光学基础
光学工程知识点总结

光学工程知识点总结1. 光学基础知识光学是物理学中研究光及其相互作用的科学。
在光学领域,我们需要了解光的传播规律、光的波动性质、光的折射、反射、散射等基本知识。
光学的基础知识为光学工程师设计光学系统提供了理论基础。
2. 光学系统设计光学系统设计是光学工程的核心内容之一。
光学系统通常包括光源、透镜、反射镜、光栅等光学元件,以及对光进行探测和分析的部件。
光学系统设计需要考虑光学元件的性能参数、光路的布局、系统成像质量等因素,以实现特定的光学功能。
3. 光学材料光学材料是构成光学系统的重要组成部分。
不同的应用领域对光学材料的性能要求各不相同。
光学材料通常需要具有良好的透明性、高折射率、低散射率等特点,以适应不同的光学系统设计需求。
4. 光学器件制造技术光学器件制造技术是光学工程的重要组成部分。
光学器件通常需要具有高精度、高表面质量和良好的光学性能。
常见的光学器件制造技术包括光学表面精加工、光学薄膜涂覆、光学玻璃加工等。
5. 光学系统测试光学系统测试是保证光学系统性能的重要手段。
光学系统测试需要考虑光学成像、光学畸变、光学材料特性等问题,以验证系统设计和制造过程中的各项性能指标是否符合要求。
6. 光学工程应用光学工程在各个领域都有广泛的应用。
例如,光学通信系统是当今信息传输中最主要的传输方式,光学显微镜在生物科学中有重要的应用,激光技术在材料加工、医疗治疗等领域也有重要应用。
总的来说,光学工程是一门重要的交叉学科,它涉及了光学原理、材料科学、光学器件制造技术等多个领域。
光学工程的发展为现代科技领域的发展提供了重要支撑,也为人类社会的发展带来了诸多便利。
希望本文的介绍能够让读者更好地了解光学工程的相关知识,对此领域有更深入的认识。
光学基础知识详细版

光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。
光的本质可以通过波动理论和粒子理论来解释。
波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。
二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。
光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。
当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。
三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。
光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。
光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。
四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。
光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。
五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。
自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。
当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。
六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。
光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。
光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。
七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。
光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。
