磁控溅射镀膜工艺介绍
磁控溅射镀膜原理

磁控溅射镀膜原理
磁控溅射镀膜是一种常用的薄膜制备技术,其原理是利用磁控溅射装置将固体材料转化为薄膜状,并将其沉积在基底材料上。
该技术具有高成膜速率、较高的膜均匀性和优良的附着力等优点。
在磁控溅射装置中,首先需要将目标材料(也称为靶材)放置在真空腔室中。
真空腔室初步抽气后,通过加热靶材或施加直流电弧或射频等方式,在靶材表面形成高能电子。
这些加热或激发的电子进一步与惰性气体(如氩气)发生碰撞,使其部分激发成高能态。
同时,由于磁场的存在,这些高能态的粒子将被束缚在靶材周围的磁场线上,形成等离子体环。
接下来,通过加速电场的作用,激发态粒子会从等离子体环中释放出来,并以高速撞击到基底材料上。
在撞击过程中,靶材表面的原子将被冲击撞击而脱离,并形成带电粒子。
这些带电粒子将在真空环境中传输,并最终沉积在待镀膜的基底材料上。
因此,基底材料表面就形成了一层特定厚度和特定性质的薄膜。
磁控溅射镀膜技术的成膜过程中,磁场的存在起到了重要的作用。
磁场的存在使得等离子体中的带电粒子能够沿着磁场线运动,在较长的时间内与基底材料进行撞击,提高了膜层的成膜速率和附着力。
此外,通过调节磁场的强度和方向,还可以实现对薄膜成分和薄膜性能的控制。
因此,磁控溅射镀膜技术在各种领域中得到了广泛应用,如光学薄膜、电子器件、压敏电阻器等。
磁控溅射镀膜工艺流程

磁控溅射镀膜工艺流程
磁控溅射镀膜技术是一种常用于制备薄膜材料的表面处理技术。
该技术广泛应用于电子、光学及材料科学等领域。
下面将介绍磁控溅射镀膜的工艺流程。
首先,要准备好所需的溅射靶材料和基底材料。
靶材料是待溅射在基底材料表面的物质,可以是金属、陶瓷或合金等。
而基底材料则是需要被镀膜的物体,可以是玻璃、塑料、金属等。
然后,将靶材和基底材分别放置在真空室中。
真空室是一个密封的容器,在里面通过抽气将气压降至极低水平,以确保后续的溅射过程在无氧气环境下进行。
真空室内还包括一个溅射盘,用于固定靶材和控制溅射过程的参数。
接下来,通过加热靶材,使其达到适当的温度。
加热后的靶材与氩气等稀有气体发生碰撞,将靶材表面的离子溅射出来,并沉积在基底材料表面。
这个过程称为磁控溅射。
在溅射过程中,通过调节不同的参数,如靶材的加热功率、气体流量、沉积时间等,可以控制溅射膜的厚度、成分和结构等。
这些参数的选择可以根据不同的应用要求进行调整。
最后,溅射膜需要进行后处理,以提高其质量和性能。
这包括退火、抛光、膜结构改变等步骤,以达到所需的表面平整度、硬度和附着力等要求。
这些后处理步骤对于膜层的性能和应用具有重要影响。
总结起来,磁控溅射镀膜的工艺流程主要包括准备靶材和基底材料、将其放置在真空室中、加热靶材、调节溅射参数进行溅射、进行膜的后处理等步骤。
通过不同的参数选择和后处理步骤,可以制备出具有不同性能的薄膜材料,满足不同领域的应用需求。
磁控溅射镀膜

磁控溅射镀膜磁控溅射镀膜是一种应用于材料表面改性的先进技术。
它利用准分子束磁控溅射设备,通过电弧、离子束或电子束的能量作用于目标材料,使其产生高温、高压等物理、化学效应,从而实现材料表面镀膜的目的。
本文将从磁控溅射镀膜的基本原理、应用领域、优势和不足以及发展前景等方面进行详细介绍,旨在全面了解磁控溅射镀膜技术的特点及其在现代工业中的应用。
1. 磁控溅射镀膜的基本原理磁控溅射镀膜技术是将所需镀层物质以固体靶材的形式放在装备中的靶极,利用外加的电场、磁场或离子束等等,使得靶材产生某种运动状态,随后可以将靶面上的物质溅射出来,沉积在基材表面,形成薄膜。
其中磁场的作用是将靶材中被离子轰击的金属离子引导回到靶材中心,以增加溅射效率。
2. 磁控溅射镀膜的应用领域磁控溅射镀膜技术广泛应用于许多工业领域,如电子、光学、太阳能电池、柔性电子器件、集成电路、玻璃制造等。
在电子领域,磁控溅射镀膜技术可用于制备薄膜晶体管,提高电子器件的性能和稳定性。
在光学领域,磁控溅射镀膜技术可制备高反射率、低反射率和色分离膜等光学薄膜。
