高真空磁控溅射镀膜系统介绍

合集下载

磁控溅射系统介绍perfect

磁控溅射系统介绍perfect

一、设备介绍
磁控溅射一般包括直流溅射和射频溅射,其优点
是溅射速率高、均匀性好以及良好的台阶覆盖性。目
前已经成为最常用的一种薄膜制备方法源自适用于多种金属及非金属的薄膜沉积。
应用领域: 1 )所有类型的金属及介质膜的沉积
(晶片、陶瓷片、玻璃板以及磁头);2)光学薄膜
及磁性薄膜沉积; 3)脉冲直流电源硬质薄膜沉积以 及等离子放电反应性溅射等。
课题意义
• 磁控溅射是制备薄膜材料的重要的方法,其优点 是靶材的溅射速率高、薄膜的均匀性好以及良好 的台阶覆盖性。目前已经成为实验室和工业上普 遍采用的薄膜制备方法,适用于多种金属及非金 属的薄膜沉积。 • 磁控溅射镀膜是材料科学研究人员及学生应该掌 握的基本技能。但受实验条件、实验成本的限制, 材料物理专业的学生不可能人人亲自动手操作磁 控溅射仪进行薄膜制备实验,因此我们制作了这 套《磁控溅射仪的使用》音像教材,向大家简要 介绍磁控溅射仪的原理,演示实验操作过程,并 说明操作中的注意事项。本教材可供培训、观摩 之用,希望有助于大家实验技能的培养和提高。
基 片
薄膜 物质 输运 能量 输运
块状材料 (靶材)
磁场对溅射的影响
二次电子在加速飞向基片的过程中 受到磁场洛仑茨力的影响,被束缚 在靠近靶面的等离子体区域内,该 区域内等离子体密度很高,二次电 子在磁场的作用下围绕靶面作圆周 运动,在运动过程中不断的与氩原 子发生碰撞电离出大量的氩离子轰 击靶材,经过多次碰撞后电子的能 量逐渐降低,摆脱磁力线的束缚, 远离靶材,最终沉积在基片或真空 室内壁及靶源阳极上。 磁控溅射的 特殊之处就是以磁场束缚并延长了 电子的运动路径,从而大大提高了 工作气体的电离率并有效利用了电 子的能量。
磁控溅射音像教材

磁控溅射镀膜技术综合介绍

磁控溅射镀膜技术综合介绍

一.磁控溅射电镀上世纪80年代开始, 磁控溅射技术得到迅猛的发展, 其应用领域得到了极大的推广。

现在磁控溅射技术已经在镀膜领域占有举足轻重的地位, 在工业生产和科学领域发挥着极大的作用。

正是近来市场上各方面对高质量薄膜日益增长的需要使磁控溅射不断的发展。

在许多方面, 磁控溅射薄膜的表现都比物理蒸发沉积制成的要好;并且在同样的功能下采用磁控溅射技术制得的可以比采用其他技术制得的要厚。

因此, 磁控溅射技术在许多应用领域涉及制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要是影响。

磁控溅射技术得以广泛的应用,是由该技术有别于其它镀膜方法的特点所决定的。

其特点可归纳为:可制备成靶材的各种材料均可作为薄膜材料,涉及各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷等物质,特别适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,容易获得均匀的高精度的膜厚,且反复性好;溅射粒子几乎不受重力影响,靶材与基片位置可自由安排;基片与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时高能量使基片只要较低的温度即可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。

1.磁控溅射工作原理:磁控溅射属于辉光放电范畴, 运用阴极溅射原理进行镀膜。

膜层粒子来源于辉光放电中, 氩离子对阴极靶材产生的阴极溅射作用。

氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。

磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹, 使得电子在正交电磁场中变成了摆线运动, 因而大大增长了与气体分子碰撞的几率。

