氧化镁法脱硫
氧化镁法烟气脱硫工艺介绍

氧化镁法烟气脱硫工艺介绍1. 前言我国是世界上SO2排放量最大的国家之一,年排放量接近2000万吨。
其主要原因是煤炭在能源消费结构中所占比例太大。
烟气脱硫(FGD)是目前控制SO2污染的重要手段。
湿法脱硫是应用最广的烟气脱硫技术。
其优点是设备简单,气液接触良好,脱硫效率高,吸收剂利用率高,处理能力大。
根据吸收剂不同,湿法脱硫技术有石灰(石)—石膏法、氧化镁法、钠法、双碱法、氨法、海水法等。
氧化镁湿法烟气脱硫技术,以美国化学基础公司(Chemico-Basic)开发的氧化镁浆洗—再生法发展较快,在日本、台湾、东南亚得到了广泛应用。
近年,随着烟气脱硫事业的发展,氧化镁湿法脱硫在我国的研究与应用发展很快。
2. 基本原理氧化镁烟气脱硫的基本原理是用MgO的浆液吸收烟气中的SO2,生成含水亚硫酸镁和硫酸镁。
化学原理表述如下:2.1氧化镁浆液的制备MgO(固)+H2O=Mg(HO)2(固)Mg(HO)2(固)+H2O=Mg(HO)2(浆液)+H2OMg(HO)2(浆液)=Mg2++2HO-2.2 SO2的吸收SO2(气)+H2O=H2SO3H2SO3→H++HSO3-HSO3-→H++SO32-Mg2++SO32-+3H2O→MgSO3•3H2OMg2++SO32-+6H2O→MgSO3•6H2OMg2++SO32-+7H2O→MgSO3•7H2OSO2+MgSO3•6H2O→Mg(HSO3)2+5H2OMg(OH)2+SO2→MgSO3+H2OMgSO3+H2O+SO2→Mg(HSO3)2Mg(HSO3)2+Mg(OH)2+10H2O→2MgSO3•6H2O2.3 脱硫产物氧化MgSO3+1/2O2+7H2O→MgSO4•7H2OMgSO3+1/2O2→MgSO43. 工艺流程整个脱硫工艺系统主要可分为三大部分:脱硫剂制备系统、脱硫吸收系统、脱硫副产物处理系统。
图1为氧化镁湿法脱硫的工艺流程图。
3.1脱硫剂制备系统脱硫剂制备系统的搅拌、输送设备均为标准设备,系统设计和工程应用有成熟的理论成果和可靠的实践经验,为一般性问题。
氧化镁脱硫方案

引言在能源生产和工业生产过程中,许多燃烧和化学反应会产生大量的二氧化硫(SO2)等有害气体。
这些有害气体对环境和人体健康都有严重的损害。
因此,有效的脱硫技术和方案对于减少大气污染并维护生态平衡至关重要。
本文将介绍一种基于氧化镁的脱硫方案,旨在实现高效、环保的二氧化硫脱除。
一、氧化镁脱硫原理氧化镁(MgO)是一种常见的脱硫剂,其脱硫原理主要包括以下两个步骤:1.吸收和转化:氧化镁与二氧化硫发生化学反应,生成硫酸镁。
反应方程式如下:MgO + SO2 -> MgSO32.氧化:硫酸镁进一步与氧气发生氧化反应,生成硫酸镁和二氧化硫。
反应方程式如下:2MgSO3 + O2 -> 2MgSO4 + SO2通过上述两个步骤,氧化镁能够将二氧化硫转化为硫酸镁,从而实现脱硫的效果。
二、氧化镁脱硫方案设计基于氧化镁的脱硫方案主要包括以下几个环节:1. 氧化镁选择选择适合的氧化镁材料很关键。
通常,纯度较高且颗粒度均匀的微细氧化镁粉末是首选。
此外,氧化镁应具备良好的吸收性能和高催化活性。
2. 反应器设计反应器的设计应考虑尽量增大氧化镁与二氧化硫接触的表面积,以提高反应效率。
