碳纳米技术发展综述
碳纳米管的特性及其高性能的复合材料综述

碳纳米管的特性及其高性能的复合材料综述摘要作为一种具有较强力学性能的材料,碳纳米管自诞生以来就受到了广泛关注,并且从以往的实践经验上来看,碳纳米管是非常理想的制备符合材料的形式。
在本文的研究当中,主要立足于这一领域进行分析,提出了碳纳米管本身所具备的特性,以及这种材料在实践过程当中的优越性,进而提出应用策略,希望能够在一定程度上起到借鉴作用。
关键词碳纳米管;复合材料;复合镀迄今为止,碳纳米管材料已经在诸多领域当中得以运用,并且取得了比较显著的成果,其中包括电极材料、符合材料、催化剂载体等诸多方面。
在应用过程当中,碳纳米管的优异性能能够使其在符合材料当中起到较强的作用。
本文研究的侧重点在于碳纳米管的制备和复合材料的应用方面,提出了碳纳米管的特性及其高性能的复合材料。
1 碳纳米管的结构及其性能从结构上来看,碳纳米管具有石墨层状的结构,其中包括单壁碳纳米管和多壁碳纳米管。
组成纳米碳管的C-C共价键是自然界当中具有稳定特征的化学键,无论在理论计算还是实践当中,都能够看出来,碳纳米管具有非常强的韧性。
在制备过程当中,碳纳米管主要涉及的电弧放电、催化热解和激光蒸发等。
具体来讲,在电弧放电当中,主要制备单壁碳纳米管,但是其中具有一定的弊端,比如产率非常低,但是成本却很高;而催化热解法当中所表现出来的是设备简单和生长速度较快等特点,一般在现代工程的批量化生产过程当中,会用到这种方法。
在当前应用领域,高强度的微米级碳纤维复合材料有着非常广阔的应用前景和较好的应用效果。
但是当前我国在这一领域所取得的进展依旧比较滞后,要想在强度上取得新的突破,必须要有效减少碳纤维的直径,提高纵横比。
碳纳米管是比较典型的纳米材料,纵横比非常可观。
更为重要的是,从长度上来讲,纳米管对于复合材料的加工性能并没有非常明显的不良影响,使用这一材料能够有效聚合复合材料,改变传统加工当中的一些问题,增强复合材料的导电性能。
再加上纳米管当中所具备的结构优势,使得聚合物电导率提升的同时也不容易被改变性能[1]。
向高端发力 我国碳纳米材料前景可期——几种碳纳米材料的发展现状及建议

究不 同种类 的碳 纳 米材 料 间的 相互 转
中 科 院 金 属 所 成 会 明 研 究 员 强 化 。目前 已经 发现 ,在一 定 的条件下 , 存在 ,亟待解 决 。例如 ,我 国非金属 电 调 :“ 目前碳纳 米管研究 主要存 在两 大 这些碳 纳米材料 可 以互相转 化 ,例如 , 缆 、非金 属 电路 板等 富勒 烯研 究 已有 不 足 :一 是对 生长机 制缺乏深 入理解 ,
并对碳 纳米 材料 的未来 发展趋 势进 行简 要的展 望 。
1 几种 重 要 碳 纳 米 材 料 发展 现 状
1 1 富勒烯 .
富勒烯 是一种碳 的 同素 异形体 。2 世纪 8 年代 中期 ,科学 家发 现了 除石 墨和 金 0 0
刚石之 外的碳 的第三 种 同素 异形体 ,即 C 富勒烯 。但 是 ,由于当 时采用 的是 激光 蒸 发石墨 法制备 ,所 以只能得 到微 克量 级产 品 。直 到 1 9 9 0年 ,Kr b c me 等采 用 a t sh r
碳 纳米 材 料 是 指 分 散 相 尺 度 至 少 有 一 维 小 于 1 0 m的 碳 材 料 。分 散 相 既 可 以 由 n 0
碳 原子 组 成 ,也 可 以 由异 种 原子 ( 碳 非 原 子 ) 组 成 ,甚 至 可 以是 纳 米 孔 。
向高端发力 我国碳纳米材料前景可期
的 机械 强度 和 弹性 ,在 电子学 方 面具 有 优 良的导 体 或半 导 体特 性 、在 光学
方 面 具 有 优异 的 非线 性 光 学 性 质 等 ,
由于碳 纳 米管 拥有 诸 多特 殊性 质 和广
泛 的应 用领 域 , 被称 为 “ 米之王 ” 纳 纳 。 米 管这 些优 良的特 性使 其 有可 能 被广
关于碳纳米管的研究报告进展综述