八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。
光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。
光学基础知识点总结

光学基础知识点总结一、光的基本特性光是电磁波的一种,具有波粒二象性,既具有波动性,也具有粒子性。
光的波长决定了它的颜色,波长越短,频率越高,颜色就越偏向紫色;波长越长,频率越低,颜色就越偏向红色。
媒质对光的传播起到了阻碍的作用,阻碍的程度由折射率决定。
在真空中,光速是最高的,为3.0×10^8m/s。
二、光的传播光在真空中的传播速度是最快的,当光通过不同介质时,光速会减慢,并且折射。
光的折射是由于光速在不同介质中的差异导致的,根据折射定律,入射角和折射角之比等于两种介质的折射率之比。
当光从光密介质射向光疏介质时,入射角大于折射角;反之,当光从光疏介质射向光密介质时,入射角小于折射角。
这就是为什么水池里的东西看上去都有些歪的原因。
三、光的反射和折射光的反射是指光线从一种介质透过到另一种介质时,遇到界面时发生的现象。
根据反射定律,光线的入射角等于反射角,反射定律表明入射角和反射角是相等的。
光的折射是指光在通过两种介质的分界面时,由于介质折射率的不同,在两种介质中的传播方向发生改变的现象。
四、光的干涉和衍射光的干涉是光波相互叠加,在波峰与波谷相遇时叠加会增强,而在波峰与波峰相遇时叠加会减弱。
光的干涉现象有两种:一种是菲涅尔干涉,一种是朗伯干涉。
光的衍射是指光波通过一道障碍物,由于波的直线传播受到限制,在障碍物边缘处波前发生变形,这种现象就是衍射。
光的干涉和衍射是光学中非常重要的现象,也是很多光学仪器(如干涉仪、衍射光栅等)的原理基础。
五、光学成像光学成像是指通过光学器件将物体的形象投射到屏幕或者成像器件上的过程。
根据成像光学器件的不同,光学成像可以分为透镜成像和反射镜成像。
在透镜成像中,成像的原理是由于透镜对光的折射性质,使得光线汇聚或发散从而产生物体的形象。
在反射镜成像中,成像的原理是由于反射镜对光的反射性质,使得光线经过反射后,同样能够形成物体的形象。
光学成像技术在医学、军事、天文学、摄影等领域都有着非常重要的应用。
光学知识基础

光学知识基础一、光学基本概念光学是研究光的行为和性质的物理学科。
它探讨了光在真空、气体、液体和固体中的传播规律,以及光的产生、变化和相互作用。
光可以看作是一种电磁波,其波长范围覆盖了从伽马射线、X射线、紫外线和可见光到红外线、微波和无线电波的广泛频谱。
在光学中,有几个重要的基本概念需要理解。
首先是光的波动性,即光在传播过程中表现出振动的特性,具有相位和波长。
其次是光的粒子性,即光是由粒子或光子组成的,这些粒子具有能量和动量。
此外,光学还涉及到光的干涉、衍射、反射、折射等现象,以及光学仪器和系统的工作原理。
二、光学元件与仪器光学元件和仪器在科学实验、工业生产、通信、医疗等领域有广泛应用。
常见的光学元件包括透镜、反射镜、棱镜、滤光片、光栅等。
这些元件可以单独使用,也可以组合在一起形成复杂的系统,以实现特定的光学功能。
例如,透镜是由两个曲面组成的,可以会聚或发散光。
反射镜由涂有金属反射层的玻璃制成,可以反射光线。
棱镜可以将一束光分成不同颜色的光谱。
滤光片可以过滤特定波长的光,而光栅则由一系列狭缝或反射线组成,用于分光或成像。
常见的光学仪器包括显微镜、望远镜、照相机、投影仪等。
显微镜用于观察微小物体,望远镜用于观察远处物体,照相机用于记录图像,投影仪则用于展示图像或视频。
这些仪器利用了光的折射、反射、干涉和衍射等原理,以实现清晰、准确的成像。
三、光学应用光学在许多领域都有广泛的应用。
在科学研究方面,光学显微镜可用于观察生物样品,光谱仪可用于分析物质成分,激光雷达可用于地形测量和遥感监测等。
在工业生产方面,光学成像系统可用于产品质量检测,光学传感器可用于自动化生产线控制,激光加工可用于切割、打标和焊接等。
在通信领域,光纤通信利用光的传输速度快、抗干扰能力强等优点,已成为现代通信的主流方式。
在医疗领域,光学仪器可用于诊断和治疗,如内窥镜、激光手术刀等。
此外,光学还在照明、显示、传感等领域有广泛的应用。