可采用填充床反应器或浮动床反应器来实现氧化镁与二氧化硫的接触。
3. 控制参数控制参数的选择和调整对于脱硫效果至关重要。
常见的控制参数包括反应温度、氧化镁质量、反应气体流速等。
一般而言,较高的反应温度和适当的氧化镁质量能够提高脱硫效率。
4. 脱硫效果评估对于氧化镁脱硫方案的效果进行评估是必要的。
可以通过测量出口气体中二氧化硫的浓度、脱硫率等指标来评估脱硫效果,并根据评估结果进行方案的调整和改进。
三、氧化镁脱硫方案优势与传统的脱硫方法相比,氧化镁脱硫方案具有以下几个优势:1.高效性:氧化镁具有很高的吸收性能和催化活性,能够有效地将二氧化硫转化为硫酸镁,从而实现高效脱硫。
2.环保性:脱硫过程仅产生二氧化硫和硫酸镁,无需额外处理废气,减少了二次污染的可能。
氧化镁脱硫的原理及应用

氧化镁脱硫的原理及应用1. 氧化镁脱硫的原理脱硫是指将燃煤、燃油中的硫化物转化为无害物质的过程。
氧化镁作为一种常用的脱硫剂,在脱硫过程中发挥着重要的作用。
1.1 氧化镁的化学性质氧化镁(MgO)是一种无机化合物,化学式为MgO。
它具有以下特点:•这是一种固体白色粉末,无味无臭。
•具有高熔点和高热稳定性,能够在高温下稳定存在。
•具有强还原性和吸湿性。
1.2 氧化镁脱硫的基本原理氧化镁脱硫主要通过以下反应进行:MgO + H2O + SO2 → MgSO4上述反应中,氧化镁与硫化物反应生成硫酸镁。
硫酸镁是一种无害的化合物,可以被安全处理或用于其他用途。
氧化镁脱硫的反应速度取决于温度、氧化镁的微粒度、氧化镁与SO2的接触方式等因素。
同时,反应的效率也受到烟气中其他成分的影响。
2. 氧化镁脱硫的应用氧化镁脱硫技术在能源领域具有广泛的应用,特别是在燃煤电力行业。
下面列举了几个氧化镁脱硫的应用场景:2.1 燃煤电厂的脱硫燃煤电厂是氧化镁脱硫应用最广泛的场景之一。
在燃煤电厂中,燃煤会产生大量的二氧化硫。
通过喷射细颗粒的氧化镁到烟气中,可以使二氧化硫与氧化镁发生反应,并转化为硫酸镁。
这样可以显著减少二氧化硫对环境的污染。
2.2 石油炼制过程中的脱硫在石油炼制过程中,石油中的硫化物也需要进行脱除。
氧化镁可以作为一种脱硫剂添加到石油中,使硫化物与氧化镁反应,生成硫酸镁。
这样可以提高石油的质量,并减少环境污染。
2.3 工业废气处理中的脱硫除了能源行业,氧化镁脱硫还可以应用于工业废气处理。
在一些工业生产过程中,废气中含有大量的二氧化硫。
通过引入氧化镁脱硫装置,可以有效去除废气中的二氧化硫,减少对大气环境的污染。
3. 氧化镁脱硫技术的优缺点氧化镁脱硫技术具有以下优点:•成本低廉:氧化镁是一种常见的无机化合物,在市场上价格相对较低。
•高效性能:氧化镁与硫化物之间的反应速度快,效率高。
•脱硫产物易处理:产生的硫酸镁是一种稳定的化合物,可以进行安全处理或再利用。
氧化镁脱硫工艺

氧化镁脱硫工艺一、工作原理氧化镁湿法脱硫工艺(简称:镁法脱硫)与石灰-石膏法脱硫工艺类似,它是以氧化镁(MgO)为原料,经熟化生成氢氧化镁(Mg(OH)2)作为脱硫剂的一种先进、高效、经济的脱硫系统。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的氢氧化镁进行化学反应从而被脱除,最终反应产物为亚硫酸镁和硫酸镁混合物。
