磁控溅射镀膜技术PPT课件

合集下载

镀膜技术PVD-PPT幻灯片课件

镀膜技术PVD-PPT幻灯片课件

5
Hale Waihona Puke 最早出现的金属沉积工艺钨W(Tm=3380℃) 钽Ta(Tm=2980℃) 钼Mo(Tm=2630℃)
6
蒸发装置的选择和运用很重要
热效率:热传导和热辐射对薄膜制备是不利的 (必须使坩埚或电极冷却)
For example, 在1500°C下蒸发Al: 选用合适的蒸发源, 所需能量为2.4kW.h/kg; 用电阻丝蒸发,所需能量为7-20kW.h/kg; 用TiB2电阻加热蒸发, 所需能量为50-100kW.h/kg;
溅射:常用的物理气相沉积方法。
溅射 RF磁控溅射 DC磁控溅射 离子束溅射 —反应溅射,活性气体,生长化合物薄膜。
分子束外延:MBE,超高真空,缓慢蒸发过程,多蒸发源,生长外延的单晶薄 膜。(ALE, MLE)
1
PVD的概念:在真空度较高的环境下,通过加热或高能
粒子轰击的方法使源材料逸出沉积物质粒子(可以是原子、 分子或离子),这些粒子在基片上沉积形成薄膜的技术。 其技术关键在于:如何将源材料转变为气相粒子(而非CVD 的化学反应)!
② 单个入射离子轰击出的产物粒子数与入射离子的能量/质量都有关;
均可用弹性碰撞理论解释!
22
③ 溅射产物粒子的平均速度 >> 蒸发出的粒子。
溅射镀膜的基本物理过程:
溅射镀膜何以实现?
气体放电 等离子体 带电离子 电场作用 离子加速 高能离子 撞击靶材 溅射 发射靶材原子 飞向基板 形成 沉积 获得薄膜!
所以可蒸发材料受到限制; 蒸发率低; 加热速度不高,蒸发时待蒸发材料如为合金或化合物,
则有可能分解或蒸发速率不同,造成薄膜成分偏离蒸发物 材料成分。
高温时,钽和金形成合金,铝、铁、镍、 钴等与钨、钼、钽等形成合金

《磁控溅射镀膜技术》课件

《磁控溅射镀膜技术》课件
用于制备太阳能电池的吸收层和透明导电膜。
基本步骤和流程
沉积过程的影响。
3
溅射沉积
4
开启磁控溅射系统,控制溅射功率、 溅射时间和沉积速率。
准备工作
清洗基板,装载靶材和目标材料。
预处理
通过表面处理方法优化基板表面,提 高沉积质量。
优势和特点
1 高沉积速率
2 良好的附着力
磁控溅射镀膜技术
磁控溅射镀膜技术是一种高效、精确的薄膜沉积技术,利用磁场和离子束将 材料蒸发并沉积到基板上。
定义和原理
磁控溅射镀膜利用磁场产生的影响力将靶材表面的原子或分子击出,并通过离子束进行沉积。它基于磁 控电子密云的原理。
1 磁场作用
通过磁场控制离子束的 运动,实现靶材表面原 子的击出。
2 离子束沉积
提高沉积效率、减少材料浪费和能耗。
总结和展望
磁控溅射镀膜技术是一项极为重要的薄膜制备技术,具有广泛的应用前景和发展空间。持续的科技创新 将进一步推动其发展。
基板
用于接收沉积的薄膜,可以是 玻璃、硅基片等。
发展现状和趋势
磁控溅射镀膜技术在各个领域得到广泛应用,随着纳米科技的发展,其在导电膜、光学薄膜等方 面仍有进一步发展的潜力。
1 纳米制备
应用纳米材料和纳米结构进行高性能薄膜制备。
2 多功能薄膜
开发具备多种功能的复合薄膜,如防反射、传感等。
3 绿色环保
离子束具有高速度和高 能量,可实现高效的薄 膜沉积。
3 磁控电子密云
通过磁场调节电子密云, 优化离子束的特性和运 动。
应用领域
光学薄膜
用于制备反射镜、透镜等光学元件,提高光 学系统性能。
防护涂层
用于制备防腐、抗磨损等涂层,延长材料寿 命。

