差压变送器量程有所不同.表1中0MPa 对应两行差压值,其原因即在于此;其中上一行对应的是温度补偿,下一行对应压力补偿.很显然,温度补偿也可以从100℃开始.5.2.建立补偿系统的步骤第一步确定双室平衡容器的0水位位置容器的0水位的位置一般情况下比较容易确定,通过查阅锅炉制造厂家有关汽包〔学名锅筒〕与附件方面的图纸和资料,进行比较和计算即可获得.文中例举的容器0水位位置位于连通器水平管轴线以上365mm处,即基准杯口水所在的平面下方215mm处.但是,偶尔由于图纸的疏漏缺少与确定0水位相关的数据,无法计算出0水位的位置,那么确定起来就比较复杂.如图1中就缺少数据.这种情况下就只有根据容器的自我补偿特性在0水位所体现的特点通过反复验算来获得.由于容器本身就是用这样的方法经反复验算而设计制造的,只要验算的方法正确通过验算得到的数据会很准确可靠,当然这只限于图纸不详的情况下.由于限于篇幅,这里只提供思路,具体的验算的方法本文不予介绍.对此感兴趣的读者可以试一试.第二步确定差压变送器的量程差压变送器的量程是由汽包水位的测量范围、容器的0水位位置以与补偿系统的补偿起始点等三方面因素决定的.一些用户一般只考虑了前两方面因素,而忽略了补偿起始点因素,甚至极个别的用户只简单地根据汽包水位的测量范围确定变送器的量程,造成很大的测量误差.一般情况下,忽略容器的0水位位置所造成的误差在70~90mm之间,忽略补偿起始点所产生的误差在30mm以下,特别情况下误差都将会更大.此外,这里特别提醒用户,在进行汽包水位测量工作时,关于变送器的量程,在没有得到确认的情况下,切不可单纯依赖设计部门的图纸.事实上,多数情况下,设计部门在进行此类设计,对变送器选型时,只确定基本量程,而不给出应用量程.下面来确定变送器的量程.本文的例子中容器的0水位位置位于连通器水平管轴线以上365mm处.由于该容器的量程为±300mm,因此〔1〕式中的hw的最大值和最小值分别为665mm和65mm.如果采用压力补偿,从《饱和水与饱和水蒸汽密度表》中查出100℃时的饱和水与饱和水蒸汽的密度代入〔1〕式,再分别将665mm和65mm代入〔1〕式,即得最小差压ΔPmin=-70.5mm水柱和最大差压ΔPmax=504mm水柱这两个差压值就是变送器的量程范围〔见表1中0MPa对应的下行〕,即-70.5~504mm水柱.如果采用温度补偿,且从0℃开始补偿,则由于水的密度极其接近1mg/mm3,误差可以忽略,令蒸汽的密度为0.用同样方法即可得到变送器的量程为-85~515mm水柱〔见表1中0MPa 对应的上行〕.实际上,从0℃开始补偿是完全没有必要的,其原因这里无需遨述.第三步确定数学模型数学模型是补偿系统中的最重要环节.由〔1〕式得〔2〕由于相对于规定的0水位的汽包水位h= hw-365mm,所以〔3〕式中h ——相对于规定的0水位的汽包水位γw ——饱和水的密度γs ——饱和水蒸气的密度γ c ——环境温度下水的密度ΔP——差压〔3〕式即为补偿系统的数学模型.式中γc为常数,令环境温度为30℃,则γc=0.9956mg/mm3,所以〔4〕〔4〕式为最终的数学模型.显然,它与〔3〕式的作用完全一样.在补偿系统中可以任选其一. 第四步确定函数、完成系统在〔3〕式和〔4〕式中含都有"320 γw-580 γs"和"γw-γs"关于饱和水与饱和水蒸汽密度的两个子式.查《饱和水与饱和水蒸汽密度表》,可以获得这两个子式关于压力或温度的函数曲线.将所得到的曲线以与〔3〕式或者〔4〕式输入用以执行运算任务硬件设备,补偿系统即告完成.从补偿系统的建立过程可以发现,补偿系统是根据某一特定构造的容器而建立的.因此,建立补偿系统时应根据不同的容器,建立不同的补偿系统.建立补偿系统时,当确定差压的计算公式以后,只需重复这里的步骤即可得到新的汽包水位测量补偿系统.6.关于容器保温问题的释疑众所周知,为了使容器达到理想工作状态,容器的外部必须作以适当的保温.然而,关于容器的凝汽室与顶部的保温问题目前有些争议,部分用户认为这里的保温可有可无.笔者在这里阐述一下个人的观点.笔者通过多年观察发现,在这里没有保温的情况下,冬季由仪表显示的汽包水位会比夏季低将近10mm.分析原因,是因为一般情况下凝汽室的温度都要比环境高300℃左右,甚至更高,因此它的热辐射能力很强.当凝汽室外部没有保温或者保温条件比较差时,尽管凝结水的速度会加快并导致更多的饱和水蒸汽流到这里补充这里的热量,但是由于这里的介质处于自然对流状态且受到管路等的阻力的制约,使补充的热量难以维持这里的温度,进而影响了测量的准确性.对于额定工作压力为13.73MPa的锅炉而言,如果冬季由仪表显示的汽包水位比真实水位低10mm,将意味着容器内部的温度比饱和温度低7℃左右.所以,为确保其包水位测量的准确性,这里必须加以适当的保温.笔者以为,这里的保温以保温层的外层温度不超过120℃为佳.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内置式平衡容器
1、差压水位计(老式单室平衡容器)
下面就单室平衡容器的测量误差作一简要分析:如图三所示:
当ΔP2=0时,有公式(5)成立
H =(r- r //)g.L-ΔP1 -----(5)
g(r / - r // )
式中ΔP1:变送器所测参比水柱与汽包内水位的差压值(ΔP2=0
时)
L:参比水柱高度 r :参比水柱的平均密度
ΔP2:正、负压侧仪表管路的附加差压
这里饱和蒸汽和饱和水的密度(r //、r /)是汽包压力P的单值非线性函数,通过测量汽包压力可以得到,而参比水柱中水的平均密度r 通常是按50℃时水的密度来计算的,而实际的r 具有很大的不确定性与50℃时水的密度相差很大是造成测量误差的主要原因之一。