在太阳能电池领域,磁控溅射镀膜技术可用于制备光学膜和透明导电膜。
在柔性电子器件领域,磁控溅射镀膜技术可用于制备导电薄膜和保护膜。
3. 磁控溅射镀膜的优势和不足磁控溅射镀膜技术具有许多优势。
首先,其产生的薄膜具有高质量、高致密性和良好的附着力。
其次,磁控溅射镀膜过程中无需加热基材,可避免基材变形和热损伤。
此外,磁控溅射镀膜技术具有膜层成分可调、薄膜复杂结构可控等特点。
然而,磁控溅射镀膜技术也存在不足之处。
一方面,磁控溅射镀膜设备体积较大、成本较高,且对真空度要求较高。
另一方面,由于目前磁控溅射镀膜技术仍处于发展阶段,其在大尺寸薄膜制备和高速镀膜方面还存在一定限制。
4. 磁控溅射镀膜的未来发展随着科学技术的不断进步,磁控溅射镀膜技术将进一步得到发展和完善。
一方面,磁控溅射镀膜技术将在薄膜成分调控和复杂结构薄膜制备方面取得更大突破,以满足不同行业对薄膜材料的需求。
磁控溅射镀膜技术综合介绍

一.磁控溅射电镀上世纪80年代开始, 磁控溅射技术得到迅猛的发展, 其应用领域得到了极大的推广。
现在磁控溅射技术已经在镀膜领域占有举足轻重的地位, 在工业生产和科学领域发挥着极大的作用。
正是近来市场上各方面对高质量薄膜日益增长的需要使磁控溅射不断的发展。
在许多方面, 磁控溅射薄膜的表现都比物理蒸发沉积制成的要好;并且在同样的功能下采用磁控溅射技术制得的可以比采用其他技术制得的要厚。
因此, 磁控溅射技术在许多应用领域涉及制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要是影响。
磁控溅射技术得以广泛的应用,是由该技术有别于其它镀膜方法的特点所决定的。
其特点可归纳为:可制备成靶材的各种材料均可作为薄膜材料,涉及各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷等物质,特别适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,容易获得均匀的高精度的膜厚,且反复性好;溅射粒子几乎不受重力影响,靶材与基片位置可自由安排;基片与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时高能量使基片只要较低的温度即可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。
1.磁控溅射工作原理:磁控溅射属于辉光放电范畴, 运用阴极溅射原理进行镀膜。
膜层粒子来源于辉光放电中, 氩离子对阴极靶材产生的阴极溅射作用。
氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。
磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹, 使得电子在正交电磁场中变成了摆线运动, 因而大大增长了与气体分子碰撞的几率。
用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶), 使固体原子(分子)从表面射出的现象称为溅射。
磁控溅射镀膜工艺

磁控溅射镀膜工艺
嘿,朋友们!今天咱来聊聊磁控溅射镀膜工艺。
这玩意儿啊,就像是一位神奇的魔法师,能在各种材料表面变出一层奇妙的“魔法外衣”。
你想想看,这磁控溅射镀膜就好比是给材料精心打扮一番。
就像咱出门要穿好看的衣服一样,材料也需要这层特别的“衣服”来提升自己呀。
它可以让材料变得更加耐磨、耐腐蚀,性能那是蹭蹭往上涨。
这工艺里面的磁控溅射可有意思了。
就好像是一群小精灵在材料表面欢快地跳跃,把各种有用的物质均匀地洒在上面。
这些小精灵可机灵着呢,它们能精准地控制着镀膜的厚度和质量。
而且哦,这磁控溅射镀膜工艺的应用那叫一个广泛。
从我们日常用的手机屏幕,到那些高大上的航天器零件,都有它的身影。
你说神奇不神奇?咱手里拿着的手机,说不定就有这神奇工艺的功劳呢!