如采用强制氧化工艺,最终反应产物为硫酸镁溶液,经脱水干燥后形成硫酸镁晶体。
二、反应过程1、熟化MgO+H2O —>Mg(OH)22、吸收SO2 + H2O—> H2SO3SO3 + H2O—> H2SO43、中和Mg(OH)2+ H2SO3—> MgSO3+2H2OMg(OH)2+ H2SO4—> MgSO4+2H2OMg(OH)2+2HCl—> MgCl2+2H2OMg(OH)2+2HF —>MgF2+2H2O4、氧化2 MgSO3+O2—>2MgSO45、结晶MgSO3+ 3H2O—> MgSO3·3H2OMgSO4+ 7H2O —>MgSO4·7H2O三、系统组成脱硫系统主要由烟气系统、吸收塔系统、氢氧化镁浆液制备系统、浓缩塔系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。
四、工艺流程锅炉/窑炉—>除尘器—>引风机—>浓缩塔—>吸收塔—>烟囱来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入浓缩塔、吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。
系统一般装3-4台浆液循环泵,每台循环泵对应一层雾化喷淋层。
当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。
氧化镁法脱硫方案

供热有限公司40t/h锅炉脱硫工程项目技术文件(MgO)有限公司2016年4月12日目录一、企业简介21.1公司介绍21.2 项目概况31.3 设计原则31.4 设计指标31.5 设计依据4二、现有脱硫系统的工艺流程42.1 氧化镁法工艺原理42.2镁法脱硫的工艺特点52.3系统工艺流程8三、现有锅炉系统分析9四、脱硫系统改造方案总体设计94.1系统总体技术要求94.2 烟气系统104.3 吸收系统104.4 脱硫液循环系统114.5 脱硫剂制备系统114.6 脱硫渣处理系统11五、脱硫系统主要技术指标11六、脱硫系统具体改造方案126.1系统概述126.2烟气系统改造126.3吸收循环系统改造136.4脱硫剂储存、制备、输送系统176.5脱硫渣氧化、处理系统176.6工艺水系统176.7电器控制系统18七、运行成本分析207.1 原料成本207.2人工费207.3 水耗207.4电耗207.5脱硫系统运行成本20八、工程量清单218.1 主要工艺设备一览表218.2 主要构(建)造物一览表22九、主要工艺设备制造、安装技术要求及相关说明22十、运输保证措施2310.1随箱资料的主要内容2310.2包装24十一、技术服务与联络24一、企业简介1.1公司介绍在公司日益发展的今天,我们在烟尘、废气、废水治理领域已有很大成绩,已经成为了大庆油田、东北特变电、长春客车、山东万达集团、沈飞集团、金杯汽车等知名企业的环保设备及工程供应商。
公司正在不断探索,我们将不断提升自身业务素质、提供创新能力、壮大技术团队,进行更加系统化、标准化、规范化得管理,志愿成为世界级大气治理专家,努力为建设“美丽中国”而努力贡献自己的力量。
1.2 项目概况1)建设单位:供热有限公司。