关于碳纳米管的研究进展1、前言1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。
这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新的“大碳结构”概念诞生了。
之后,人们相继发现并分离出C70、C76、C78、C84等。
1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。
年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。
1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。
1996年,我国科学家实现了碳纳米管的大面积定向生长。
1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。
1999年,国的一个研究小组制成了碳纳米管阴极彩色显示器样管。
2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。
2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。
2、碳纳米管的制备方法获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。
而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。
因此对碳纳米管制备工艺的研究具有重要的意义。
目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。
一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。
碳纳米管技术的应用发展现状与未来趋势

碳纳米管技术的应用发展现状与未来趋势碳纳米管是一种具有优异物理和化学性质的纳米材料,因其极高的强度、导电性和导热性而备受关注。
在过去几十年里,碳纳米管技术在各个领域都有着广泛的应用,同时也展现了巨大的潜力。
本文将探讨碳纳米管技术的应用发展现状与未来趋势。
碳纳米管技术在材料科学领域的应用已经取得了令人瞩目的成就。
首先,碳纳米管的强度远远超过钢铁,使其成为制造高强度材料的理想选择。
例如,在航空航天领域,碳纳米管可以用于制造轻质且坚固的飞机结构,以减少燃料消耗和碳排放。
此外,碳纳米管还可以应用于电子器件和传感器中,因为它的高导电性和导热性。
这种特性使得碳纳米管可以用于制造更小、更快和更节能的电子设备,如智能手机和电脑。
在医药领域,碳纳米管技术也有着广阔的前景。
研究表明,碳纳米管可以用作药物输送系统,将药物精确地投递到体内特定的位置。
这种精准的药物输送可以减少药物的副作用,并提高治疗的有效性。
此外,碳纳米管还可以用于肿瘤治疗。
通过将药物或光热剂引导到肿瘤细胞中,碳纳米管可以实现针对性治疗,并对肿瘤进行消融。
这一技术被认为是未来肿瘤治疗的重要方向之一。
除了材料科学和医药领域,碳纳米管技术还在能源和环境领域发挥着重要作用。
碳纳米管可以用于制造高效的太阳能电池和锂离子电池,以提高能源转化和存储的效率。
此外,碳纳米管还可以用于水处理和空气净化。
通过利用碳纳米管的高比表面积和吸附性能,有毒物质和污染物可以被高效吸附和去除,从而改善环境质量。
未来,随着对碳纳米管技术的深入研究和发展,它的应用前景将进一步拓展。
一方面,研究人员可以通过改变碳纳米管的结构和功能化修饰来优化其性能。
例如,通过对碳纳米管表面进行修饰,可以增强其与其他物质之间的相互作用,从而实现更多样化的应用。
另一方面,研究人员还可以通过改变碳纳米管的形式和组合,探索更多新兴领域的应用。
例如,碳纳米管可以与其他纳米材料结合使用,形成复合材料,以实现更高级的性能和功能。
碳纳米材料在催化领域中的应用

碳纳米材料在催化领域中的应用引言:碳纳米材料是一类具有优异性能和广泛应用前景的新型材料。
由于其独特的结构和物理化学性质,碳纳米材料在催化领域中展现出了巨大的潜力。
本文将从催化反应机理、催化剂设计、电化学催化等方面,综述碳纳米材料在催化领域中的应用。
一、碳纳米材料的催化反应机理研究1.1 表面活性位点的理解在催化过程中,表面活性位点是催化剂实现分子转化的关键。
碳纳米材料具有丰富的表面活性位点,包括边界位点、缺陷位点等。
深入研究碳纳米材料表面活性位点的结构和性质,对于理解碳纳米材料催化机理具有重要意义。
1.2 催化反应机理的研究方法通过理论计算和实验手段相结合的方法,可以揭示碳纳米材料在催化领域中的应用机制。
以氢化反应为例,通过计算方法可以模拟催化反应的过程,揭示碳纳米材料表面的活性位点和反应物之间的相互作用,为设计高效催化剂提供理论指导。
二、基于碳纳米材料的催化剂设计2.1 碳纳米材料基载体的设计将金属纳米颗粒载载于碳纳米材料的表面,可以有效地提高催化剂的稳定性和分散性。
通过选择不同的碳基材料,如石墨烯、碳纳米管等,可以调控金属纳米颗粒与碳基材料之间的相互作用,从而实现对催化剂性能的优化。
2.2 表面修饰的催化剂设计通过在碳纳米材料表面引入功能基团,可以改变催化剂的表面性质,进而调控催化剂的催化活性和选择性。
例如,引入酸性基团可以增强催化剂对酸性催化反应的催化活性;引入金属基团可以实现对催化剂表面电子结构的调控,从而优化催化剂的性能。
三、碳纳米材料在电化学催化中的应用3.1 燃料电池催化剂的设计碳纳米材料具有优异的导电性能和较高的比表面积,因此被广泛应用于燃料电池催化剂的设计中。
通过调控碳纳米材料的形貌和结构,可以提高燃料电池的催化活性和稳定性。
3.2 电解水催化剂的设计电解水是制备氢能的重要方式,而碳纳米材料在电解水催化剂设计中也显示出了极大的应用潜力。
石墨烯、碳纳米管等碳基材料被广泛运用于电解水催化剂的制备,通过控制碳纳米材料的结构和掺杂杂原子,可以提高电解水的分解效率。
碳纳米材料制备方法及其应用前景论文