磁控溅射相关ppt..共21页PPT资料

磁控溅射相关ppt..共21页PPT资料

磁控溅射镀膜
12
膜的检测手段
当对薄膜样品进行XRR测量时,由于空气与薄膜、薄膜与衬底 的X射线反射率不同,就会产生XRR衍射峰。通过计算相邻峰 位之间的距离就可推算薄膜的厚度,通过峰的强度和面积就可 以计算其界面粗糙度。如果在垂直于膜面方向上多层膜存在 较好的周期性结构(超晶格),在小角范围内还会出现布拉格衍 射峰。
磁控溅射镀膜
5
磁控溅射镀膜原理
2. 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中
与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞 向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表 面,使靶材发生溅射。在溅射 粒子中,中性的靶原子或分子 沉积在基片上形成薄膜,而产 生的二次电子会受到电场和磁 场作用,产生E(电场)×B (磁场)所指的方向漂移,简 称E×B漂移,其运动轨迹近似一条摆线。
直到1877年才真正应用于研究的溅射设备上。迄后70年中,由于实验 条件的限制,对溅射机理的认同长期处于模糊不清状态,在1950年之前 有关溅射薄膜特性的技术资料,多数是不可信的。
到了19世纪中期,阴极溅射技术发展也相当缓慢,只是在化学活性极强 的材料、贵金属材料、介质材料和难熔金属材料的薄膜制备工艺中,采 用溅射技术。
磁控溅射镀膜
6
磁控溅射镀膜原理
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们 的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内, 并且在该区域中电离出大量的 Ar 来轰击靶材,从而实现了 沉积速率。随着碰撞次数的 增加,二次电子的能量消耗殆 尽,逐渐远离靶表面,并在电 场E的作用下最终沉积在基片上。 由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低 。

第8章 溅射镀膜 ppt课件

第8章 溅射镀膜  ppt课件

体分子电离。
PPT课件
25
溅射镀膜方式
磁控溅射
特点: • 工作气压低,沉积速率高,且降低了薄膜污染的可能性; • 维持放电所需的靶电压低; • 电子对衬底的轰击能量小,可以减少衬底损伤,降低沉 积温度; • 容易实现在塑料等衬底上的薄膜低温沉积。
缺点:
• 对靶材的溅射不均匀,利用效率低(30%);
Xe
Kr Ar Ne
PPT课件
12
离子溅射参数
溅射产额的影响因素:(3) 入射离子的入射角
入射角:离子入射方向与 被溅射靶材表面法线间的 夹角;
随入射角的增大溅射率逐 渐增大。在0~60间相对溅
射率基本服从1/cosθ 规律;
60~80溅射率最大; 90时,溅射率为零。
PPT课件
缺点: 当离子能量高时,次级电子数量增大,有可能成为高能
电子轰击基片,导致发热,影响薄膜质量。
PPT课件
24
溅射镀膜方式
磁控溅射
磁控靶
溅射产生的二次电子在阴极位降区内被加速成为高能电子,但是它并
不直接飞向阳极,而在电场和磁场的作用下作旋轮线运动。
高能电子束缚在阴极表面与工作气体分子发生碰撞,传递能量,使气
负电位
四极溅射装置图
Байду номын сангаас
PPT课件
21
溅射镀膜方式
三极和四极直流溅射
特点: • 靶电流和靶电压可独立调节,克服了二极溅射的缺点; • 靶电压低 (可低至102伏),溅射损伤小; • 溅射过程不依赖二次电子,由热阴极发射电流控制; • 提高了溅射参数的可控性和工艺重复性。
缺点: • 不能抑制电子轰击对基片的影响 (温度升高); • 灯丝污染问题; • 不适合反应溅射等。

磁控溅射原理详细介绍课件

磁控溅射原理详细介绍课件

THANKS
感谢观看
控制系统
用于控制溅射过程, 包括真空度、电流、 电压等参数的监测和 控制。
磁控溅射的工作原理
气体放电
在真空室内,通过施加 高压电场,使气体产生 电离,产生等离子体。
粒子轰击
等离子体中的离子在电 场作用下加速飞向阴极 靶材,对靶材表面进行
轰击。
溅射
轰击导致靶材表面原子 或分子从表面射出,形
成溅射粒子。
沉积
溅射粒子在基片上沉积 形成薄膜。
磁控溅射的优缺点
高沉积速率
由于高密度的等离子体,使得溅射速 率较高。
低温沉积
可在较低的温度下实现沉积,适用于 某些热敏材料。
磁控溅射的优缺点
• 广泛的应用范围:可应用于金属、非金属、化合物等多种 材料的沉积。
磁控溅射的优缺点
需要高真空环境
需要建立高真空环境,增加了设备成本和运行成本。
特性
高沉积速率、低基材温度、高附着力、大面积成膜等。
磁控溅射的物理过程
气体放电
在阴极和阳极之间施加高压直 流电或射频电场,使气体产生 电离产生等离子体。
靶材溅射
高速离子轰击靶材表面,将靶 材原子从表面溅射出来。
真空环境建立
通过机械泵和分子泵等设备将 真空室内气压降低到10^-5Pa 以下。
磁场控制电子运动
工作气体
选择适当的工作气体,如氩气、氮气等,以 获得所需的薄膜性能。
薄膜结构与性能表征
成分分析
通过光谱分析技术确定薄膜的元素组 成。
晶体结构
采用X射线衍射技术分析薄膜的晶体 结构。
表面形貌
通过扫描电子显微镜视察薄膜的表面 形貌。
物理性能
测量薄膜的硬度、弹性模量、热导率 等物理性能。