用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶), 使固体原子(分子)从表面射出的现象称为溅射。

高真空磁控溅射镀膜系统介绍

高真空磁控溅射镀膜系统介绍

高真空磁控溅射镀膜系统介绍1.设备简介●名称:高真空磁控溅射镀膜系统●型号:JGP560●极限真空:6.60E-05 Pa●最高可控可调温度:500℃(1个样品位)●3个靶位,8个样品位2.真空简介●真空是一种不存在任何物质的空间状态,是一种物理现象。

在“真空”中,声音因为没有介质而无法传递,但电磁波的传递却不受真空的影响。

事实上,在真空技术里,真空系针对大气而言,一特定空间内部之部份物质被排出,使其压强小于一个标准大气压,则我们通称此空间为真空或真空状态。

1真空常用帕斯卡(Pascal)或托尔(Torr)做为压力的单位。

目前在自然环境里,只有外太空堪称最接近真空的空间。

●我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。

●高真空的获得油扩散泵的结构●真空镀膜●真空镀膜实质上是在高真空状态下利用物理方法在镀件的表面镀上一层薄膜的技术,它是一种物理现象。

●真空镀膜按其方式不同可分为真空蒸发镀膜、真空溅射镀膜和现代发展起来的离子镀膜。

3.磁控溅射镀膜原理介绍●磁控溅射法是一种较为常用的物理沉积法。

磁控溅射是在真空室中,利用低压气体放电现象,使处于等离子状态下的离子轰击靶表面,并利用环状磁场控制辉光放电,使溅射出的粒子沉积在基片上。

磁控溅射可以方便地制取高熔点物质的薄膜,在很大面积上可以制取均匀的膜层。

●磁控溅射工艺流程在镀膜过程中,工艺的选择对薄膜的性能具有重要的影响,根据磁控溅射技术原理,结合设备的实际应用,制定工艺流程如图1●膜层的要求磁控溅射膜层的沉积是物理气相沉积。

膜层厚度范围为nm~μm数量级,膜厚<550nm,对光有干涉作用,属于薄膜范畴,通常称薄膜技术。

太阳能集热管内管外壁镀膜是采用属于物理气相沉积技术的磁控溅射镀获得太阳光谱选择吸收薄膜。

●磁控溅射镀磁控溅射镀特点➢溅射速率高,沉积速率高➢磁控溅射阴极源是一个较为理想的可控源,沉积的膜层厚度与溅射源的功率或放电电流有较好的线性相关性,所以有较好的可控性,能较好地实现批量生产产品的一致性和重复性。