2)建设地址:3)气候条件:4)水文条件:5)地址特征:1.3 设计原则(1)“一炉一塔”设计;(2)工艺先进、流程简洁、脱硫效率高,无二次污染;(3)经济合理,即在满足各项指标的前提下,工程投资省,运行费用低;(4)脱硫系统工作时不影响锅炉的正常运行;(5)保证在给定设计条件下,确保烟气中的二氧化硫达标排放;(6)烟气脱硫系统布置紧凑、合理、美观、占地面积小;(7)脱硫主体设备运行稳定可靠,使用长,操作维护简单;(8)项目实施后,有显著的社会、经济和环境效益。
氧化镁脱硫原理

氧化镁脱硫原理1.氧化镁烟气脱硫的原理及方法1.1.工艺水系统烧玻璃熔窑烟气脱硫装置内工艺水的损耗主要是吸收塔内的蒸发水和外排废水。
这些损耗需要通过输入新鲜的工艺水来补足。
工艺水在本脱硫装置内还有一个非常重要的作用,就是通过预冷器喷嘴使一部分工艺水雾化喷入原烟气中,以此来冷却由原烟道送来的高温烟气,使进入吸收塔的烟气温度降至100℃左右,以防止脱硫吸收塔内的非金属衬里(鳞片树脂)受到高温而损坏。
新鲜的工艺水还用来清洗吸收塔除雾器,以防止除雾器堵塞。
同时也用作清洗所有输送浆液管道的冲洗水和部分浆液泵的冷却水和轴封水。
1.2.氢氧化镁制备系统二套脱硫装置配置1套氢氧化镁浆液制备系统。
脱硫使用的氧化镁粉规格为纯度≥85%,粒度为95%通过250目(63μ)。
人工将氧化镁粉加入氧化镁熟化池内,按一定比例向池内添加具有一定温度的工艺水或系统的回用水,在强烈的搅拌作用下氧化镁粉被消化制成氢氧化镁浆液。
达到一定浓度要求的氢氧化镁浆液自流进入氢氧化镁储槽。
使用时用氢氧化镁给料泵送往脱硫吸收塔。
1.3.烟道及插板门系统当玻璃熔窑系统正常运行时,脱硫装置的烟气系统都能正常运行,并留有一定的裕量(110%的正常负荷)。
当烟气温度超过限定值时,吸收塔进口处的烟气预冷喷嘴将加大喷水量,降低烟气温度,从而确保吸收塔内的脱硫反应时刻处在最佳状态中并保护吸收塔的防腐内衬不被高温损伤。
在原烟道、旁路烟道上分别设置原烟气插板门、旁路烟道插板门,以方便脱硫系统与玻璃熔窑系统之间的联接、解脱、切换。
1.3.1.2烟气系统简介从玻璃熔窑引风机后出来的~160℃的原烟气,经过烟气预冷喷嘴喷出的工艺水冷却,使原烟气的温度降低到约100℃,然后进入吸收塔进行脱硫净化。
在吸收塔内含有SO2的原烟气与循环浆液充分接触,其中的SO2同循环洗涤液中的Mg OH 2反应被中和吸收,其它杂质也大部分被洗涤脱除,同时原烟气温度将进一步降低。
脱硫后的净烟气经除雾器、塔顶烟囱排放到大气中。
氧化镁法烟气脱硫运行问题分析

氧化镁法烟气脱硫运行问题分析摘要:氧化镁法烟气脱硫运行中继冶炼烟气湿法脱硫技术的完善及成熟后,氧化镁法脱硫技术已在部分火电厂及环集烟气(冶炼炉窑逸散的二氧化硫烟气)的治理中得到了广泛应用,且脱硫效果良好,工艺运行稳定,脱硫效率可达90%以上。
本文针对氧化镁法烟气脱硫在燃油锅炉上的运行过程中存在的问题进行分析,探讨了在干式烟囱及吸收塔防腐、除雾段水冲洗对吸收塔操作冲击控制、污水回用后系统COD值控制改进措施等,确保系统长周期平稳运行。