学士学位论文题目碳纳米金材料的制备及其应用前景碳纳米材料制备方法及其应用前景摘要:纳米材料被誉为新世纪的重要材料,而作为新型纳米材料的碳纳米材料因其木身所拥有的潜在优越性,在化学、物理学及其材料学领域具有广阔的应用前景,成为各级科研人员争相关注的一个热门。
本文根据目前碳纳米材料的研究开展现状,说明了碳纳米材料研究制备中所采用的方法,并对其制备的碳纳米材料的性能及其应用前景进展了初步讨论、比照以及分析。
关键词:碳纳米材料:碳纳米管:制备方法:应用前景纳米材料是指显微构造中的物相具有纳米级尺度的材料。
它包含了三个层次,即纳米微粒、纳米固体和纳米组装体系其中比拟高端的是具有颗粒尺寸为1-100 nm的超微粒子材料和由纳米超微粒子组成的纳米固体材料。
自1991年日本NEC公司根底研究实验室的电镜专家Sumio Iijim采用高分辨电镜〔HRTEM)从制取C60的阴极结疤中首次发现碳纳米管以来[1],由于其纳米量级的径向构造上和微米量级的轴向构造所表现出的典型的一维量子性,以及其一维量子材料所具有的高机械强度、超常的磁阻和导热性与电学性能等[2.3],这种纳米尺寸的炭质网状物已经引起全球物理、化学与材料学的极大关注,从各个方面尝试进展研究,探索其合成方法,来寻求适宜的纳米材料构造、产生原理以及高效的性能,研制具有特质的碳纳米材料。
通过近些年的研究,经全球研究者大量充分有效的研究,合成碳纳米材料的方法己有各种开发应用,如具有物理制备方法〔超声分散法、高速粒子沉积法、薄膜分散法、蒸发法、激光溅射法等〕、化学制备法〔CVC、想转移法、复原法、超微乳液发、纳米构造自组织合成法等〕、综合法〔辐射化学法、超声沉淀法、电化学沉积法等〕等,由于对纳米材料的特性需要所采用的方法也就有所差异了,有单层或多层的碳纳米管、纳米颗粒、无定形碳、碳纳米球、碳纳米管和碳纳米管粒子及催化剂粒子等,其中尤以网状具有螺旋、管状构造的碳纳米管性能特别突出,其质轻、近六边形完美一维构造,以及本身所具有的奇特力学、电磁学和化学性能,借助纳米材料本身的自组装效应、小尺寸和量子及外表效应,与其他材料复合,广泛应用于场发射电子源用微型电子元件(如纳米线、纳米棒、纳米电子开关、记忆元件等)、纳米储氢材料、超大容量双电层电容材料、微型零件(如微型齿轮、分子线圈、活塞、泵)、隐形飞机的雷达吸波材料、光导材料、非线性光学材料、软铁磁性材料和分子载体及生物传感材料等。
碳纳米技术发展综述

碳纳米管技术发展概况学院:电子信息工程学院专业:通信工程姓名:彭昱学号:3013204217【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。
在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。
随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。
碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。
本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。
【关键词】碳纳米管;发展历程;结构;特性;应用;前景碳纳米管的发展历程1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。
碳纳米管的结构碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。
按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。
单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。
碳纳米材料在农业环境改良中的应用进展

