高考数学小专题6 数列
高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(解析版)

专题06 数列求和(裂项相消法)(典型例题+题型归类练)一、必备秘籍常见的裂项技巧 类型一:等差型类型二:无理型类型三:指数型①11(1)11()()n n n n n a a a k a k a k a k++-=-++++如:11211(2)(2)22n n n n n k k k k++=-++++类型四:通项裂项为“+”型如:①()()()21111111nn n n n n n +⎛⎫-⋅=-+ ⎪++⎝⎭ ②()()131222(1)(11)1n nn n nn n n n n +⎛⎫++⋅-=+- ⎝+⎪⎭本类模型典型标志在通项中含有(1)n -乘以一个分式.二、典型例题类型一:等差型例题1.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,②等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16nT <. 【答案】(1)选择条件见解析,21n a n =+(2)证明见解析 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,∴25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ∴13a =,21n a n =+;若选②,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+;第(2)问解题思路点拨:由(1)知:,设,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)∵()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ∴11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ∴16n T <,得证 例题2.(2022·广东佛山·模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥. (1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)213n a n =- (2)122212nn -(1)解:由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-;感悟升华(核心秘籍)本例是裂项相消法的等差型,注意裂项,是裂通项,裂项的过程中注意前面的系数不要忽略了.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 122212n n-=类型二:无理型例题3.(2022·重庆八中模拟预测)已知各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++.(1)求{}n a 的通项公式; (2)记11n n n b a a +=+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1(211)2n +-(1)解:各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++,整理得()()()1112n n n n n n a a a a a a ++++-=+,由于10n n a a ++≠, 所以12n n a a +-=, 故数列{}n a 是以1为首项,2为公差的等差数列.所以21n a n =-.(2)解:由(1)可得111212122121n n n n n b a a n n ++--===+-++,所以11(3153...2121)(211)22n S n n n =⨯-+-+++--=+-.例题4.(2022·福建龙岩·模拟预测)已知等差数列{}n a 的前n 项和为n S ,3518a a +=,648S =.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;(1)求{}n a 的通项公式; (2)设112n n n b a a +-=+,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =+;(2)证明见解析﹒(1)由题可知,11261861548a d a d +=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,∴21n a n =+;(2)1122232122321n n n n n b a a n n +-+--===+++-,()()()()()1517395212323212n T n n n n ⎡⎤=-+-+-+++--++--⎣⎦12123132n T n n ⎡⎤=+++--⎣⎦感悟升华(核心秘籍)本例是裂项相消法的无理型,具有明显的特征,其技巧在于分母有理化,注意裂项相消的过程中,是连续相消,还是隔项相消,计算注意细节.类型三:指数型第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;例题5.(2022·全国·模拟预测)已知等差数列{}n a 满足()*10n n a a n +->∈N ,且141015a a a ++=,2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)若122n a n n n n a b a a ++⋅=⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)n S 1212n n +=-++(1)解:设等差数列{}n a 的公差为d ,因为2a ,4a ,8a 成等比数列,所以()()()211137a d a d a d +=++,整理得()10d a d -=,又因为10n n a a +->,所以0d >,1a d =,又1410131215a a a a d ++=+=,即15d =15, 所以11a d ==,所以n a n =;感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和.(2)解:由(1)知,n a n =, 所以()()12221221n n nn n b n n n n +⋅==-++++,2324312112222222222223243541121n n n n n n n S n n n n n n ---+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212n n +=-++.例题6.(2022·江西·临川一中模拟预测(理))已知数列{}n a 的前n 项和为n S ,且21,*=-∈n n S a n N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足22,(1)*++=∈⋅⋅+n n n b n N a n n ,求数列{}n b 的前n 项和n T .【答案】(1)12n na ;(2)1112(1)2n n T n +=-+⋅. (1)因为21n n S a =-,当1n =时,1121S a =-,解得11a =,当2n ≥时,1121n n S a --=-,所以()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥,所以数列{}n a 是首项为1,公比为2的等比数列.故11122n n n a --=⨯=.(2),1122211(1)(1)22(1)2n n n n n n n b a n n n n n n +++++===-⋅⋅++⋅+⋅于是12231111111111122222322(1)22(1)2n n n n T n n n ++=-+-++-=-⋅⋅⋅⋅⋅+⋅+⋅类型四:通项裂项为“+”型第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和例题7.(2022·吉林辽源·高二期末)已知等差数列{}n a 的前n 项和21,3n S n an b a =++=,数列{}n b 的前n 项和23n n n T b +=,12b =. (1)求数列{}n a 和{}n b 的通项公式; (2)令(1)nnn na cb =-,求数列{}nc 的前n 项和n P .