磁控溅射原理详细介绍ppt课件

磁控溅射原理详细介绍ppt课件
辉光放电是在真空度约为一的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。 设有图2那样的一个直流气体放电体系。在阴阳两极之间由电动势为的直流电源提供电压和电流,并以 电阻作为限流电阻。在电路中,各参数之间应满足下述关系:
V=E-IR
9
第二部分 溅射及辉光放电
2.2 辉光放电
使真空容器中Ar气的压力保持为,并逐渐提高两个电极
(C)基片表面的颗粒物质将会使薄膜产生针孔和形成沉积污染,因此,沉积前应对基片进行彻底清 洗,尽可能保证基片不受污染或不携带微粒状污染物。
6
第一部分 真空镀膜基础
1.4 薄膜技术
薄膜技术主要包括薄膜的制备技术和薄膜材料研究,薄膜的制备技术又称为镀膜技术。薄膜的制备 方法以气相沉积方法为主,包括物理气相沉积方法(PVD)和化学气相沉积方法(CVD)。
磁控溅射原理详细介绍
第一部分 真空镀膜基础
1.1 气体与固体的相互作用
气体与固体相互作用后的结合,主要是通过物理吸附和化学吸附来实现的。一个气相原子入射到基 体表面,能否被吸附,是物理吸附还是化学吸附,是一个比较复杂的问题。固体表面与体内在晶体结构上 的一个重大差异是原子或分子间的结合化学键中断,原子或分子在固体表面形成的这种间断键称为不饱和 键或悬挂键,它具有吸引外来原子或分子的能力。入射到基体表面的气相原子被这种不饱和键吸引住的现 象称为吸附。如果用键的观点加以考虑,物理吸附是因为固体表面上的原子键已处于饱和状态,表面变得 不活泼,表面上只是由于范德瓦尔斯力(分子力)、电偶极子和四重极子等静电的相互作用使原子和分子间 产生吸附作用而结合;化学吸附则是由于物体表面上的原子键不饱和而与表面附近原子和分子进行结合, 其中包括共有或交换电子的离子结合、原子结合、金属结合等。

磁控溅射工艺简介PPT演示文稿

磁控溅射工艺简介PPT演示文稿
磁控溅射镀膜工艺简介
2014.6.6
1
一、名词解释
尖端放电:
通常情况下空气是不导电的,但是如果电场特别强,空气分子中的正负 电荷受到方向相反的强电场力,有可能被“撕”开,这个现象叫做空气的电 离。由于电离后的空气中有了可以自由移动的电荷,空气就可以导电了。空 气电离后产生的负电荷就是电子,失去电子的原子带正电,叫做正离子。 由于同种电荷相互排斥, 导体上的静电荷总是分布在表面上,而且一般说来 分布是不均匀的(图2),导体尖端的电荷特别密集, 所以尖端附近空气中的电 场特别强, 使得空气中残存的少量离子加速运动。这些高速运动的离子撞击 空气分子,使更多的分子电离。这时空气成为导体,于是产生了尖端放电现 象.
4
一、名词解释
• Sputter溅镀定义: • 在一相对稳定真空状态下,阴阳极间产生辉光放电,极间气体分子被离子化而产生带电电荷,其中
正离子受阴极之负电位加速运动而撞击阴极上之靶材,将其原子等粒子溅出,此溅出之原子则沉积 于阳极之基板上而形成薄膜,此物理现象即称溅镀。而透过激发、解离、离子化……等反应面产生 的分子、原子、受激态物质、电子、正负离子、自由基、UV光(紫外光)、可见光……等物质, 而这些物质混合在一起的状态就称之为电浆(Plasma)。下图为Sputter溅镀模型(类似打台球模 型):
5
二、溅射原理解释
6
二、溅射原理解释
7
二、溅射原理解释
8
二、溅射原理解释
9
三、磁控溅射原理解释
10
三、磁控溅射原理解释
11
三、磁控溅射原理解释
12
三、磁控溅射原理解释
13
三、磁控溅射原理解释
14
三、磁控溅射原理解释