在操作的时候啊,可得小心仔细,就跟照顾宝贝似的。
温度啊、压力啊这些都得把握好,稍有不慎可能就达不到理想的效果啦。
这就像是做饭,火候、调料都得恰到好处,不然做出来的菜可就不美味啦。
那要是没做好会咋样呢?哎呀,那可就像一件漂亮衣服上有了个大补丁,多难看呀!所以说呀,做这个一定要认真对待。
你说这磁控溅射镀膜工艺是不是很有意思?它能让普通的材料变得闪闪发光,能让各种产品的性能更上一层楼。
它就像是隐藏在科技世界里的一颗璀璨明珠,等待着我们去发现和利用。
总之呢,磁控溅射镀膜工艺真的是个了不起的东西。
它在我们的生活中默默发挥着重要作用,让我们的世界变得更加美好。
我们可不能小瞧了它,要好好研究它,让它为我们创造更多的奇迹呀!
原创不易,请尊重原创,谢谢!。
《磁控溅射镀膜技术》课件

基本步骤和流程
沉积过程的影响。
3
溅射沉积
4
开启磁控溅射系统,控制溅射功率、 溅射时间和沉积速率。
准备工作
清洗基板,装载靶材和目标材料。
预处理
通过表面处理方法优化基板表面,提 高沉积质量。
优势和特点
1 高沉积速率
2 良好的附着力
磁控溅射镀膜技术
磁控溅射镀膜技术是一种高效、精确的薄膜沉积技术,利用磁场和离子束将 材料蒸发并沉积到基板上。
定义和原理
磁控溅射镀膜利用磁场产生的影响力将靶材表面的原子或分子击出,并通过离子束进行沉积。它基于磁 控电子密云的原理。
1 磁场作用
通过磁场控制离子束的 运动,实现靶材表面原 子的击出。
2 离子束沉积
提高沉积效率、减少材料浪费和能耗。
总结和展望
磁控溅射镀膜技术是一项极为重要的薄膜制备技术,具有广泛的应用前景和发展空间。持续的科技创新 将进一步推动其发展。
基板
用于接收沉积的薄膜,可以是 玻璃、硅基片等。
发展现状和趋势
磁控溅射镀膜技术在各个领域得到广泛应用,随着纳米科技的发展,其在导电膜、光学薄膜等方 面仍有进一步发展的潜力。
1 纳米制备
应用纳米材料和纳米结构进行高性能薄膜制备。
2 多功能薄膜
开发具备多种功能的复合薄膜,如防反射、传感等。
3 绿色环保
离子束具有高速度和高 能量,可实现高效的薄 膜沉积。
3 磁控电子密云
通过磁场调节电子密云, 优化离子束的特性和运 动。
应用领域
光学薄膜
用于制备反射镜、透镜等光学元件,提高光 学系统性能。
防护涂层
用于制备防腐、抗磨损等涂层,延长材料寿 命。
玻璃磁控溅射镀膜

玻璃磁控溅射镀膜是一种在玻璃表面形成一层或多层金属、金属化合物或其它化合物薄膜的工艺技术。
以下是该工艺的简要介绍:
1. 溅射原理:在磁控溅射镀膜过程中,电子在电场的作用下加速飞向基片,与氩原子发生碰撞,电离出大量的氩离子和电子。
氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶材原子(或分子)沉积在基片上成膜。
2. 磁控技术:二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内。
该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长,在运动过程中不断地与氩原子发生碰撞电离出大量的氩离子轰击靶材。
经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。
3. 镀膜种类:根据不同的应用需求,可以溅射不同的材料,形成各种不同的镀膜。
例如,热反射镀膜可以使玻璃具有遮蔽太阳光的功能;低辐射镀膜可以使玻璃具有保温作用,具有节能效果。
4. 工业应用:玻璃磁控溅射镀膜工艺在建筑、汽车、家居、电子等多个行业都有广泛的应用。
如LOW-E玻璃就是一种典型的磁控溅射镀膜玻璃,它具有保温、隔热、节能等效果。
总的来说,玻璃磁控溅射镀膜工艺通过精确控制薄膜的成分和厚度,赋予了玻璃一系列特殊的性能,极大地拓展了玻璃的应用范围。