单室平衡容器参比水柱温度与DCS 修正补偿的50℃或60℃相差很大,带来不确定的附加误差,其误差在100mm 以上。

由于云母水位计和单室平衡容器的误差方向不一致,所以要保证各水位计之间的偏差在30mm 以内是不可能的,现行是以云母水位计为准,通过改变变送器或DCS 软件修正来拼凑的,只能从数值上在一个特定的工况和小范围内使其偏差在30mm 以内,是自欺欺人的做法,不能保证锅炉的安全运行。

从上可见要全过程全范围的实现汽包各水位计之间的偏差小于30mm 是不可能的。

由于汽包水位测量不准,造成汽包长期高水位运行,降低了旋风分离器的工作效率,使饱和蒸汽带水过多,增加了过热器和汽轮机的结垢,降低了机组的工作效率,加速了过热器的爆管泄漏,存在着很大的事故隐患。

21
图三单室平衡容器测量原理图
2、内置式单室平衡容器
如图四所示:
H=L-ΔP /g(r / - r // ) --- (6) (6)式是(5)式中,参比水柱的平均密度r 等于饱和水的密度r / 转换而来,L 、g 为常数,r / - r //是汽包压力的单值函数,ΔP 是变送器测得的
差压值,故此消除环境温度对参比水柱密度的影响,从而克服了这一误差。

内置式平衡容器特点:
1 、精确度高,不受汽包内水欠饱和以及外置平衡容器参比水柱温度变化的
影响,从公式)S W /(0 -∆--=∆p H L h 可以看出变送器所测得的差压值p ∆为汽段参比水柱(饱和水)和相同高度的饱和汽静压之差,这一点与以往的任何一种外置式平衡容器不同,而采用外置式平衡容器测量汽包水位不仅受平衡容器下参比水柱温度变化的影响,而且由于补偿公式是假定汽包内水是饱和状态下推算出来,而实际上汽包内的水是欠饱和的,而且随着负荷变化欠饱和度也是变化的,由此可见,采用内装平衡容器的测量精确度远比外置式平衡容器要高。

2 、由于汽包的汽侧取样管上焊接有冷凝罐,可以及时向平衡容器中补充冷凝后的饱和水,因而可以保证锅炉点火不久就可投入汽包水位测量。

内置式单室平衡容器图片
汽包水位内置式平衡容器原理图。

相关文档
最新文档