《磁控溅射镀膜技术》课件

《磁控溅射镀膜技术》课件

要点二
溅射参数与工艺条件
溅射参数和工艺条件对磁控溅射镀膜的沉积速率、膜层质 量、附着力等有着重要影响。主要的溅射参数包括工作气 压、磁场强度、功率密度等,工艺条件包括基材温度、气 体流量和组成等。通过对这些参数的优化和控制,可以获 得具有优异性能的膜层。
磁控溅射镀膜设备
03
与系统
磁控溅射镀膜设备的组成
多元靶材磁控溅射
技术
研究多种材料同时溅射的工艺技 术,实现多元材料的复合镀膜, 拓展镀膜材料的应用范围。
磁控溅射与其他技术的结合应用
磁控溅射与脉冲激光沉积技术结合
01
通过结合两种技术,实现快速、大面积的镀膜,提高生产效率

磁控溅射与化学气相沉积技术结合
02
利用化学气相沉积技术在磁控溅射的基础上进一步优化镀膜性
磁控溅射机制
在磁场的作用下,电子的运动轨迹发生偏转,增加与气体分子的碰撞概率,产 生更多的离子和活性粒子,从而提高了溅射效率和沉积速率。
磁控溅射镀膜的工艺流程
要点一
工艺流程概述
磁控溅射镀膜的工艺流程包括前处理、溅射镀膜和后处理 三个阶段。前处理主要是对基材进行清洗和预处理,确保 基材表面的清洁度和粗糙度符合要求;溅射镀膜是整个工 艺的核心部分,通过控制溅射参数和工艺条件,实现膜层 的均匀、致密和附着力强的沉积;后处理主要包括对膜层 的退火、冷却和清洗等处理,以优化膜层性能。
纳米薄膜的制备与应用
总结词
纳米薄膜因其独特的物理和化学性质在许多 领域具有巨大的应用潜力。
详细描述
磁控溅射技术可以用于制备纳米级别的薄膜 ,如纳米复合材料、纳米陶瓷、纳米金属等 ,这些薄膜在催化剂、传感器、电池等领域 有广泛应用。
其他领域的应用研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、国内发展情况
• 1982年以后,范毓殿、王怡德及李云奇 等先后发表了有关平面磁控溅射靶设计 方面的论文报告
• 1985年后,各类小型平面磁控溅射镀膜 机问世
• 1995-1996年豪威公司采用国外先进技术 和材料研制出大型ITO磁控溅射镀膜系统 (含射频溅射制备二氧化硅膜的装置和功 能)
• 1996年沈阳真空技术研究所研制出大型 ITO磁控溅射镀膜镀膜系统
• 1963年美国贝尔实验室采用10米的连续 溅射镀膜装置镀制集成电路的鉭膜,首 次实现溅射镀膜产业化。
• 1970年圆柱磁控溅射阴极获得工业应用
2、发展概况(3)
• 1980年前后,提出脉冲单靶磁控溅射、中 频单靶磁控溅射,发展为中频双靶磁控溅 射。
• 双靶磁控溅射(Dual Magnetron Sputtering)的方法的最早专利是 Kirchhoff 等1986年申请的
• 工 业 上 , 德 国 Leybold 的 孪 生 靶 ( TwinMag® ) 系 统 是 其 典 型 代 表 , 已 于 1994年正式投入生产。
2、发展概况(4)
• 1986年Window发明了非平衡溅射 (Closed-fied unbalanced magnetron spattering, CFUMS),有广阔的应用前景
• 用大功率启动新靶,材料表面出气,局 部真空变坏
• 直流溅射情况,靶面有不良导体形成 • 靶设计、安装不当,及在运用过程中受
力、受热引起的机械变形,造成的局部 击穿
3、辉光放电区电位分布---靶-基距
(1)阿斯顿暗区 (2)阴极暗区,克罗克斯暗区(3) 负辉区
(4)法拉第暗区 (5)正辉柱 (6)阳极暗区 (7) 阳极辉柱
• 1997年豪威公司开展中频双靶反应溅射 制备二氧化硅膜工艺与设备研究。
• 1999年豪威公司与清华大学合作在国际 上首次研制成功中频双靶反应溅射制备 二氧化硅膜与氧化铟锡膜在线联镀装置 投入生产。
• 1999年北京仪器厂设计中频反应磁控溅 射双靶
• 2000年和2001年豪威公司先后研制出两 条新的大型中频双靶反应溅射制备二氧 化硅膜与氧化铟锡膜在线联镀装置并投 氩离子)轰击固体表