四、光的干涉与衍射光的干涉是指两束或多束相干光波在空间某一点叠加时,产生明暗相间的干涉现象。
现代光学基础

现代光学基础
现代光学是研究光的性质、传播规律以及光与物质相互作用的科学。
以下是现代光学的一些基础概念:
1.光的波粒二象性:光既可以被看作波动,也可以被看作粒子,这一概念被称为波粒二象性。
这个理论解释了光的一些行为,如干涉和衍射。
2.电磁波理论:光被解释为一种电磁波,这是光学的基础理论之一。
光的传播速度是由真空中的光速确定的。
3.光的传播:光在介质中传播时会发生折射和反射。
这些现象可以通过折射定律和反射定律来描述。
4.光的干涉和衍射:光的波动性导致了干涉和衍射现象。
干涉是两个或多个波的相互作用,衍射是光在遇到障碍物时发生弯曲的现象。
5.光的偏振:光是电磁波,具有电场和磁场的振荡。
偏振是指在特定方向上的振荡。
6.光的波导现象:光可以在一些特定的结构中被引导,形成波导。
光纤是一个常见的波导结构,用于信息传输。
7.光的色散:光在不同介质中的传播速度不同,导致光的色散现象,即不同波长的光在介质中传播速度不同,产生折射。
8.光的吸收和发射:光可以被物质吸收,也可以引起物质的发射。
这是激光和荧光等现象的基础。
9.激光:激光是一种高度聚焦、单色、相干的光,常用于科学研究、通信、医疗和制造等领域。
10.光学仪器:光学在许多领域中都有广泛应用,包括显微镜、望远镜、摄影机、激光器等光学仪器。
这些基础概念构成了现代光学的理论基础,涵盖了光的性质、传播规律以及与物质相互作用的各个方面。
光学是一门广泛应用的科学,对科学研究和技术应用都有着深远的影响。
光学基础物理知识点总结

光学基础物理知识点总结光学是研究光和其在物质中传播时的各种现象的科学。
光学在物理学和工程技术中有着广泛的应用,例如在激光技术、光学通信、成像技术、光学仪器等领域都有重要的作用。
光学的基础物理知识包括光的本质、光的传播、光的衍射、光的偏振、光的折射等各种现象。
本文将对这些知识点进行总结和详细介绍。
一、光的本质1.光的波动性和粒子性:在光学中,光既可以看作是波动的电磁波,也可以看作是由光子组成的微粒。
这种波粒二象性是光学的重要特征,揭示了光在不同实验中呈现出的双重性质。
2.波长和频率:光是一种波动,具有波长和频率。
波长是光波在空间中波峰到波峰之间的距离,频率是指光波单位时间内发生的振动次数。
波长和频率之间有着纯粹的物理规律关系,即λν=c,其中λ是波长,ν是频率,c是光速。
3.光速:光在真空中的传播速度是一个恒定值,即光速。
光速在真空中的数值为299,792,458米每秒(约合300,000千米每秒),是物理学中最基本的物理常数之一。
光速的恒定性对于光学的研究和应用具有非常重要的意义。
二、光的传播1.直线传播和波阵面:光在真空和各种各样的介质中都能传播,光在传播过程中,遵守直线传播原理。
此外,光的波阵面是光波最前面的一组点构成的面,波阵面的变化决定了光波的传播方向和光照的照射形式。
2.光的干涉和衍射:干涉是当两组光波相遇时,按着一定的相位关系叠加在一起而形成的明暗相间的条纹,它是光的一种重要现象。
而衍射是当光波通过一个孔或者绕尖角、边缘等障碍物时,发生偏离的现象。
干涉和衍射是光学中的重要现象,对于光学现象的解释和应用都有着重要的意义。
三、光的偏振1.偏振光的特性:光波在传播过程中会有偏振现象,偏振是指电磁波振动方向的确定性,波的振动方向既可以是垂直于传播方向,也可以是平行于传播方向。
偏振现象对于光学成像、光学通信等技术应用具有重要的意义。
2.偏振光的产生:偏振光可以通过光的吸收和反射、透射、折射以及干涉等现象产生。
光学基础知识

光学加工基础知识§1光学玻璃基本知识一.基本分类和概念光学材料分类:光学玻璃、光学晶体、光学塑料三类。
玻璃的定义:不论化学成分和固化温度范围如何,一切由熔体过冷却所得的无定形体,由于粘度逐渐增加而具有固体的机械性质的,均称为玻璃。
光学玻璃分为冕牌K和火石F两大类,火石玻璃比冕牌玻璃具有较大的折射率nd和较小的色散系数vd。
二.光学玻璃熔制过程将配合料经过高温加热,形成均匀的,高品质的,并符合成型要求的玻璃液的过程,称玻璃的熔制。
玻璃的熔制,是玻璃生产中很重要的环节.,玻璃的许多缺陷都是在熔制过程中造成的, 玻璃的产量、质量、生产成本、动力消耗、熔炉寿命等都与玻璃的熔制有密切关系。