碳纳米材料在农业环境改良中的应用进展随着全球人口的不断增长和城市化进程的加速,农业生产和环境保护已成为人们关注的焦点。
传统的农业生产方式对环境造成了严重的污染和破坏,因此急需寻找新的方法和材料来改良农业环境。
碳纳米材料由于其独特的物理和化学性质,在农业环境改良中展现出了巨大的应用潜力。
本文将从碳纳米材料的特性、在农业环境改良中的应用进展和未来发展趋势等方面进行探讨。
碳纳米材料是一类由碳原子构成的纳米结构材料,包括碳纳米管、石墨烯、碳纳米颗粒等。
这些材料具有较大的比表面积、优异的导电性和热传导性、化学稳定性高等优点。
这些优异的性能使得碳纳米材料在农业环境改良中展现出了广泛的应用前景。
碳纳米材料在土壤改良中的应用备受关注。
由于城市化进程和工业化生产的加速,土壤质量遭受了严重的破坏,导致农作物产量下降和土壤污染严重。
碳纳米材料可以作为土壤修复剂来改善土壤的物理、化学和生物性质。
研究表明,添加适量的碳纳米材料可以提高土壤的团粒结构稳定性,增加土壤孔隙度,增强土壤的保水保肥能力,改善土壤通气性和排水性。
碳纳米材料可以吸附土壤中的有害重金属和有机污染物,减少其对农作物的毒害作用,提高土壤的肥力和生产力。
碳纳米材料在农业环境改良中展现出了多方面的应用潜力,但其在实际应用中还存在一些问题和挑战。
碳纳米材料的安全性和环境影响值得重视。
在使用碳纳米材料时,要注意其对土壤微生物、植物和环境的影响,并严格控制其使用浓度和添加量。
碳纳米材料的生产成本较高,如何降低生产成本是一个亟待解决的问题。
碳纳米材料的生物降解和循环利用问题也需要进一步研究。
面对这些问题和挑战,科研人员和农业从业者需要共同努力,加强合作,不断探索和创新,推动碳纳米材料在农业环境改良中的应用取得更大的进展。
相信在不久的将来,碳纳米材料将会成为农业环境改良的重要支撑,为人类的可持续发展作出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纳米管技术发展概况
学院:电子信息工程学院
专业:通信工程
姓名:彭昱
学号:3013204217
【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。
在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。
随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。
碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。
本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。
【关键词】碳纳米管;发展历程;结构;特性;应用;前景
碳纳米管的发展历程
1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。
碳纳米管的结构
碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。
按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。
单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。
下图为常见的碳纳米管结构图。
虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。
碳纳米管的特性
碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。
组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。
理论计算表明,碳纳米管具有极高的强度和极大的韧性。
其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。
Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。
而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。
Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。
碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。
直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。
此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。
碳纳米管的应用
由于碳纳米管良好的电学性能,使得目前碳纳米管的研究主要集中在电学领域,其本身曲率半径小的结构特点使其在代替釦针作场发射电极时,具有较低的激发电压,并具有自修补功能,可大大提高视屏系统的效率和功能。
碳纳米管复合材料具有良好的减磨耐磨性能,该复合材料的磨损过程包含跑合阶段和稳态磨损阶段,在稳态磨损阶段主要发生氧化磨损和磨粒磨损;碳纳米管体积分数在12%-15%之间时,起润滑和抑制基体氧化的效果较好,因而复合材料的减磨耐磨性能最佳。
对于MWPCVD过程中基体(硅片)表面经过碳纳米管处理能够获得较高的金刚石形核密度,碳纳米管存在的sp3杂化键促进了MWPCVD的金刚石形核,同时在沉积过程中提高了基体表面碳浓度从而加快金刚石膜生长过程,这种方法具有简洁易行的特点。
碳纳米管的发展前景及展望
碳纳米管可以制成透明导电的薄膜,用以代替ITO(氧化铟锡)作为触摸屏的材料。
先前的技术中,科学家利用粉状的碳纳米管配成溶液,直接涂布在PET或玻璃衬底上,但是这样的技术至今没有进入量产阶段。
碳纳米管触摸屏首次于2007~2008年间成功被开发出,并由天津富纳源创公司于2011年产业化,至今已有多款智慧型手机上使用碳纳米管材料制成的触摸屏。
工程师更开发出利用碳纳米管导电异向性的定位技术,仅用一层碳纳米管薄膜即可判断触摸点的X、Y座标;碳纳米管触摸屏还具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以制做出曲面的触摸屏,具有高度的潜力可应用于穿戴式装置、智慧家俱等产品碳纳米管还给物理学家提供了研究毛细现象机理最细的毛细管,给化学家提供了进行纳米化学反应最细的试管。
总之,随着碳纳米管制备方法的研究以及纳米科技的快速发展,碳纳米材料将会对全世界的科学和经济产生重大影响.
【参考文献】
朱绍文,贾志杰,李钟泽,等。
碳纳米管及其应用前景[J]科技导报,1999,12:7-9.
梁勇,战可涛,碳纳米管的研究发展概况[J],粉体技术,1998(4):68-73.
纳米碳管对MWPCVD过程增强金刚石形核的影响[J]。
新技术新工艺,2000(6):56-59.
李玉良,徐菊华,化学通报。
我国C60和和碳纳米管的研究进展,1999(10):10-13.。