面,引起表面各种粒子,如原子、分子 或团束从该物体表面逸出的现象称“溅 射”。在磁控溅射镀膜中,通常是应用 氩气电离产生的正离子轰击固体(靶), 溅出的中性原子沉积到基片(工件)上, 形成膜层,磁控溅射镀膜具有“低温” 和“快速”两大特点。
1、溅射镀膜技术是真空镀膜技术中应用 最广的正在不断发展的技术之一
V(BREAKDOWN)(volts)
.DISTANCE(Torr-cm)
• 溅射镀膜中放电气体压力通常选P=1x10-2 至5x10-4Torr,工作点选在左半支曲线, 对于相邻的相互绝缘的两个导体,要求 有足够高的耐击穿电压U,相互之间距离 不宜太大,d=1.5--3.0mm
2、放电的伏安特性曲线--不提倡“一 拖二
• 阳极位置只影响击穿电压。
4、等离子体、等离子体发光与PEM
• 等离子体特点:
• 等离子体内的基本过程 • 电离过程
• (3)式描述了快电子离过程,能电量由 电子提供
• (4)式表示了光电离过程,能电h量 由光子提供
• 激发、退激发及中和过程
• 退激发过程的能态跃迁释放能量---发光
• 阴极暗区宽度一般为1-2cm,镀膜设备中 阴极与基片距离大多5-10cm,可知两极 间只存在阴极暗区和负辉区,尽量减小 极间距离(靶-基距),获得尽量高的镀 膜速率。
• 阴极暗区边缘的电位几乎接近阳极电位, 相当于在辉光放电时,等离子体将阳极 推到阴极暗区边缘,此时真正的阳极在 哪里并不重要。
辉光放电中靶电压与靶电流关系曲线称 靶的伏安特性曲线.
电压 V/N
V VB
P=133Pa(Ne) 汤森放电
异常辉光
正常辉光 弧光
电流密度 J/(A·cm )
A) 伏安特性曲线,分几段:
• 电压很小时,只有很小电流通过: • 加大电压进入汤生放电区; • “雪崩”,进入“正常辉光放电区”
• 离子轰击区覆盖整个阴极表面,再增加 功率进入“非正常辉光放电区”,溅射 工艺的工作点选在此区:
• 光强度正比于激发态密度n*和相应的mn 跃迁机率P
• 特征光谱
荷能粒子与材料表面相互作用
1、产生的效应
• 表面粒子发射:电子、中性原子与分子、正离 子和负离子、气体分子解吸、气体分解发射、 射线(光)、入射粒子的背散射、
2、发展概况(1)
• 1842年Grove发现阴极溅射现象 • 1877年将二极溅射技术用于镀制反射镜。 • 二十世纪三十年代采用二极溅射技术镀
制金膜作为导电底层 • 以后出现射频溅射、三极溅射和磁控溅
射。
2、发展概况(2)
• 1936年和1940年Penning相继发明圆柱和 圆筒磁控溅射阴极。-- Penning放电、 Penning规、Penning离子源相继出现
• 继续增加功率,达到新的击穿,进入低 电压大电流的“弧光放电区”
B) 靶的放电的伏安特性曲线与哪些因 素有 关?
• 靶的几何形状、尺寸,零部件安装精 度,受力或热引起的变形
• 靶电极材料及表面状态(污染、光洁 度等)
• 靶区气体压力及组分

C) 没有完全相同的靶,任何两个靶的伏安 特性曲线不可能完全相同
D)两个靶并联用一台电源难以使两个靶都 处于最佳状态,影响电源寿命,降低膜层质量。 E)所谓“双跑道靶”是将靶面加宽(例如 由140mm加大到220mm)磁场作相应改变, 放电时形成两个放电区,这与双靶并联无 本质差别,放电不稳定,影响电源寿命,降 低膜层质量,基片上膜层不均匀区加大。
E)避免弧光放电
• 2002年豪威公司在国内首次引进PEM控 制系统,自行安装调试,成功的应用于多层 光学膜的研发工作中.
二、气体放电某些特性
在一般的溅射装置中,在真空室内辉光放电形 成并加速正离子,应熟悉气体放的某些电特性 1、辉光放电巴刑曲线--绝缘间隙的选取
放电气体压力P与电极之间距离d的乘积p.d对 辉光放电压U的影响,相对应的曲线称巴刑曲线, 该曲线所展示的规律称巴刑定律
相关文档
最新文档