如需更多信息,建议查阅磁控溅射镀膜相关论文获取。
磁控溅射镀膜

磁控溅射镀膜磁控溅射镀膜技术是一种先进的表面处理方法,广泛应用于各个领域,如光学、电子、材料科学等。
在该技术下,金属材料以目标靶片的形式存在,在磁控溅射器的作用下,通过发射电子束或离子束对金属靶片进行轰击,从而将金属材料转化为离子态,并沉积在待处理物体表面,形成一层均匀、致密、硬度高的薄膜。
磁控溅射镀膜技术的原理非常简单,但其实现过程却较为复杂。
首先,需要一个磁控溅射器,通常由一个真空室、磁控系统、附着电极、溅射电极以及靶片组成。
真空室的存在能够保证溅射过程在无氧环境下进行,从而减少被氧化的可能性。
溅射过程中,靶片会被磁控系统所影响,生成一个磁场,使得靶片表面的离子化物质迅速被电子束轰击,使其处于高能态。
而这些离子化的金属物质则会沉积到待处理物体表面,形成一层均匀的薄膜。
在溅射过程中,可以通过调节磁场的参数,如磁场强度和位置,来控制溅射过程的稳定性和薄膜的特性。
磁控溅射镀膜技术具有多项优势。
首先,由于在真空环境下进行,能够排除空气中的尘埃和杂质,从而获得高品质的薄膜。
其次,通过调节溅射器的参数,可以实现对薄膜成分的精准控制,从而满足不同应用领域的需求。
此外,磁控溅射镀膜技术还可以在一次溅射过程中,同时沉积多种材料,实现复合材料的制备。
在光学领域,磁控溅射镀膜技术得到广泛应用。
通过溅射镀膜,可以制备具有特定光学性能的薄膜,如反射膜、滤光膜和偏振膜等。
这些薄膜不仅能够改善光学器件的透过率和反射率,还能够增加器件的耐磨性和耐腐蚀性。
此外,在光学器件中,磁控溅射镀膜技术还可以用于制备光波导薄膜,从而实现光信号的传输和处理。
在电子领域,磁控溅射镀膜技术也发挥着重要作用。
例如,在集成电路制造过程中,磁控溅射镀膜技术可以用来制备金属线路层和腐蚀保护层等。
通过精确控制溅射过程的参数,可以实现金属线路的精细图案和高精度的位置控制,从而提高集成电路的性能和可靠性。
除了在光学和电子领域,磁控溅射镀膜技术还被广泛应用于材料科学研究中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TCO薄膜的种类及特性
• TCO薄膜为晶粒尺寸数百纳米的多晶层,晶粒取向单 一。目前研究较多的是ITO、FTO和AZO。电阻率达 10-4 •cm量级,可见光透射率为80%~90%。 • FTO(SnO2︰F):电阻率可达5.0×10 -4 •cm,可见光 透过率ቤተ መጻሕፍቲ ባይዱ80%。 • ITO(In2O3︰Sn):电阻率可达7.0×10-5 •cm ,可见光 透过率>85% 。 • AZO(ZnO︰Al):电阻率可达1.5×10-4 •cm ,可见光 透过率>80% 。
反应溅射模拟图
中频孪生反应溅射
反应溅射的特点
反应磁控溅射所用的靶材料(单位素靶或多元素 靶)和反应气体(氧、氮、碳氢化合物等)通常 很容易获得很高的纯度,因而有利于制备高纯度 的化合物薄膜。 反应磁控溅射中调节沉积工艺参数,可以制备化 学配比或非化学配比的化合物薄膜,从而达到通 过调节薄膜的组成来调控薄膜特性的目的。 反应磁控溅射沉积过程中基板温度一般不会有很 大的升高,而且成膜过程通常也并不要求对基板 进行很高温度的加热,因而对基板材料的限制较 少。 反应磁控溅射适合于制备大面积均匀薄膜,并能 实现对镀膜的大规模工业化生产。
真空的定义:压力低于一个大气压的任何气态空间,采用 真空度来表示真空的高低。 真空单位换算:1大气压≈1.0×105帕=760mmHg(汞柱) =760托 1托=133.3pa=1mmHg 1bar=100kpa 1mbar=100pa 1bar=1000mbar