混合料加热过程发生的变化有:物理过程-----配合料的加热,吸附水的蒸发,单组分的熔融,个别组分挥发.某些组分的多晶转变。
化学过程-----固相反应,盐的分解,水化物分解,结晶水的排除,组分间的作用反应及硅酸盐的形成。
物理化学过程-----低共熔物的组分和生成物间相互溶解,玻璃与炉气介质,耐火材料相互作用等。
上述这些现象的发生过程与温度和配合料的组成性质有关.对于玻璃熔制的过程,由于在高温下的反应很复杂,尚待充分了解,但大致可分为以下几个阶段。
1.加料过程-----硅酸盐的形成2.熔化过程-----玻璃形成3.澄清过程-----消除气泡4.均化过程------消除条纹5.降温过程-------调节粘度6.出料成型过程总之,玻璃熔制的每个阶段各有其特点,同时,它们又是彼此互相密切联系和相互影响的.在实际熔制中,常常是同时或交错进行的,这主要取决于熔制的工艺制度和玻璃窑炉结构特点。
三.玻璃材料性能1.折射率nd、色散系数vd根据折射率和色散系数与标准数值的允许差值,光学玻璃可以分为五类表1-1:折射率和色散系数与标准数值的允许差值2.光学均匀性光学均匀性指同一块玻璃中折射率的渐变。
玻璃直径或边长不大于150mm,用鉴别率比值法玻璃分类如表1-2。
光学基础知识科普

光学基础知识科普光学是研究光的传播、反射、折射、干涉、衍射和吸收等现象的科学。
它是物理学的一个重要分支,也是现代科技的基础之一。
本文将从光的本质、光的传播、光的反射和折射以及光的干涉和衍射等方面进行科普介绍。
一、光的本质光是一种电磁波,它是由电磁场和磁场相互作用产生的。
光的特点有三个:光是一种电磁波,光速是一定的,光是一种能量传播的波动。
二、光的传播光的传播是一种直线传播,即光沿着直线路径传播。
当光遇到障碍物时,会发生反射、折射和散射等现象。
反射是光线遇到平面或曲面时,沿着入射角等于反射角的方向发生反射;折射是光线从一种介质进入另一种介质时,由于介质的不同密度导致光线的传播方向发生改变;散射是光线照射到不规则表面或介质中的微粒上,由于微粒的不规则形状导致光线的传播方向发生随机改变。
三、光的反射和折射光的反射是指光线遇到平面或曲面时,沿着入射角等于反射角的方向发生反射。
反射的规律有两个:入射角等于反射角,入射光线、反射光线和法线在同一平面上。
光的折射是指光线从一种介质进入另一种介质时,由于介质的不同密度导致光线的传播方向发生改变。
折射的规律有两个:入射角、折射角和两种介质的折射率之间满足斯涅尔定律,入射光线、折射光线和法线在同一平面上。
四、光的干涉和衍射光的干涉是指两束或多束光线相遇时,由于光的波动性质而产生的明暗相间的干涉条纹。
干涉分为两种:相干干涉和非相干干涉。
相干干涉是指两束或多束光线具有相同的频率和相位差,可以产生明暗相间的干涉条纹;非相干干涉是指两束或多束光线的频率和相位差不同,产生的干涉条纹比较模糊。
光的衍射是指光通过小孔、小缝或绕过障碍物后发生偏离直线传播的现象。
衍射的程度与波长和孔径的大小有关,波长越长、孔径越小,衍射现象越明显。
衍射现象广泛应用于光学仪器和光学材料的研究中。
总结起来,光学基础知识科普主要包括光的本质、光的传播、光的反射和折射以及光的干涉和衍射等内容。
光学的研究对于我们理解光的行为规律、应用光学技术和开展光学工程都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、F/NO.(F-Number)焦数(相对孔径) F/NO.( Number)焦数(相对孔径)
定义:有效焦距与入射瞳孔径的比值。 F/#=EFL/EPD (EPD:入射瞳孔径) (EPD:入射瞳孔径) 作用:用来决定镜头之明暗。 备注:在保证同样同光孔径的前提下,焦距越短相对孔径应越小。 一般情况下 F/#=2.8,但单片设计时F/#=3.2,N/B Lens F/#=2.8,但单片设计时F/#=3.2, F/#=2.0 F/#越小通光孔径越大。 F/#越小通光孔径越大。
9、RI( Relative Illumination)相对照度 Illumination)相对照度