【答案】(1)21n a n =+,()1n b n n =+ (2)2,?1,?1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得则:,注意到通项中含有,需分奇偶讨论通分,逆向求当为偶数(为正),(注意此时为偶数,代入偶数的结论中)当为奇数(为偶数)综上:(1)设等差数列{}n a 的公差为d ,则22113222n n n n d d S na d n n n a b -⎛⎫=+=+-=++ ⎪⎝⎭, 所以1,23,20,dd a b ⎧=⎪⎪⎪-=⎨⎪=⎪⎪⎩所以2,2,0,d a b =⎧⎪=⎨⎪=⎩,所以数列{}n a 的通项公式为()32121n a n n =+-=+. 因为23n n n T b +=,当2n ≥时,1113n n n T b --+=, 所以112133n n n n n n n b T T b b --++=-=-, 所以11133n n n n b b --+=,即111n n b n b n -+=-. 所以1232112321n n n n n n n b b b b b b b b b b b b -----=⨯⨯⨯⋅⋅⋅⨯⨯⨯()11432112321n n n n n n n n +-=⨯⨯⨯⋅⋅⋅⨯⨯⨯=+---. (2)()()()()()11111111nn n n n n n n a c b n n n n ++⎛⎫=-=-⋅=-+ ⎪++⎝⎭, 当n 为奇数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅-+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭12111n n n +=--=-++. 当n 为偶数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-+=-++. 综上所述,数列{}n c 的前n 项和2,1,1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数.例题8.(2022·陕西·长安一中高二期中(文))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2,2122,21n nn n T n n n ⎧⎪⎪+=⎨+⎪⎪+⎩为偶数为奇数 第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得,通分,逆向求当为奇数(为正),(注意此时为奇数,代入奇数的结论中)当为偶数(为奇数)综上:(1)∴等差数列{an }的公差为2,前n 项和为S n ,且S 1、S 2、S 4成等比数列. ∴S n =na 1+n (n ﹣1)(2a 1+2)2=a 1(4a 1+12),a 1=1,∴an =2n ﹣1; (2)∴由(1)可得()()111411112121n n n n n n b a a n n --+⎛⎫=-=-+ ⎪-+⎝⎭, 当n 为偶数时,T n =11111111113355723212121n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212121nn n =-=++. 当n 为奇数时,11111111113355723212121n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-⋯-+++ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12212121n n n +=+=++ . 2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数. 三、题型归类练1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知在等差数列{}n a 中,25a =,1033a a =. (1)求数列{}n a 的通项公式; (2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =+(2)1n n + (1)设等差数列{}n a 的公差为d , 由210353a a a =⎧⎨=⎩,可得()1115932a d a d a d ⎧+=⎪⎨+=+⎪⎩解得13,2a d==,所以()13122n a n n -⨯=++= (2)由(1)可得2111(1)(22)(1)12n n b n a n n n n n n ====-++++所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 2.(2022·山西运城·模拟预测(理))已知单调递增的等差数列{}n a 的前n 项和为n S ,512340,,1,S a a a =-成等比数列,正项等比数列{}n b 满足11631,23b a S b =+=+. (1)求{}n a 与{}n b 的通项公式; (2)设()3123log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)31n a n =-,3nn b =(2)64n nT n =+ (1)设数列{}n a 的公差为d ,则0d >, 由540S =得1545402a d ⨯+=,即128a d +=①, 又123,1,a a a -成等比数列,所以()22131a a a -=,所以()()211112a d a a d +-=+,所以21(1)2d a -=②,联立①②及0d >解得12,3a d ==. 所以2(1)331n a n n =+-⨯=-. 所以161653,6572b S a d ⨯==+=, 所以35723b =+,解得327b =,又231,0b b q q =>,所以3q =,所以3nn b =.(2)由(1)得()311111(31)23log (31)(32)33132n n c n b n n n n ⎛⎫===- ⎪-+-+-+⎝⎭,所以121111111111325583132323264n n n T c c c n n n n ⎛⎫⎛⎫=+++=-+-+⋅⋅⋅+-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 3.(2022·河南·模拟预测(理))已知正项数列{}n a 的前n 项和为n S ,且()()222220n n S n n S n n -+--+=.(1)求1a 的值和数列{}n a 的通项公式; (2)设21n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)12a =;2n a n =;(2)()()32316812n n T n n +=-++. (1)由()()222220n n S n n S n n -+--+=得:()()()220n n S S n n +-+=;{}n a 为正项数列,0n S ∴>,2n S n n ∴=+;当1n =时,112a S ==;当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=;经检验:12a =满足2n a n =;()2n a n n N *∴=∈.(2)由(1)得:()()111112224282n b n n n n n n ⎛⎫===- ⎪⋅+++⎝⎭,11111111111832435112n T n n n n ⎛⎫∴=⨯-+-+-+⋅⋅⋅+-+- ⎪-++⎝⎭()()()()1111132332318212821216812n n n n n n n n ⎛⎫++⎛⎫=⨯+--=⨯-=- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭. 4.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且1332n n S +-=. (1)求数列{}n a 的通项公式; (2)设3314log log n n n b a a +=⋅,求{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)41n nT n =+. (1)因为1332n n S +-=,故当1n =时,13a =,当2n ≥时,1332n n S --=,则()132nn n n a S S n -=-=≥,当1n =时,13a =满足上式,所以3nn a =.