关键词:氧化镁法;烟气脱硫;问题分析1.工艺流程及基本原理氧化镁法烟气脱硫工艺主要包括氧化镁熟化、脱硫吸收和脱硫副产物后处理3个部分。主流程为氧化镁粉与一定比例的水混合,加热、搅拌进行熟化处理,制成氢氧化镁吸收浆液,二氧化硫烟气在吸收塔内与氢氧化镁吸收浆液逆流接触完成吸收过程,生成的亚硫酸镁及亚硫酸氢镁经氧化生成硫酸镁后进行无害化处理。1.1氧化镁熟化由于选用氧化镁粉作脱硫剂时会出现溶解度低、沉淀较快的现象,所以可将氧化镁法中的脱硫剂加水改良为氢氧化镁。氢氧化镁与氧化镁在吸收二氧化硫过程中的反应机理相似。1.2脱硫吸收由于氢氧化镁溶解度也不高,所以吸收浆液中仍以未溶的氢氧化镁为主,Mg2+对脱硫反应的影响甚小。二氧化硫溶于水发生一级、二级解离,生成HSO3-和SO32-。具体脱硫吸收过程见式(1)至式(6)。SO2+H2O→H2SO3(1)H2SO3→H++HSO3-(2)HSO3-→H++SO32-(3)Mg(OH)2+2H+→Mg2++2H2O(4)Mg(OH)2+Mg2++2HSO3-→2MgSO3+2H2O(5)MgSO3+SO2+H2O→Mg(HSO3)2(6)1.3脱硫副产物后处理脱硫副产物主要为亚硫酸镁和亚硫酸氢镁,其中亚硫酸镁占60%(质量分数,下同)~80%,多以结晶的固体颗粒状态存在,容易导致系统结垢、磨损和堵塞。所以通常将其脱硫副产物氧化为可溶性的硫酸镁,进行无害化排放或者回收制作硫镁肥或建筑材料,见式(7)至式(9)。2Mg(HSO3)2+12H2O+O2→2MgSO4•7H2O+2SO2(7)2MgSO3+O2+14H2O→2MgSO4•7H2O(8)2MgSO3+O2→2MgSO4(9)2.存在的问题分析为实现节能减排,公司在新建装置烟气系统上增设了烟气脱硫系统,采用氧化镁烟气脱硫法,是该脱硫法在燃油加热炉上的首次应用。该系统投用后,烟气中二氧化硫脱除率达到95%以上,脱后二氧化硫含量<30mg/Nm3,排烟温度在55~59℃之间,满足环保要求。从近几年的运行情况来看,该系统也面临着脱后烟气酸性水汽对烟囱内壁产生腐蚀、吸收塔喷淋对塔壁产生冲刷腐蚀,除雾段冲洗水造成吸收塔pH值波动、污水回用后系统COD排放不达标等问题,就存在问题进行分析,并探讨解决问题的方法。3.问题的解决措施3.1干式烟囱内壁的腐蚀防护烟囱原设计为排放干烟气,整个烟囱高80m,40m以下按照烟气温度170℃,40~80m按照烟气温度300℃进行设计。烟囱壁从内到外分三层,最里层为耐酸耐火砖内衬,中间夹层为矿渣棉隔热层,最外层为钢筋混凝土筒壁。增设氧化镁法烟气脱硫系统后,烟囱内烟气变为<75℃的酸性湿烟气,为防止酸性湿烟气对干烟囱的腐蚀,在冷烟道、烟囱内壁等与湿烟气接触的部位,采用国外进口、专门针对干式烟囱改造为湿式烟囱防腐的涂料进行防腐处理,以防止酸性湿烟气对烟囱的腐蚀。图1烟气脱硫系统原则流程图在生产过程中,由于湿式烟气在烟囱内部冷凝,部分水蒸气变成液态水从烟囱底部排出,形成酸液,根据防腐涂料工作环境要求,对吸收塔的氢氧化镁循环量、循环液浓度、排污频次、水冲洗量进行调整控制。确保烟囱内部酸液pH值控制在2~3,保证防腐层的防腐效果和长周期运行。3.2吸收塔壁腐蚀的预防吸收塔是脱出二氧化硫的反应区,是烟气脱硫腐蚀的重灾区。在氢氧化镁溶液与二氧化硫反应至生成硫酸镁的过程大致可分为三步,第一步是在强氧化环境中二氧化硫与水反应生成硫酸及亚硫酸;第二步是硫酸及亚硫酸与氢氧化镁溶液反应生成硫酸镁或亚硫酸镁,第三步是亚硫酸镁被氧气氧化成硫酸镁。