磁控溅射原理详细介绍

磁控溅射原理详细介绍

图1 溅射率与Ar气压强的关系
5
第一部分 真空镀膜基础
1.3 €è•þˆ?ŒÊƒ6
(2)沉积薄膜的纯度 (2)沉积薄膜的纯度 为了提高沉积薄膜的纯度,必须尽量减少沉积到基片上的杂质的量。这里所说的杂质主要是指真空 室的残余气体。因为通常有约百分之几的溅射气体分子注入沉积薄膜中,特别是在基片加偏压时。欲降 低残余气体压力,提高薄膜的纯度,可采取提高本底真空度和增加送氢量这两项有效措施。 (3)沉积过程中的污染 (3)沉积过程中的污染 众所周知,在通入溅射气体之前,把真空室内的压强降低到高真空区内是很有必要的,因此原有 工作气体的分压极低。即便如此,仍可存在许多污染源: (a)真空室壁和真空室中的其他零件可能会有吸附气体,如水蒸气和二氧化碳等。由于辉光放电中 电子和离子的轰击作用,这些气体可能重新释出。因此,可能接触辉光的一切表面都必须在沉积过程中 适当冷却,以便使其在沉积的最初几分钟内达到热平衡。 (b)在溅射气压下,扩散泵抽气效力很低,扩散泵油的回流现象十分严重。由于阻尼器各板间的距 离相当于此压强下平均自由程的若干倍,故仅靠阻尼器将不足以阻止这些气体进入真空室。因此,通常 需要在放电区与阻尼器之间进行某种形式的气体调节,例如在系统中利用高真空阀门作为节气阀,即可 轻易地解决这一问题。另外,如果将阻尼器与涡轮分子泵结合起来,代替扩散泵,将会消除这种污染。 (C)基片表面的颗粒物质将会使薄膜产生针孔和形成沉积污染,因此,沉积前应对基片进行彻底清 洗,尽可能保证基片不受污染或不携带微粒状污染物。
9
第二部分 溅射及辉光放电
2.2 辉光放电
使真空容器中Ar气的压力保持为,并逐渐提高两个电极 之间的电压。在开始时,电极之间几乎没有电流通过,因为 这时气体原子大多仍处于中性状态,只有极少量的电离粒子 在电场的作用下做定向运动,形成极为微弱的电流,即图2(b) 中曲线的开始阶段所示的那样。 随着电压逐渐地升高,电离粒子的运动速度也随之加快, 即电流随电压上升而增加。当这部分电离粒子的速度达到饱 和时,电流不再随电压升高而增加。此时,电流达到了一个 饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子 之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路 转移给电子与离子的能量也在逐渐增加。一方面,离子对于 阴极的碰撞将使其产生二次电子的发射,而电子能量也增加 到足够高的水平,它们与气体分子的碰撞开始导致后者发生 电离,如图2(a)所示。这些过程均产生新的离子和电子,即 碰撞过程使得离子和电子的数目迅速增加。这时,随着放电 电流的迅速增加,电压的变化却不大。这一放电阶段称为汤 汤 生放电。 生放电 在汤生放电阶段的后期,放电开始进入电晕放电阶段。这 时,在电场强度较高的电极尖端部位开始出现一些跳跃的电 晕光斑。因此,这一阶段称为电晕放电 电晕放电。 电晕放电

真空磁控溅射镀ZnO膜-讲义-2014-6

真空磁控溅射镀ZnO膜-讲义-2014-6

真空磁控溅射镀Al 掺杂的ZnO薄膜(AZO) 1852年,Grove发现阴极辉光放电产生的金属粒子溅射沉积现象。

这一现象现已广泛应用于各种薄膜的制备。

磁控溅射是在70年代在阴极溅射基础上加以改进而发展起来的一种新型溅射镀膜方法。

它克服了阴极溅射速率低、基片升温高的致命弱点,使得它一诞生便获得了迅速的发展和广泛应用。

磁控溅射具有高速、基片低温和沉积膜损伤低等优点。

磁控溅射在最佳条件下可以得到均匀、致密、有良好的C轴取向性和可见光波段透明性好等优点的薄膜,使得它成为在AZO制备中研究最多并且最广泛使用的方法。

溅射原本属于物理气相沉积,当溅射时在真空室内引入与金属Zn反应的气体O2,使得溅射同时具有磁控溅射和反应溅射的优点,这就是反应磁控溅射。

一、实验原理磁控溅射的工作原理如图1所示。

电子e在电场E作用下,在飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子e,电子飞向基片,Ar+在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,靶材发生溅射。

在溅射粒子中,中性的靶原子或分子则沉积在基片上形成薄膜。

二次电子e1一旦离开靶面,就同时受到电场和磁场的作用。

为了便于说明电子的运动情况,可以认为:二次电子在阴极暗区时,只受电场作用;一旦进入负辉区就只受磁场作用。

于是,从靶面发出的二次电子,首先在阴极暗区受到电场加速,飞向负辉区。

进入负辉区的电子具有一定速度,并且是垂直于磁力线运动的。

在这种情况下,电子由于受到磁场B洛仑兹力的作用,而绕磁力线旋转。

电子旋转半圈之后,重新进入阴极暗区,受到电场减速。

当电子接近靶面时,速度即可降到零。

以后,电子又在电场的作用下,再次飞离靶面,开始一个新的运动周期。

电子就这样周而复始,跳跃式地朝E(电场)×B(磁场)所指的方向漂移。

简称E×B漂移。

电子在正交电磁场作用运动轨迹近似于一条摆线。

若为环形磁场,则电子就以近似摆线形式在靶表面作圆周运动。

二次电子在环状磁场的控制下,运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域区,在该区中电离出大量的Ar+离子用来轰击靶材,从而实现了溅射淀积速率高的特点。