(2)由(1)得()33144114log log 11n n n b a a n n n n +⎛⎫===- ⎪⋅++⎝⎭,所以12311111144141223111n n n T b b b b n n n n ⎛⎫⎛⎫=++++=⨯-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭. 故数列{}n b 的前n 项和41n nT n =+. 5.(2022·安徽·北大培文蚌埠实验学校高三开学考试(文))已知数列{}n a 的前n 项和为n S ,11a =,525S =,且()*1232n n n n S a S S n ++-=+∈N .(1)求数列{}n a 的通项公式; (2)设n b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)n T )112=(1)由1232n n n n S a S S ++-=+得:121211223222n n n n n n n n n n a S S S S S S S a a +++++++-=-+=-+-=-+即122n n n a a a ++=+, 所以数列{}n a 为等差数列, 由53525S a ==得35a =,设公差为d ,315212a a d d ==+=+,得2d =, 所以()11221n a n n =+-⨯=-, 故数列{}n a 的通项公式为21n a n =-.(2)12n b =,所以1122n Tn =++)112=.6.(2022·江苏盐城·三模)已知正项等比数列{}n a 满足1330a a +=,请在①4120S =,②481a =,③2211120n n n n a a a a --+-=,2n ≥,*n N ∈中选择一个填在横线上并完成下面问题:(1)求{}n a 的通项公式;(2)设()()12311n n n n b a a +⋅=++,{}n b 的前n 和为n S ,求证:14n S <.【答案】(1)选择见解析;3nn a =(2)证明见解析(1)设正项等比数列{}n a 公比为q ,又1330a a +=,选①,()()41234131120S a a a a a a q =+++=++=,所以3q =;选②,13431130a a a q q ⎛⎫+=+= ⎪⎝⎭,所以()()2310390,3q q q q -++==;选③,()()22111112340n n n n n n n n a a a a a a a a ----+-=-+=,所以13n n a a -=,∴3q =;又1311191030a a a a a +=+==,∴13a =,则3nn a =.(2)因为()()()()1112323111131313131n n n n n n n n n b a a +++⋅⋅===-++++++,所以122231111111313131313131n n n n S b b b +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11114314n +=-<+. 7.(2022·浙江金华·模拟预测)已知数列{}{},n n a b ,其中{}n a 为等差数列,且满足11211,,32a b b ===,21141,2n n n n nn a b a b n N *++-=+∈. (1)求数列{}{},n n a b 的通项公式; (2)设212n n nn n a c a a ++=,数列{}n c 的前n 项和为n T ,求证:1n T <【答案】(1)21n a n =-,131(21)22n n b n -⎛⎫=-- ⎪⎝⎭(2)证明见解析(1)解:由数列{}n a 为等差数列,{}n b 且满足11211,,32a b b ===,211412n n n n nn a b a b ++-=+,当1n =时,可得122132a b a b =+,即213322a =⨯+,解得23a =; 因为{}n a 是等差数列,所以21n a n =-,所以2141(21)(21)2n n nn n b n b +--=++,所以1121212n n n b b n n +-=+-, 所以12132121131532123n n n b b b b b b b b n n n -⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭11211112211111311222222212n n n ---⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎝⎭=++++=+=- ⎪⎝⎭-所以131(21)22n n b n -⎛⎫=-- ⎪⎝⎭.(2)解:由(1)得12311(21)(21)22(21)2(21)n n n n n c n n n n -+==--+-+,所以12n n T c c c =+++211111112323252(21)2(21)n n n n -=-+-++-⋅⋅⋅-+ 1112(21)n n =-<+.8.(2022·湖北·二模)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n =(2)最小值为23(1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅, 所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)解:由(1)可得()()()()1111122112121212121212n n n a n n nn a a n n c +++++⎛⎫===- ⎪++++++⎝⎭, 所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为239.(2022·江西·临川一中高二期末(理))已知数列{}n a ,0n a >,11a =,n S 为其前n 项和,且满足()()()1112n n n n S S S S n --+-=≥.(1)求数列{}n a 的通项公式; (2)设()11nnn a b =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)=n a ()1nn T =-(1)由题可知()22112n n S S n --=≥⇒数列是{}2n S 等差数列,所以()2211n S S n n =+-=,)12n n n n S a S S n -=-=≥,又因为11a ==,所以n a(2)()()11nnnnnb a -===-.所以()()311nnn T =-=+-故答案为:n a ()1n- .10.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式; (2)设数列()()24141nn n a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T ,若2112022n T +<,求正整数n 的最小值. 【答案】(1)*,N na n n =∈(2)505(1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++,2111412020n T n +=<+,20194n ∴>所以n 的最小值为505.11.(2022·天津市武清区杨村第一中学二模)已知{}n a 是等差数列,{}n b 是等比数列,且114342131,2,2,a b a b b b a a ====+.(1)求数列{}{},n n a b 的通项公式;(2)记{}n b 的前n 项和为n S ,证明:()n n n S a b n *≤⋅∈N ;(3)记()311(1)*++⋅=-∈⋅n n n nnn a b c n a a N ,求数列{}n c 的前2n 项和. 【答案】(1)(),2nn n a n b n *=∈=N ;(2)证明见解析;(3)2212221n n T n +=-+(1)设等差数列公差为d ,等比数列公比为q ,所以()2311111132132222222d q d a d b q b q q d q b q a d⎧+==+=⎧⎧⇒⇒⎨⎨⎨=+==+⎩⎩⎩,所以,2n n na b n ==, (2){}n b 的前n 项和为 248222222n n n n n n n n n S n a b =++++≤++++=⋅=⋅,(当1n =时,取等号)命题得证.