在50~59℃温度下,反应第一步生成的硫酸处于活性较高状态,腐蚀及渗透能力强,在氢氧化镁溶液未喷淋到的区域,容易对设备形成腐蚀,影响设备使用寿命。另一方面,喷淋液的冲刷也会对设备产生磨损,受氢氧化镁溶解度影响,苛化的氢氧化镁溶液为10%的悬浊液,含氢氧化镁固体颗粒,如喷淋头安装位置不合适,会造成喷淋液冲刷吸收塔内壁,造成冲刷腐蚀。为了抵抗酸性介质对吸收塔塔壁的腐蚀,在选材时,选择抗腐蚀能力强的不锈钢材料,或者选用普通碳钢加防腐技术相结合。大榭石化烟气脱硫系统建设时,为减少投资,采用普通碳钢加上玻璃鳞片树脂,玻璃鳞片树脂具有良好的抗渗透性、较高的机械强度和耐蚀性,能够有效的抵抗反应过程中的酸腐蚀。同时在喷淋液容易冲刷的部位,采用内贴不锈钢板和加厚玻璃鳞片树脂的方法,确保防腐效果。3.3除雾段水冲洗对吸收塔操作冲击控制为了减少烟气的水雾夹带,在吸收塔上部设置了除雾段,并设置了水冲洗系统。水冲洗分上中下三层,采用分段分程控制,定期对除雾段破沫网进行冲洗。在运行初期,发现经常由于冲洗量过大,造成吸收塔液面上升、循环液pH降低、系统排液量增大、新鲜氢氧化镁吸收液补充量增加,造成系统不平衡。对此,采取了控制水冲洗时间,将水冲洗频次与循环液循环量和pH值相关联的操作方案。在系统pH值较高时,对二氧化硫吸收效果好,循环液循环量适当降低,雾沫夹带相对较少,可减少水冲洗量,当系统pH值降低时,加大循环液循环量的同时,适当增加冲洗量,控制雾沫夹带。3.4污水回用后系统COD平衡的控制为了减少新鲜水用量,在操作过程中,采用了部分污水作为冲洗水和氢氧化镁溶液配制用水,利用烟气的蒸发和废水的氧化沉淀过程,对COD进行去除,不但可以增加污水回用量,还可以降到COD排放量。在生产过程中,对烟气脱硫系统各个处理工段的COD含量进行分析,我们发现吸收塔、氧化池、沉淀池均对COD有一定的去除功能,其系统水量和COD平衡如下图2所示。根据化验分析数据,逐步调整污水回用量,经过长期摸索得出,只要控制系统污水补充量不大于外排污水量的75%时,外排污水COD就可保持合格。结语综上所述,氧化镁法脱硫技术在我国各地已得到了比较广泛的工程应用,目前已成为一种经济、实用的脱硫新趋势,与常用的钙法脱硫技术相比较,具有一次性投资省、脱硫效率高、综合运行费用低的优点,避免了钙法脱硫的副产物处理及工艺运行中结垢、堵塞等难题。作为氧化镁法烟气脱硫技术在燃油加热炉上的首次应用,在项目建设过程中采取有针对性的预防措施,有效的降低了设备和干式烟囱的腐蚀。在生产过程中,针对操作中出现的问题,及时调整操作方案,确保了烟气处理达标,满足了环保要求。参考文献:[1]张爽.湿法烟气脱硫装置采用湿烟囱排放的探讨[J].电力建设,2005,26(01):64-66.[2]李宝顺,赵丽丽,周驰,等.湿法烟气脱硫装置的腐蚀与防护[J].化工机械,2009,36(6):640-642.。
氧化镁湿法脱硫废水处理工艺流程探讨

氧化镁湿法脱硫废水处理工艺流程探讨首先,酸性废水中的二氧化硫氧化。
这一步骤是通过将酸性废水喷洒
或者雾化至一个碱性环境中,将二氧化硫氧化为硫酸镁。
这里的碱性环境
可以通过加入氢氧化钙或者氢氧化钠等碱性物质来实现。