高真空磁控溅射薄膜沉积系统技术指标

高真空磁控溅射薄膜沉积系统技术指标

高真空磁控溅射薄膜沉积系统技术指标一、系统的主要组成及技术指标溅射室极限真空度:W6.6xl0-spa(经烘烤除气后);(洁净真空环境)系统从大气开始抽气:溅射室40分钟可达到6.6x10-4Pa;(抽速快,缩短实验准备时间)系统停泵关机12小时后真空度:≤5Pa;膜厚均匀性:优于±5%,铜膜,200nm1、溅射真空室真空室为圆筒形前开门结构,尺寸e450mmx400mm,全不锈钢结构。

可内烘烤到IOO〜150℃,选用不锈钢材料制造,氮弧焊接,表面进行电化学抛光国内首家钝化处理,接口采用金属垫圈密封或氟橡胶圈密封;手动前开门结构;靶安装在上盖,基片转台安装在下底盘(靶台与样品台可以实现上下互换)。

真空室组件上焊有各种规格的法兰接口与功能部件相连接2、磁控被射系统:3套2.1靶材尺寸:60mm;2.2提供靶材:不锈钢、钛、铁各一块(仅供测试靶材用);2.3强磁靶可溅射磁性材料,射频溅射与直流溅射兼容,靶内水冷;2.4每个靶都配备气动控制挡板组件1套;2.5靶在上,向下溅射,具有单独溅射、轮流溅射、共溅射功能(靶与样品台的位置可以调换;2.6暴露大气下,磁控靶可手动调节共溅射角度;2.7磁控靶与基片的距离可调,调节距离为:90730mm。

3、旋转加热基片台3.1基片尺寸和数量:最大可放置1片6英寸圆形样品;4英寸范围内膜厚均匀性:优于±5%,铜膜,200nm(注:工艺部分在乙方现场完成,甲方现场只做安装、调试本机);3.2基片通过进口加热丝加热方式,样品加热温度:≥700o C,连续可调;加热装置在真空室上法兰上,对基片托板进行加热,通过热电偶控制控温电源实现闭环控制,系统由加热器和1个加热控温电源组成,加热电源配备控温表,控温方式为PlD自动控温及数字显不;3.3基片自转速度5〜20转/分连续可调;3.4气动控制样品挡板组件1套;3.5样品台安装-200V偏压电源(辅助沉积)。

真空磁控溅射镀膜原理与技术

真空磁控溅射镀膜原理与技术

真空磁控溅射镀膜原理与技术真空磁控溅射镀膜是一种常用的薄膜制备技术,通过在真空环境中使用磁控溅射装置,将固体靶材溅射成气相离子,然后沉积在基材上,形成一层均匀、致密的薄膜。