(3)由(1)得,()()131131222(1)(1)(1)11n nn n n n nn n n n n n a b c a n n a n +++⎛⎫+ ⎪+⋅⋅=-=-=-+⎝+⎭⋅, 所以数列{}n c 的前2n 项和2212244881616122()3222241334522nn n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++++ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎭,2212221n n T n +=-+12.(2022·黑龙江实验中学模拟预测(理))已知数列{}n a 满足11a =,11n n n n a a a a --=-,且0n a ≠. (1)求数列{}n a 的通项公式; (2)若()()11121n n n n b n a a ++=-+,数列{}n b 前n 项和为nT,求2022T .【答案】(1)1n a n =;(2)20222023. (1)由11n n n n a a a a --=-,0n a ≠得:1111n n a a --=,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,1n n a ∴=,1n a n ∴=;(2)由(1)知:()()()()1121111111n n n n b n n n n +++=-=-+++;20221111111111223342021202220222023T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++--+++⋅⋅⋅+++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12022120232023=-=.13.(2022·湖北·蕲春县第一高级中学模拟预测)已知数列{}n a 的前n 项和为n S ,其中1215a S ==,,当2n ≥时,1124n n n a S S +-,,成等差数列. (1)求数列{}n a 的通项公式.(2)记数列()()2123211n n n a a ++⎧⎫⋅⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和n T ,求证:121855n T ≤<.【答案】(1)14n n a -=;(2)证明见解析.(1)依题意,当2n ≥时,1144n n n a S S +-+=, 故11444n n n n a S S a +-=-=, 由1215a S ==,得22144a a a ==,,故数列{}n a 是以1为首项,4为公比的等比数列,则14n n a -=;(2)依题意,()()()()2211123232111141414141n n n n n n n n a a ++++⋅⋅==-++++++,故12231111111111414141414141541n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭, ∴n *∈N ,∴1112111855415n T +=≤-<+,即121855n T ≤<.。
高考数学 数列(基础及能力训练)6

高考数学数列(基础及能力训练)61.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于() A.8 B.10 C.12 D.14 2.设等差数列{a n}的公差为d. 若数列{2a1a n}为递减数列,则() A.d<0 B.d>0 C.a1d<0 D.a1d>0 3.设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.4.数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.5.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=______时,{a n}的前n项和最大.6.已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.7.等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n .8. 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *.(1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.9. 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n .。
专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。
专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:
1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数
(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)
高考数学分项汇编 专题06 数列(含解析)文

专题06 数列1. 【2008高考北京文第7题】已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( ) A .30 B .45C .90D .186【答案】 C2. 【2012高考北京文第6题】已知{a n }为等比数列.下面结论中正确的是( )A .a 1+a 3≥2a 2B .2221322a a a ≥+C .若a 1=a 3,则a 1=a 2D .若a 3>a 1,则a 4>a 2 【答案】B3. 【2006高考北京文第6题】如果-1,a ,b ,c ,-9成等比数列,那么 A.b =3,ac =9B.b =-3,ac =9C.b =3,ac =-9D.b =-3,ac =-9【答案】B4. 【2007高考北京文第10题】若数列{}n a 的前n 项和210(123)n S n n n =-=L ,,,,则此数列的通项公式为.5. 【2013高考北京文第11题】若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=__________;前n 项和S n=__________.【答案】2 2n+1-26. 【2012高考北京文第10题】已知{a n}为等差数列,S n为其前n项和.若11 2a=,S2=a3,则a2=________,S n=________.【答案】121() 4n n+7. 【2009高考北京文第10题】若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a= ;前8项的和8S = .(用数字作答)8. 【2011高考北京文第12题】在等比数列{}n a 中,若141,4,2a a ==则公比q = ;12n a a a ++⋯+= 【答案】2 2121--n 【解析】:由{}n a 是等比数列得341a a q =,又141,4,2a a == 所以31422q q =⇒= 112(1)1nn a q a a a q -++⋯+=-11(12)122122nn --==--9.【2005高考北京文第17题】数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a ++++L 的值.10. 【2006高考北京文第20题】设等差数列{a n }的首项a 1及公差d 都为整数,前n 项和为S n . (1)若a 11=0,S 14=98,求数列{a n }的通项公式;(2)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式.11.【2007高考北京文第16题】(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =L ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式.12. 