TCO玻璃 玻璃=Transparent Conductive Oxide 镀有透明导电氧 玻璃 化物的玻璃 TCO材料: 材料: 材料 SnO2:F(FTO fluorine doped tin oxide氟掺杂氧化锡 氟掺杂氧化锡) 氟掺杂氧化锡 ZnO:Al(AZO aluminum doped zinc oxide铝掺杂氧化锌 铝掺杂氧化锌) 铝掺杂氧化锌 In2O3:Sn(ITO indium tin oxide 氧化铟锡 氧化铟锡)
反应溅射的应用
现代工业的发展需要应用到越来越多的化 合物薄膜。 如光学工业中使用的TiO2、SiO2和TaO5等 硬质膜。 电子工业中使用的ITO透明导电膜,SiO2、 Si2N4和Al2O3等钝化膜、隔离膜、绝缘膜。 建筑玻璃上使用的ZNO、SnO2、TiO2、 SiO2等介质膜
真空系统的基本知识
磁控溅射镀膜工艺简介
讲解人:陈智顺 讲解时间:20100716
磁控溅射镀膜- 磁控溅射镀膜-溅射原理
使chamber达到真空条件,一 般控制在(2~5)E-5torr chamber内通入Ar(氩气), 并启动DC power Ar发生电离 Ar → Ar+ + e在电场作用下,electrons(电 子)会加速飞向anode(阳极) 在电场作用下,Ar+会加速飞 向阴极的target(靶材), target粒子及二次电子被击出, 前者到达substrate(基片)表 面进行薄膜成长,后者被加速至 阴极途中促成更多的电离。 接地
Ar
-V(DC)
至真空泵
垂直方向分布的磁力线将电子约束在靶材表面附近,延长其在等离 子体中的运动轨迹,提高它参与气体分子碰撞和电离过程的几率的 作用。
磁控溅射镀膜-磁控阴极 磁控溅射镀膜-
相对蒸发镀,磁控溅射有如下的特点: 膜厚可控性和重复性好 薄膜与基片的附着力强 可以制备绝大多数材料的薄膜,包括合金, 化合物等 膜层纯度高,致密 沉积速率低,设备也更复杂
TCO薄膜的制备工艺
• 薄膜的性质是由制备工艺决定的,改进制 备工艺的努力方向是使制成的薄膜电阻率 低、透射率高且表面形貌好,薄膜生长温 度低,与基板附着性好,能大面积均匀制 膜且制膜成本低。 • 主要生产工艺:镀膜过程中有气压、基片 温度、靶材功率、镀膜速度;刻蚀过程中 有HCl浓度、刻蚀速度、刻蚀温度。
氩离子能量过大 溅射功率过高 溅射粒子能量过大
陶瓷靶易开裂
薄膜致密性下降
氩气气压的影响
氩气气压过低
氩离子少
溅射原子少
薄膜薄、 薄膜薄、晶化率低
氩气气压过高
氩离子过多
碰撞增多
薄膜晶化率低
靶基距的影响
距离过小
加速不够
动能过小
薄膜薄、 薄膜薄、晶化率低
部分粒子不能溅射到基片上
距离过大
散射增大 轰击过大 薄膜致密性下降
基片温度的影响
温度较低
薄膜晶粒小
晶界散射多
电阻率下降
温度过高
晶粒过大 缺陷增多
电阻率升高
沉积时间的影响
透过率下降 薄膜厚度增加 沉积时间延长 电阻率下降
温度升高
晶化率增加
电阻率下降
沉积时间过长
温度过高
晶粒过大 缺陷增多
电阻率升高
溅射功率的影响
膜层与基体粘附力增加 溅射功率增加 溅射粒子增加 粒子能量增加 薄膜致密性增加
谢谢!
按照电源类型可分为: 直流溅射:
中频溅射:
射频溅射:
不同溅射方式的比较
DC电源 可镀膜材料 导电材料 靶材形状 频率 可靠性 平面单靶 0 HZ 好 RF电源 MF电源
非导电材料 非导电材料 平面单靶 孪生靶
13.65MHZ 24 KHZ 较好 较好
磁控溅射镀膜
磁控溅射镀膜
反应溅射
在溅射镀膜时,有意识地将某种反应性气 体如氮气,氧气等引入溅射室并达到一定 分压,即可以改变或者控制沉积特性,从 而获得不同于靶材的新物质薄膜,如各种 金属氧化物、氮化物、碳化物及绝缘介质 等薄膜。 直流反应溅射存在靶中毒,阳极消失问题, 上个世纪80年代出现的直流脉冲或中频孪 生溅射,使反应溅射可以大规模的工业应 用。