这种技术广泛应用于光学薄膜、电子器件、节能涂层等领域。

真空磁控溅射镀膜的原理是利用磁场和靶材上集中的高能离子束,将靶材表面的原子或分子溅射出来,然后沉积在基材上形成薄膜。

具体来说,真空磁控溅射装置包括真空室、靶材、基材和磁控装置。

在真空室中,通过抽气将压力降至10^-3到10^-6帕的真空状态。

当真空室内的气体被抽尽后,向离子源上的靶材施加直流或者交流电,产生高能离子束,击打在靶材上。

同时,在靶材表面施加交变磁场。

这样,气体原子和分子会受到束流的冲击,将离子溅射出来,并通过基材的倾角冲积在基材表面形成薄膜。

磁控装置主要通过磁场对离子进行引导,使得离子束在靶材和基材之间来回移动,进一步增强溅射效果。

真空磁控溅射镀膜技术有以下几个特点:首先,可以在较低的温度下进行薄膜沉积,适用于大多数材料。

其次,由于采用磁场控制,可以获得均匀、致密的薄膜。

再次,能够利用常规的靶材材料,如金属、合金、化合物材料等。

最后,真空磁控溅射镀膜还可通过调整离子束能量和沉积速度来控制薄膜的性质,如厚度、硬度、附着力等。

除了基本的真空磁控溅射镀膜技术,还有一些衍生的技术,如磁控溅射复合镀膜、磁控溅射多层膜、磁控溅射纳米结构膜等。

这些技术在一些特定应用中具有更好的性能,并能满足特定的需求。

总之,真空磁控溅射镀膜技术是一种重要的薄膜制备技术,具有广泛的应用前景。

通过控制离子束能量、磁场强度和沉积条件等参数,可以制备出具有多种特性的薄膜,满足不同领域的需求。

但是,该技术也存在一些问题,如工艺复杂、设备要求高等,需要进一步研究和改进。

《磁控溅射镀膜技术》课件

《磁控溅射镀膜技术》课件

要点二
溅射参数与工艺条件
溅射参数和工艺条件对磁控溅射镀膜的沉积速率、膜层质 量、附着力等有着重要影响。主要的溅射参数包括工作气 压、磁场强度、功率密度等,工艺条件包括基材温度、气 体流量和组成等。通过对这些参数的优化和控制,可以获 得具有优异性能的膜层。
磁控溅射镀膜设备
03
与系统
磁控溅射镀膜设备的组成
多元靶材磁控溅射
技术
研究多种材料同时溅射的工艺技 术,实现多元材料的复合镀膜, 拓展镀膜材料的应用范围。
磁控溅射与其他技术的结合应用
磁控溅射与脉冲激光沉积技术结合
01
通过结合两种技术,实现快速、大面积的镀膜,提高生产效率

磁控溅射与化学气相沉积技术结合
02
利用化学气相沉积技术在磁控溅射的基础上进一步优化镀膜性
磁控溅射机制
在磁场的作用下,电子的运动轨迹发生偏转,增加与气体分子的碰撞概率,产 生更多的离子和活性粒子,从而提高了溅射效率和沉积速率。
磁控溅射镀膜的工艺流程
要点一
工艺流程概述
磁控溅射镀膜的工艺流程包括前处理、溅射镀膜和后处理 三个阶段。前处理主要是对基材进行清洗和预处理,确保 基材表面的清洁度和粗糙度符合要求;溅射镀膜是整个工 艺的核心部分,通过控制溅射参数和工艺条件,实现膜层 的均匀、致密和附着力强的沉积;后处理主要包括对膜层 的退火、冷却和清洗等处理,以优化膜层性能。
纳米薄膜的制备与应用
总结词
纳米薄膜因其独特的物理和化学性质在许多 领域具有巨大的应用潜力。
详细描述
磁控溅射技术可以用于制备纳米级别的薄膜 ,如纳米复合材料、纳米陶瓷、纳米金属等 ,这些薄膜在催化剂、传感器、电池等领域 有广泛应用。
其他领域的应用研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高真空磁控溅射镀膜系统介绍
1.设备简介
●名称:高真空磁控溅射镀膜系统
●型号:JGP560
●极限真空:6.60E-05 Pa
●最高可控可调温度:500℃(1个样品位)
●3个靶位,8个样品位
2.真空简介
●真空是一种不存在任何物质的空间状态,是一种物理现象。