【2008高考北京文第20题】(本小题共13分)数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =L ,,),λ是常数. (Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; (Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.13. 【2009高考北京文第20题】(本小题共13分)设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值. (Ⅰ)若11,23p q ==-,求3b ; (Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由.14. 【2014高考北京文第15题】(本小题共13分) 已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.15. 【2010高考北京文第16题】(13分) 已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.16. 【2013高考北京文第20题】(本小题共13分)给定数列a1,a2,…,a n,对i=1,2,…,n-1,该数列的前i项的最大值记为A i,后n-i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i-B i.(1)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,…,a n(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n-1是等比数列;(3)设d1,d2,…,d n-1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n-1是等差数列.17. 【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?。
数列-2024高考数学压轴小题(解析版)

数列-2024高考压轴小题一.选择题(共13小题)1.数列{a n}中,>1(∈∗),点(a n,a n+1)在双曲线2y2﹣x2=1上.若a n+2﹣a n+1>λ(a n+1﹣a n)恒成立,则实数λ的取值范围为()A.[12,+∞)B.(12,+∞)C.+∞)D.(1,+∞)2.已知等比数列{a n}的公比为−13,其前n项和为S n,且a1,2+43,a3成等差数列,若对任意的n∈N*,均有≤−2≤恒成立,则B﹣A的最小值为()A.2B.76C.103D.53 3.已知数列{a n}满足1=13,r1=(r1)+,1+12+⋯+12⋯<o∈p恒成立,则m的最小值为()A.1B.2C.3D.54.已知数列{a n}满足a1+2a2+…+2n﹣1a n=n•2n,记数列{a n﹣tn}的前n项和为S n,若S n≤S10对任意的n∈N*恒成立,则实数t的取值范围是()A.[1211,1110]B.(1211,1110]C.[1110,109]D.(1110,109) 5.已知数列{142+4K3}的前n项和为T n,若对任意的n∈N*,不等式12T n<3a2﹣a恒成立,则实数a的取值范围是()A.[−1,43]B.[−43,1] C.(−∞,−1]∪[43,+∞)D.(−∞,−43]∪[1,+∞)6.设S n是一个无穷数列{a n}的前n项和,若一个数列满足对任意的正整数n,不等式<r1r1恒成立,则称数列{a n}为和谐数列,有下列3个命题:①若对任意的正整数n均有a n<a n+1,则{a n}为和谐数列;②若等差数列{a n}是和谐数列,则S n一定存在最小值;③若{a n}的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有()个.A.0B.1C.2D.37.已知数列{a n}的前n项和为S n,a1=2,且满足S n+1=2S n+2n+1,若存在实数λ,使不等式λa n≤(n﹣19)S n对任意n∈N*恒成立,则λ的最大值为()A.﹣24B.﹣18C.−683D.−703 8.已知等比数列{a n}的首项为2,公比为−13,其前n项和记为S n,若对任意的n∈N*,均有A≤3S n−1≤B恒成立,则B﹣A的最小值为()A.72B.94C.114D.1369.已知等差数列{a n}满足a2=2,a3+a6=1+a8,数列{b n}满足b n a n+1a n=a n+1﹣a n,记{b n}的前n项和为S n,若对于任意的a∈[﹣2,2],n∈N*,不等式<22+B−3恒成立,则实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]10.已知数列{a n}的首项是a1=1,前n项和为S n,且S n+1=2S n+3n+1(n∈N*),设c n=log2(a n+3).若存在常数k,使得不等式k≥−1(r16)(∈∗)恒成立,则k的取值范围为()A.[19,+∞)B.[116,+∞)C.[125,+∞)D.[136,+∞) 11.已知数列{a n}满足1=3,r1=+2−1,记数列{|a n﹣2|}的前n项和为S n,设集合={125,6225,4517,3512},N={λ∈M|λ>S n对n∈N*恒成立},则集合N的元素个数是()A.1B.2C.3D.4 12.设S n是数列{a n}的前n项和,=32−3r1,若不等式≥n∈N+恒成A.13B.16C.19D.13613.S n为数列{a n}的前n项和,a1=2,a2=5,a3=10,a4=17,对任意大于2的正整数n,有S n+1﹣3S n+3S n﹣1﹣S n﹣2+m=0恒成立,则使得12−2+13−2+⋯+1K1−2+1−2≥2542成立的正整数k的最小值为()A.7B.6C.5D.4二.多选题(共5小题)(多选)14.已知数列{a n}满足a1=2,a n+1a n=2a n﹣1(n∈N*),b1=20a4,b n+1=a n b n(n∈N •),数列{b n}的前n项和为T n,且对∀n∈N*,2T n+400≥λn恒成立,则()A.a4=45B.数列{1−1}为等差数列C.b n=16n D.λ的最大值为225(多选)15.设等差数列{a n}的前n项和为S n,且4=235,S7=28,记T n为数列{1}的前n项和,若T n<λ恒成立,则λ的值可以是()A.1B.2C.3D.4(多选)16.已知数列{a n}满足:a1=2,=2−1K1,n=2,3,4,…,则下列说法正确的是()A.5=65B.对任意n∈N*,a n+1<a n恒成立C.不存在正整数p,q,r使a p,a r,a q成等差数列D.数列{1−1}为等差数列(多选)17.已知数列{a n}满足a1=1,a n+1=(r1)+2,对于任意n∈N*,a∈[﹣2,2],不等式3⋅2<2t2+at﹣1恒成立,则t的取值可以是()A.1B.2C.32D.4(多选)18.已知数列{a n}中,a1=1,a n+1−1=(1+1),n∈N*.若对于任意的t∈[1,2],不等式<−22−(+1)+2−a+2恒成立,则实数a可能为()A.﹣4B.﹣2C.0D.22024高考压轴练--数列小题参考答案与试题解析一.选择题(共13小题)1.数列{a n }中,>1(∈∗),点(a n ,a n +1)在双曲线2y 2﹣x 2=1上.若a n +2﹣a n +1>λ(a n +1﹣a n )恒成立,则实数λ的取值范围为()A .[12,+∞)B .(12,+∞)C .+∞)D .(1,+∞)【解答】解:由题意可知:双曲线2y 2﹣x 2=1的渐近线方程为,因为点(a n ,a n +1)在双曲线2y 2﹣x 2=1上,则2r12−2=1,且>1(∈∗),可得r12−2=1−r12<0,可知{2}为递减数列,且>1(∈∗),则{a n }为递减数列,可得a n +1﹣a n <0,且a n +2﹣a n +1>λ(a n +1﹣a n ),可得>r2−r1r1−,记点A n (a n ,a n +1),则r2−r1r1−为直线A n A n +1的斜率,记=r2−r1r1−,由双曲线的性质以及{a n }为递减数列可知,直线A n A n +1的斜率{k n }为递减数列,即k n ≤k 1,且随着a 1增大,直线A 1A 2越接近渐近线=,故k 1接近于22,所以则≥故选:C .2.