照度的定义:物体或被照面上被光源照射所呈现的光亮程度称为照 度。 相对照度则是中心照度与外围照度的比值。 注意事项:相对照度过低表现为图像中心较亮,而四周较暗,即渐 晕现象,俗称暗角(Shading)。相对照度过低还会导致色彩失真。 晕现象,俗称暗角(Shading)。相对照度过低还会导致色彩失真。 RI与COS4 (semi-FOV)成正比:RI∝COS4 (semi-FOV) RI与 (semi-FOV)成正比:RI∝ (semiSemi-FOV=30°,从理论上RI<56% Semi-FOV=30°,从理论上RI<56% Semi-FOV=35°,从理论上RI<45% Semi-FOV=35°,从理论上RI<45% 当RI<50%时人眼是能分辨的,严重时会出现画面四角全黑的“缺 RI<50%时人眼是能分辨的,严重时会出现画面四角全黑的“缺 角”现象。 因此RI的基本要求为:RI>50% 因此RI的基本要求为:RI>50%
8、Distortion 畸变
畸变是轴外相差。而且是轴外细光束的像差。它是轴外点与主光线 在像面上交点的高度同理想(近轴)像面的高度差。它是视场的函数, 与孔径没有关系,初级畸变随视场(像高)的三次方变化,而百分比 畸变随像高平方增加,所以视场不同畸变也不同。畸变的变化不是线 性的,仅是像的变形,不影响像的清晰度。 畸变分为TV畸变和光学畸变两种:TV畸变: TV畸变分为TV畸变和光学畸变两种:TV畸变: TV-Distortion 光学畸变:Optical-Distortion 光学畸变:OpticalTV畸变分为枕型与筒型两种。 TV畸变分为枕型与筒型两种。 Vertical)TV)/2(Vertical)TV-Distortion=[(V1+V2)/2-Y]/Y*100% (Horizontal)TV-Distortion=[(H1+H2)/2-X]/X*100% Horizontal)TV)/2注意事项: 畸变是用户很容易感觉到的成像质量。 畸变是用户要求很严的镜头指标, OpticalOptical-Distortion<3% 人眼不容易察觉 OpticalOptical-Distortion<2% 摄影物镜的畸变要求 CIF TV-Distortion<2.0% TVVGA TV-Distortion<1.5% TV1.3M/2.0M/3.0M TV-Distortion<1% TV-
13、TV-Line 扫描线 13、TVTV-Line就是在画面水平影像中可解析多少条线,可由解像力来换算: TV-Line就是在画面水平影像中可解析多少条线,可由解像力来换算: TV-Line=lp/mm*2*Sensor宽。例1/4’’ 1.3M Sensor: TV-Line=lp/mm*2*Sensor宽。例1/4’’ Sensor: 中心 1000/2.8/2/sqrt 2=126lp/mm — 126lp/mm*2*1024*2.8/1000=722 — 700 TV-Line TV外围 1000/2.8/2/sqrt 3=103lp/mm — 103lp/mm*2*1024*2.8/1000=590 — 600 TV-Line TV-
Modulation(M)的定义:Modulation是 Maximum减去I Modulation(M)的定义:Modulation是I的Maximum减去I的Minimum 除以I Maximum加上I Minimum;也就是( 除以I的Maximum加上I的Minimum;也就是(光的最亮度减去光的最暗 度)与(光的最亮度加上光的最暗度)的比值。所以得出来的结果M就是 光的最亮度加上光的最暗度)的比值。所以得出来的结果M 光的对比度。 Modulation(M)=(Imax-Imin)/(Imax+Imin) I:Intensity 光强度 Imax: 最亮之光强度 max: Imin:最暗之光强度 min: 备注:Sensor MTF的需求计算公式如下, 备注:Sensor MTF的需求计算公式如下, Sensor全频解像力:1000/2.8/2=179lp/mm Sensor全频解像力:1000/2.8/2=179lp/mm (2.8um Pixel Size) 或 1/(2£) £:Sensor Pixel Size 1/(2£ £:Sensor
End
谢 谢!!