在“真空”
中,声音因为没有介质而无法传递,但电磁波的传递却不受真空的影响。

事实上,在真空技术里,真空系针对大气而言,一特定空间内部之部份
物质被排出,使其压强小于一个标准大气压,则我们通称此空间为真空
或真空状态。

1真空常用帕斯卡(Pascal)或托尔(Torr)做为压力的单
位。

目前在自然环境里,只有外太空堪称最接近真空的空间。

●我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。

●高真空的获得
油扩散泵的结构
●真空镀膜
●真空镀膜实质上是在高真空状态下利用物理方法在镀件的表面
镀上一层薄膜的技术,它是一种物理现象。

●真空镀膜按其方式不同可分为真空蒸发镀膜、真空溅射镀膜和现
代发展起来的离子镀膜。

3.磁控溅射镀膜原理介绍
●磁控溅射法是一种较为常用的物理沉积法。

磁控溅射是在真空室中,利
用低压气体放电现象,使处于等离子状态下的离子轰击靶表面,并利用环状磁场控制辉光放电,使溅射出的粒子沉积在基片上。

磁控溅射可以方便地制取高熔点物质的薄膜,在很大面积上可以制取均匀的膜层。

●磁控溅射工艺流程
在镀膜过程中,工艺的选择对薄膜的性能具有重要的影响,根据磁控溅射技术原理,结合设备的实际应用,制定工艺流程如图1
●膜层的要求
磁控溅射膜层的沉积是物理气相沉积。

膜层厚度范围为nm~μm数量级,膜厚<550nm,对光有干涉作用,属于薄膜范畴,通常称薄膜技术。

太阳能集热管内管外壁镀膜是采用属于物理气相沉积技术的磁控溅射镀获得太阳光谱选择吸收薄膜。

●磁控溅射镀
磁控溅射镀特点
➢溅射速率高,沉积速率高
➢磁控溅射阴极源是一个较为理想的可控源,沉积的膜层厚度与溅射源的功率或放电电流有较好的线性相关性,所以有较好的可控性,
能较好地实现批量生产产品的一致性和重复性。

➢溅射源采用靶材有广泛的选择性和组合性
➢溅射源可较理想地置于真空室内长时间稳定工作,获得纯正的膜层,确保膜层质量。

磁控溅射新发展
随着工业的需求和表面技术的发展,新型磁控溅射如高速溅射、自溅射等成为目前磁控溅射领域新的发展趋势。

高速溅射能够得到大约几个μm/min 的高速率沉积,可以缩短溅射镀膜的时间,提高工业生产的效率;有可能替代目前对环境有污染的电镀工艺。

当溅射率非常高,以至于在完全没有惰性气体的情况下也能维持放电,即是仅用离化的被溅射材料的蒸汽来维持放电,这种磁控溅射被称为自溅射。

被溅射材料的离子化以及减少甚至取消惰性气体,会明显地影响薄膜形成的机制,加强沉积薄膜过程中合金化和化合物形成中的化学反应。

由此可能制备出新的薄膜材料,发展新的溅射技术,例如在深孔底部自溅射沉积薄膜。

高速溅射本质特点是产生大量的溅射粒子,导致较高的沉积速率。

最近实验表明在最大的靶源密度在高速溅射,靶的溅射和局部蒸发同时发生,两种过程的结合保证了最大的沉积速率(几μm/min)并导致薄膜的结构发生变化。

与通常的磁控溅射比较,高速溅射和自溅射的特点在于较高的靶功率密度Wt = Pd / S>50 Wcm- 2,(Pd 为磁控靶功率,S 为靶表面积)。

高速溅射有一定的限制,因此在特殊的环境才能保持高速溅射,如足够高的靶源密度,靶材足够的产额和溅射气体压力,并且要获得最大气体的离化率。

最大限制高速沉积薄膜的是溅射靶的冷却。

高速率磁控溅射的一个固有的性质是产生大量的溅射粒子而获得高的薄膜沉积速率。

高的沉积速率意味着高的粒子流飞向基片,导致沉积过程中大量粒子的能量被转移到生长薄膜上,引起沉积温度明显增加。

由于溅射离子的能量大约70%需要从阴极冷却水中带走,薄膜的最大溅射速率将受到溅射靶冷却的限制。

冷却不但靠足够的冷却水循环,还要求良好的靶材导热率及较薄膜的靶厚度。

同时高速率磁控溅射中典型的靶材利用率只有20%~30%,因而提高靶材利用率也是有待于解决的一个问题。

相关文档
最新文档