已知等比数列{a n }的公比为−13,其前n 项和为S n ,且a 1,2+43,a 3成等差数列,若对任意的n ∈N *,均有≤−2≤恒成立,则B ﹣A 的最小值为()A .2B .76C .103D .53【解答】解:等比数列{a n}的公比为−13,因为a1,2+43,a3成等差数列,所以2×−131+43= 1+191,解得a1=2,所以=2[1−(−13)]1−(−13)=32−32⋅(−13),当n为奇数时,=32+32⋅(13),易得S n单调递减,且32+32⋅(13)>32,所以32<≤1=2;当n为偶数时,=32−32⋅(13),易得S n单调递增,且32−32⋅(13)<32,所以43=2≤<32.所以S n的最大值与最小值分别为2,43.函数=−2在(0,+∞)上单调递增,所以≤(−2)m=43−243=−16.≥(−2)B=2−22=1.所以B﹣A的最小值1−(−16)=76.故选:B.3.已知数列{a n}满足1=13,r1=(r1)+,1+12+⋯+12⋯<o∈p恒成立,则m的最小值为()A.1B.2C.3D.5【解答】解:依题意,a n≠0,由r1=(r1)+,得1r1=+(r1),即r1r1=+1,因此数列{}是首项11=3,公差d=1的等差数列,则=11+o−1)=+2,即=r2,则当n≥2时,12⋯=13⋅24⋅35⋅⋯⋅r2=2(r1)(r2)=2(1r1−1r2),1=13= 22×3也符合上式,1+12+⋯+12⋯=2(12−13+13−14+⋯+1r1−1r2)=1−2r2<1,所以m≥1,即m的最小值为1.故选:A.4.已知数列{a n}满足a1+2a2+…+2n﹣1a n=n•2n,记数列{a n﹣tn}的前n项和为S n,若S n≤S10对任意的n∈N*恒成立,则实数t的取值范围是()A.[1211,1110]B.(1211,1110]C.[1110,109]D.(1110,109)【解答】解:由1+22+⋯+2K1=⋅2①,当n=1时,a1=2,当n≥2时,1+22+⋯+2K2K1=(−1)⋅2K1②,①﹣②可得a n=n+1(n≥2),又a1也符合上式,∴a n=n+1,令b n=a n﹣tn=n+1﹣tn=(1﹣t)n+1,∴b n+1﹣b n=(1﹣t)(n+1)+1﹣[(1﹣t)n+1]=1﹣t为常数,∴数列{b n}是等差数列,首项b1=2﹣t,∴=2−r(1−pr12×=1−22+3−2,其对称轴为=−3−21−=−3−2−2,∵S n≤S10对任意的n∈N*恒成立,3−2−2≤10.5,解得1211≤≤1110,∴t的取值范围是[1211,1110].故选:A.5.已知数列{142+4K3}的前n项和为T n,若对任意的n∈N*,不等式12T n<3a2﹣a恒成立,则实数a的取值范围是()A.[−1,43]B.[−43,1] C.(−∞,−1]∪[43,+∞)D.(−∞,−43]∪[1,+∞)【解答】解:由142+4K3=1(2r3)(2K1)=14(12K1−12r3),可得T n=14(1−15+13−17+15−19+...+12K3−12r1+12K1−12r3)=14(1+13−12r1−12r3)<14×43=13.由对任意的n∈N*,不等式12T n<3a2﹣a恒成立,可得3a2﹣a≥12×13,解得a≥43或a≤﹣1.故选:C.6.设S n是一个无穷数列{a n}的前n项和,若一个数列满足对任意的正整数n,不等式<r1r1恒成立,则称数列{a n}为和谐数列,有下列3个命题:①若对任意的正整数n均有a n<a n+1,则{a n}为和谐数列;②若等差数列{a n}是和谐数列,则S n一定存在最小值;③若{a n}的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有()个.A.0B.1C.2D.3【解答】解:对于①,由<r1r1,可得(n+1)S n<nS n+1,则S n<n(S n+1﹣S n),即S n<na n+1,若a n<a n+1,则S n<na n<na n+1,故①正确;对于②,设等差数列{a n}的公差为d,则=22+(1−),则=2+1−2,即{}为公差为2的等差数列,若{a n}为和谐数列,即<r1r1,则2>0,所以关于n的二次函数=22+(1−)开口向上,则在n∈N•上一定存在最小值,故②正确;对于③,取1<0,=−14,则=11−⋅(1−)=451[1−(−14)],B r1=B1⋅(−14),下面证明S n<na n+1,即说明存在公比为负数的一个等比数列是和谐数列,即证451[1−(−14)]<B1(−14),即证45[1−(−14)]>o−14),即证(+45)(−14)<45,当n=2k+1,k∈N时,上式左边为负数,显然成立;当n=2k,k∈N•时,即证(2+45)⋅116<45,即证16−52−1>0(⋅),设op=16−52−1,′(p=16B16−52>B16−52>0,则f(k)>f(1)>0,即(*)式成立,故③正确.故选:D.7.已知数列{a n}的前n项和为S n,a1=2,且满足S n+1=2S n+2n+1,若存在实数λ,使不等式λa n≤(n﹣19)S n对任意n∈N*恒成立,则λ的最大值为()A.﹣24B.﹣18C.−683D.−703【解答】解:由S n+1=2S n+2n+1,得r12r1−2=1,∵S1=a1=2,∴121=1,∴{2}是首项为1,公差为1的等差数列,则2=1+1×(n﹣1)=n,即S n=n•2n,∴当n≥2时,a n=S n﹣S n﹣1=n•2n﹣(n﹣1)•2n﹣1=(n+1)•2n﹣1,验证n=1也满足,∴a n=(n+1)•2n﹣1,由λa n≤(n﹣19)S n,得λ(n+1)•2n﹣1≤(n﹣19)•n•2n,即λ≤2oK19)r1.令f(n)=2oK19)r1,则f(n+1)﹣f(n)=2(r1)(K18)r2−2oK19)r1=2(2+3K18)(r1)(r2)= 2(K3)(r6)(r1)(r2),可得f(1)>f(2)>f(3)=f(4)<f(5)<…,∴f(n)min=f(3)=f(4)=﹣24,而λ≤2oK19)r1,∴λ≤﹣24,得λ的最大值为﹣24.故选:A.8.已知等比数列{a n}的首项为2,公比为−13,其前n项和记为S n,若对任意的n∈N*,均有A≤3S n−1≤B恒成立,则B﹣A的最小值为()A.72B.94C.114D.136【解答】解:S n=2[1−(−13)]1−(−13)=32−32•(−13),①n为奇数时,S n=32+32•(13),可知:S n单调递减,且m m∞=32,∴32<S n≤S1=2;②n为偶数时,S n=32−32•(13),可知:S n单调递增,且m m∞=43,∴43=S2≤S n<32.∴S n的最大值与最小值分别为:2,43.考虑到函数y=3t−1在(0,+∞)上单调递增,∴A≤(3−1)m=3×43−143=134.B≥(3−1)B=3×2−12=112.∴B﹣A的最小值=112−134=94.故选:B.9.已知等差数列{a n}满足a2=2,a3+a6=1+a8,数列{b n}满足b n a n+1a n=a n+1﹣a n,记{b n}的前n项和为S n,若对于任意的a∈[﹣2,2],n∈N*,不等式<22+B−3恒成立,则实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]【解答】解:由等差数列的性质知a3+a6=a8+a1=a8+1,则a1=1,又a2=2,则等差数列{a n}的公差d=a2﹣a1=1,∴a n=1+(n﹣1)=n.由b n a n+1a n=a n+1﹣a n,得=1−1r1=1−1r1,∴=(1−12)+(12−13)+(13−14)+⋯+(1K1−1)+(1−1r1)=1−1r1,则不等式<22+B−3恒成立等价于1−1r1<22+B−3恒成立,而1−1r1<1,∴问题等价于对任意的a∈[﹣2,2],n∈N*,2t2+at﹣4≥0恒成立.设f(a)=2t2+at﹣4,a∈[﹣2,2],则o2)≥0o−2)≥0,即2+−2≥02−−2≥0,解得:t≥2或t≤﹣2.故选:A.10.已知数列{a n}的首项是a1=1,前n项和为S n,且S n+1=2S n+3n+1(n∈N*),设c n=log2(a n+3).若存在常数k,使得不等式k≥−1(r16)(∈∗)恒成立,则k的取值范围为()A.[19,+∞)B.[116,+∞)C.