图一 图二
2、TTL( Total Track Length) 镜头总长
镜头总长分为光学总长后机构总长: 光学总长是指由镜头中镜片的第一面到像面的距离。 机构总长是指由镜筒端面到像面的距离。
3、BFL(Back Focal Length)光学后焦距 BFL( Length)光学后焦距
定义:由光学系统中镜片的最后一面到像面的距离。
4、FFL( Front Focal Length)光学前焦距 Length)光学前焦距
定义:由光学系统中镜片的第一面到物面的距离 注意事项:要与机构后焦距FFL区分 注意事项:要与机构后焦距FFL区分
5、FBL/FFL( Flange Focal Length)机构后焦 Length)机构后焦 (法兰焦距)
10、CRA( Chief Ray Angle) 主光线角度 10、
定义:主光线角度为主光线与平行光线的角度。 主光线就是光线由物体的边缘出射,通过孔径光阑的中心最后到 达像的边缘。 注意事项:主光线出射角度不合适会暗角严重,对比度下降,偏 色。
11、MTF( Modulation Transfer Function) 光学 11、 调制传递函数
定义:由镜组的最后一个机构面到像面的距离
6、FOV( Field Of View)视场角 View)视场角
定义:是指镜头能拍摄到的最大视场范围。 视场角可分为对角线视场角(FOV-D)、水平视场角(FOV-H)、以 视场角可分为对角线视场角(FOV-D)、水平视场角(FOV-H)、以 及垂直视场角(FOV及垂直视场角(FOV-V)。对角线视场角最大,水平视场角次之,垂 直视场角最小。通常我们所讲的视场角一般是指数码摄像模组的对角 ቤተ መጻሕፍቲ ባይዱ视场角。 FOV-H=2tan(H/2D) FOV-H=2tan(H/2D) FOV-V=2tan(V/2D) FOV-V=2tan(V/2D) FOV-D=2tan[sqrt( FOV-D=2tan[sqrt(H2+V2)/2D]
12、解像力(分辨率) 12、解像力(分辨率)
解像力的定义:为每1mm可解析的线对(line-pair)。单位为本 解像力的定义:为每1mm可解析的线对(line-pair)。单位为本 (lp/mm) lp/mm) Sensor 全频解像力(黑白):1000/2.8/2=179lp/mm,但对彩色(RGB)而 全频解像力(黑白):1000/2.8/2=179lp/mm,但对彩色(RGB)而 言,Sensor是以每4pixel解析1点,所以Sensor所需要的本数计算为:中心 言,Sensor是以每4pixel解析1点,所以Sensor所需要的本数计算为:中心 1000/2.8/2/sqrt 2=126lp/mm — 160lp/mm(中心通常解析会较高) 160lp/mm(中心通常解析会较高) 外围 1000/2.8/2/sqrt 3=103lp/mm — 100lp/mm(外围为0.7F) 100lp/mm(外围为0.7F) (sqrt 2为一般计算方式,但不同厂牌或型号Sensor处理逻辑不同,会有差异) 2为一般计算方式,但不同厂牌或型号Sensor处理逻辑不同,会有差异)
14、Flare/Ghost 杂散光/鬼影 14、 杂散光/
定义:指在一个光学系统里由于光在像面上随意的散射形成的相 反的缩影或雾状像,也就是光学系统中的非成像光束。 镜头表面的散射光、元件中的气泡、镜框及镜筒内壁的散射和反射 光以及其它非成像光束入射到像面上的光都成为杂光。它的直接影响 是形成噪音,使图像的信噪比降低,甚至使信号光淹没在噪声中。 杂光的消除:在结构中增加遮光罩、辅助光阑、镜片边缘染黑、镜 座发黑或贴消光布,以及镀制减反膜等。
光学基础 LENS 术语解读篇
Brian.Y.Liu 2012.01.01
光学定义图
规格术语解读
1、EFL( Effective Focal Length)有效焦距 Length)有效焦距
定义:指镜头中心到焦点的距离(图一) 定义:指镜头中心到焦点的距离(图一)。 镜头的焦距分为像方焦距和物方焦距(图二) 镜头的焦距分为像方焦距和物方焦距(图二): 像方焦距是指像方主面(后主面)到像方焦点(后焦点)的 距离。 物方焦距是指物方主面(前主面)到物方焦点(前焦点)的距离。 注意事项: (1)焦距过短则视场角过大,导致畸变和主光线出射角难以控制, 相对照度过低,镜片弯曲严重,相差校正困难,因此难以设计。 (2)焦距过长镜头将过长,不利于系统小型化,而且视场角过小, 不能满足用户需求(FOV>60° 不能满足用户需求(FOV>60°)。