[125,+∞)D.[136,+∞)【解答】解:因为S n+1=2S n+3n+1,所以当n≥2时,S n=2S n﹣1+3(n﹣1)+1,两式相减,得a n+1=2a n+3,所以a n+1+3=2(a n+3),又a1+3=4,a1+a2=S2=2S1+3×1+1=6,所以a2=5,a2+3=2(a1+3),所以数列{a n+3}是以4为首项、2为公比的等比数列,所以+3=4×2K1=2r1,所以c n=log2(a n+3)=n+1,所以−1(r16)=(r16)(r1)=2+17r16=1r16+17≤18+17=125,当且仅当n=4时等号成立,所以≥125,所以k的取值范围为[125,+∞).故选:C.11.已知数列{a n}满足1=3,r1=+2−1,记数列{|a n﹣2|}的前n项和为S n,设集合={125,6225,4517,3512},N={λ∈M|λ>S n对n∈N*恒成立},则集合N的元素个数是()A.1B.2C.3D.4【解答】解:令r1=+2−1=,解得a n=2,即数列{a n}的不动点为2,其生成函数为=+2−1,所以,作出函数=+2−1与函数y=x的图像如图:故由上图:2<a n+1<a n≤3,∴13≤1<12,∴r1=22−1+1=2(1−14)2+78∈[89,1),即89≤r1<,又∵r1−=2−1=2−,∴a n﹣2=a n(a n﹣a n+1),一方面,由r1≥89得+r1≥179,∴≤917(+r1),−2=(−K1)≤917(2−r12),∴=(1−2)+(2−2)+⋯(−2)≤917[(12−22)+(22−32)+⋯+(2−r12)]=917(9−r12)∵a n+1>2,且当n→+∞,a n+1→2,∴<917(9−4)=4517,∵4517≥4517,3512>4517,∴4517,3512∈,另一方面,由r1−2=(−2)(−1),2<≤3,得r1−2−2=1−1>12,又∵1−2=1,2−2=23,3−2=512,∴=(1−2)+(2−2)+⋯(−2)≥1+23+512+512⋅12+⋯+512⋅(12)K3=52−53⋅2K1,又当→+∞,52−53⋅2K1→52,∴λ必须大于等于52,∵125<52,6225<52,∴125,6225∉,所以集合N的元素个数是2,故选:B.12.设S n是数列{a n}的前n项和,=32−3r1,若不等式≥n∈N+恒成A.13B.16C.19D.136【解答】解:当n=1时,1=321−32,所以a1=18,由=32−3r1,当n≥2时,K1=32K1−3,所以=−K1=32−3r1−32K1+2,所以=3K1+4⋅3,两边同除以3n,所以3=K13K1+4,所以数列{3}是以6为首项,以4为公差的等差数列,所以34(−1)=4+2,所以=(4+2),由≥n∈N+恒成立,即2(2+1)⋅3≥所以≥2⋅3,设=2⋅3,则r1=r12⋅3r12⋅3=r13=13+13<1,所以数列{c n}为递减数列,所以≥12×3=16,所以≥136,所以k的最小值为136,故选:D.13.S n为数列{a n}的前n项和,a1=2,a2=5,a3=10,a4=17,对任意大于2的正整数n,有S n+1﹣3S n+3S n﹣1﹣S n﹣2+m=0恒成立,则使得12−2+13−2+⋯+1K1−2+1−2≥2542成立的正整数k的最小值为()A.7B.6C.5D.4【解答】解:依题意知:当n=3时有S4﹣3S3+3S2﹣S1+m=0=a4﹣2a3+a2+m,∵a2=5,a3=10,a4=17,∴m=﹣2,S n+1﹣3S n+3S n﹣1﹣S n﹣2﹣2=0,即(S n+1﹣S n)﹣2(S n﹣S n﹣1)+(S n﹣1﹣S n)﹣2=0,﹣2∴a n+1﹣2a n+a n﹣1﹣2=0,即(a n+1﹣a n)﹣(a n﹣a n﹣1)=2,n≥3,又a2﹣a1=3,a3﹣a2=5,(a3﹣a2)﹣(a2﹣a1)=2,∴数列{a n+1﹣a n}是以3为首项,2为公差的等差数列,∴a n+1﹣a n=2n+1,故a2﹣a1=3,a3﹣a2=5,a4﹣a3=7,…,a n﹣a n﹣1=2n﹣1(n≥2),由上面的式子累加可得:a n ﹣2=(K1)(3+2K1)2=(n ﹣1)•(n +1),n ≥2,∴1−2=1(K1)(r1)=12(1K1−1r1),n ≥2.由12−2+13−2+⋯+1K1−2+1−2≥2542可得:12[(11−13)+(12−14)+(13−15)+…+(1K1−1r1)]=12(1+12−1−1r1)≥2542,整理得1+1r1≤1342,∵k ∈N *且k ≥2,∴解得:k ≥6.所以k 的最小值为6.故选:B .二.多选题(共5小题)(多选)14.已知数列{a n }满足a 1=2,a n +1a n =2a n ﹣1(n ∈N *),b 1=20a 4,b n +1=a n b n (n ∈N •),数列{b n }的前n 项和为T n ,且对∀n ∈N *,2T n +400≥λn 恒成立,则()A .a 4=45B .数列{1−1}为等差数列C .b n =16n D .λ的最大值为225【解答】解:∵数列{a n }满足a 1=2,a n +1a n =2a n ﹣1,∴r1=2−1,∴r1−1=−1,∴1r1−1=−1=1−1+1,∴1r1−1−1−1=1,又11−1=12−1=1,∴{1−1}是以1为首项,公差为1的等差数列,∴B 选项正确;∴1−1=,∴=r1,∴4=54,∴A 选项错误;∴1=20×54=25,∴r1=(r1),∴r1=r1,∴21=21,32=32,•••,K1=K1,累乘可得:21⋅32⋅⋅⋅⋅⋅K1=21×32×⋅⋅⋅×K1,∴1=,∴b n =b 1n =25n ,∴C 选项错误,∴=(25+25p2,又对∀n ∈N *,2T n +400≥λn ,∴对∀n ∈N *,25n 2+25n +400≥λn ,∴对∀n∈N*,λ≤25+400+25,又25+400+25≥225×400+25=225,当且仅当25=400,即n=4时,等号成立,∴λ≤225,∴λ的最大值为225,∴D选项正确.故选:BD.(多选)15.设等差数列{a n}的前n项和为S n,且4=235,S7=28,记T n为数列{1}的前n项和,若T n<λ恒成立,则λ的值可以是()A.1B.2C.3D.4【解答】解:∵4=235,∴41+4×32=23(51+5×42),整理得12a1+18d=10a1+20d,即a1=d,由S7=28,可得71+7×62=28,即a1+3d=4,∴a1=d=1,∴=+oK1)2=or1)2,1=2or1)=2(1−1r1),∴=11+12+...+1=2(1−12+12−13+...+1−1r1)=2(1−1r1)=2−2r1.∵T n<λ恒成立,∴λ≥2.结合选项可知,λ的值可以是2或3或4.故选:BCD.(多选)16.已知数列{a n}满足:a1=2,=2−1K1,n=2,3,4,…,则下列说法正确的是()A.5=65B.对任意n∈N*,a n+1<a n恒成立C.不存在正整数p,q,r使a p,a r,a q成等差数列D.数列{1−1}为等差数列【解答】解:∵=2−1K1,(n≥2,n∈N*),∴r1=2−1,(n∈N*),∴r1−1=1−1,又a1﹣1=1≠0,∴1r1−1=11−1=−1=1−1+1,∴1r1−1−1−1=1,且11−1=1,∴数列{1−1}是以首项为1,公差为1的等差数列,∴1−1=,∴=1+1,∴D正确;对A,∵5=1+15=65,∴A正确;对B,∵r1−=(1+1r1)−(1+1)=−1or1)<0,∴a n+1<a n,∴B正确;对C,若存在正整数p,q,r使a p,a r,a q成等差数列,则2a r=a p+a q,∴2+2=2+1+1,∴2=1+1,令p=3,r=4,q=6,满足等式,∴C错误;故选:ABD.(多选)17.已知数列{a n}满足a1=1,a n+1=(r1)+2,对于任意n∈N*,a∈[﹣2,2],不等式3⋅2<2t2+at﹣1恒成立,则t的取值可以是()A.1B.2C.32D.4【解答】解:根据题意,r1=(r1)+2,两边同时取倒数可得,r1r1=1+2,即得r1r1+1=2(+1),由此可得数列{1+}是首项为2,公比为2的等比数列,所以1+=2⇒=2−1,∴3⋅2=3(2−1)2=3−32<3,∴2t2+at﹣1≥3,又因为at+2t2﹣4≥0在a∈[﹣2,2]上恒成立,所以−2+22−4≥02+22−4≥0⇒t∈(﹣∞,﹣2]∪[2,+∞).故选:BD.(多选)18.已知数列{a n}中,a1=1,a n+1−1=(1+1),n∈N*.若对于任意的t∈[1,2],不等式<−22−(+1)+2−a+2恒成立,则实数a可能为()A.﹣4B.﹣2C.0D.2【解答】解:由a n+1−1=(1+1),得a n+1−1=r1,∴r1r1−=1or1)=1−1r1,∴=(−K1K1)+(K1K1−K2K2)+⋯+⋯+(a2﹣a1)+a1,=(1K1−1)+(1K2−1K1)+…+(1−12)+1=2−1<2,∵不等式<−22−(+1)+2−a+2恒成立,∴2≤﹣2t2﹣(a+1)t+a2﹣a+2,∴2t2+(a+1)t﹣a2+a≤0,在t∈[1,2]上恒成立,设f(t)=2t2+(a+1)t﹣a2+a,t∈[1,2],∴o1)=2++1−2+≤0o2)=8+2(+1)−2+≤0,解得a≤﹣2或a≥5,∴实数a可能为﹣4,﹣2.故选:AB.。
专题6 第50练 数列构造问题(学生版) 2022年新高考数学微专题加餐练

第50练 数列构造问题考点一 形如a n +1=ca n +d (c ≠0,其中a 1=a )型1.已知数列{}a n 满足a 1=2,a n =3a n -1-2,那么a n 等于( )A .3n -1+2B .3n -1+1C .3n +1D .2×3n -1+12.已知数列{a n }满足a 1=-2,且a n +1=3a n +6,则a n =________.3.已知数列{}a n 满足a 1=2,a n +1=2a n +n ,则数列{a n }的通项公式为________. 考点二 形如 a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)型4.已知数列{}a n 满足a 1=6,a n =a n -1+2×3n (n ≥2),则a n =________.5.已知数列{}a n 中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,则a n =________. 6.已知数列{}a n 满足a n +1=3a n +2×3n +1,a 1=3,则a n =________. 考点三 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1,其中a 1=a ,a 2=b 型)考点四 倒数为特殊数列⎝⎛⎭⎪⎫形如a n =pa n -1ra n -1+s 型 9.已知函数f (x )=x 3x +1,数列{}a n 满足a 1=1,a n +1=f (a n )(n ∈N *),则数列{}a n 的通项公式为______________.10.已知数列{}a n 满足a 1=1,a n +1=a n 2na n +1,则a n =________. 11.数列{a n }满足a 1=2,a n +1=a 2n (a n >0),则a n 等于( ) A .10n -2 B .10n -1 C .102n -1 D .122n -12.已知数列{}a n 满足a 1=1,a 2=13,若a n (a n -1+2a n +1)=3a n -1·a n +1(n ≥2,n ∈N *),则数列{a n }的通项公式等于( )A.12n -1B.12n -1C.13n -1D.12n -1+113.已知数列{}a n 满足:a 1=2,a n +a n -1=4n -2()n ≥2. 则数列{a n }的通项公式为____________.14.数列{}a n 满足 12a 1+122a 2+123a 3+…+12n a n =2n +1,则数列{}a n 的通项公式为________.。
高考数学复习专题6数列4数列求和数列的综合应用创新篇42

9 10
n1
万元,可设这堆货物的总价为W万元,从而可得到W=1+2× 9
10
+3×
9 10
2
+…+n· 190
n1
,利用错位相减法可求出W的表达式,结合W=100-200·
9 10
n
可求出答案.
解析
由题意,得第n层货物的总价为n· 190
n1
万元,设这堆货物的总价为
W万元,则W=1+2× 9
应用探索
例 (2020河北邯郸大名一中周测,10)“垛积术”(隙积术)是由北宋科学
家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰
富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛,等等.
某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,
以后每一层比上一层多1件,最后一层是n件.已知第一层货物的单价为1
n
,
1 9
10
10
10
则W=-10n· 190
n
+100-100· 190
n
=100-200
9 10
n
,解得n=10,故选D.
答案 D
方法总结 (1)本题以数学文化为背景考查数列求和,考查数学建模、数 学抽象、数学运算的核心素养. (2)①认真阅读题意,理解数量关系; ②建立相应的数学模型; ③求解数学模型,得出数学结论.
n
1
1
ቤተ መጻሕፍቲ ባይዱ
,∵O为坐标原点,∴
OAn
=
n,
n
1 2
n
n n
1
1
,∵向量OAn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小专题6 数列
1、(2016-3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( )
(A )100 (B )99 (C )98 (D )97
2、(2010-4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则
456a a a =( )
(A)
3、(2018·4).设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a ( ) A .12- B .10- C .10 D .12
4、(2017-4).记为等差数列的前项和.若,,则的公差为( )
A .1
B .2
C .4
D .8
5、(2012-5)已知为等比数列,,,则( )
6、(2015-6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )
(A)14斛 (B)22斛 (C)36斛 (D)66斛
7、(2013-7)、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( )
A 、3
B 、4
C 、5
D 、6
8、(2018·14).记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.
9、(2013-14)、若数列{n a }的前n 项和为S n =2133
n a +,则数列{n a }的通项公式是n a =______. 10、(2016-15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2
a n 的最大值为 . 11、(2013-12)、设△A n B n C n 的三边长分别为a n ,
b n ,
c n ,△A n B n C n 的面积为S n ,n =1,2,3,…
若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n 2,则( )
A 、{S n }为递减数列
B 、{S n }为递增数列
C 、{S 2n -1}为递增数列,{S 2n }为递减数列
D 、{S 2n -1}为递减数列,{S 2n }为递增数列 12、(2017-12).几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是
n S {}n a n 4524a a +=48S ={}n a {}n a 472a a +=568a a =-110a a +=()A 7()B 5()C -5()D -7
26,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )
A.440
B.330
C.220
D.110
13、(2012-16)数列满足,则的前项和为
(答案:1-7、CABCDBC 8、-63 9、1-2n -() 10、64 11-12、BA 13、1830) {}n a 1(1)21n n n a a n ++-=-{}n a 60。