在此过程中,通
过控制喷洒浓度和温度等参数,可以使废水中的二氧化硫得到充分氧化。
其次,硫酸镁的沉淀。
在氧化反应结束后,废水中的硫酸镁会形成固
体沉淀。
这一步骤的关键是控制碱性物质的投加量,使其超过硫酸镁的溶
解度,以促进硫酸镁的沉淀。
硫酸镁的沉淀是一种放热反应,因此需要适
当降低反应温度,防止温度过高造成放热过程不可控。
最后,废水后续处理。
经过上述两个步骤处理后的脱硫废水,仍然含
有一定量的固体颗粒物质和硫酸残余。
为了达到排放标准,需要对废水进
行进一步处理。
常见的处理方法包括沉淀处理、过滤处理和吸附处理等。
沉淀处理是通过加入适当的沉淀剂,使废水中的固体颗粒物质沉淀并分离
出来;过滤处理是通过将废水通过滤料进行过滤,去除固体颗粒物质;吸
附处理是通过添加适当的吸附剂,吸附废水中的硫酸镁和其他残余物质。
综上所述,氧化镁湿法脱硫废水处理工艺流程包括二氧化硫氧化、硫
酸镁沉淀和废水后续处理三个步骤。
通过合理控制各个步骤中的操作参数,可以有效处理脱硫废水,达到排放标准。
值得注意的是,在实践应用中,
还需要根据具体情况来选择化学药剂和处理设备,并结合其他工艺优化措施,以实现更高效的废水处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双碱法和氧化镁法优缺点对比双碱法脱硫工艺化学反应原理:基本化学原理可分为脱硫过程和再生过程两部分。
钠-钙双碱法[Na/Ca]采用纯碱启动,钠碱吸收SO2、石灰再生的方法。
其基本化学原理可分脱硫过程和再生过程。
脱硫过程:Na2CO3+SO2→Na2SO3+CO2(1)2NaOH+SO2→Na2SO3+H2O(2)Na2CO3+SO2+H2O →NaHSO3(3)(1)式为吸收启动反应式;(2)式为主要反应式,pH>9(碱性较高时)(3)式为当碱性降低到中性甚至酸性时(5<pH<9)再生过程:2NaHSO3+Ca(OH)2→Na2SO3++CaSO3↓+2H2O(5)Na2SO3+Ca(OH)2→2NaOH+C aSO3↓(6)在石灰浆液(石灰达到达饱和状况)中,NaHSO3很快与Ca(OH)2反应从而释放出[Na],[SO3]与[Ca]反应,反应生成的CaSO3以半水化合物形式沉淀下来从而使[Na]离子得到再生。
Na2CO3只是一种启动碱,起动后实际上消耗的是石灰,理论上不消耗纯碱(只是清渣时会带走一些,因而有少量损耗)。
再生的NaOH和Na2SO3等脱硫剂循环使用。
技术特点钠-钙双碱法【Na2SO3-Ca(OH)2】采用钠碱启动、钠碱吸收SO2、钙碱再生的方法。
该工艺具有以下优点:1投资省、脱硫效率高。
与传统的双碱法脱硫相比较,钠碱吸收剂较钙碱的反应活性高、吸收速度快,可大大降低脱硫吸收的液气比,从而降低吸收液循环泵的功率和投资,而脱硫效率达80%以上,除尘脱硫后的烟气确保完全满足环保排放要求;2该工艺在多个燃煤锅炉的除尘脱硫项目中运行效果良好,技术成熟,运行可靠性高,烟气除尘脱硫装置投入率为95%以上,系统主要设备很少发生故障,因此不会因除尘脱硫设备故障影响主设备的安全运行;3对操作弹性大,对燃烧煤种含硫量的变化适应性强。
旋流板塔用碱液作为脱硫剂,工艺吸收效果
好,吸收剂利用率高,可根据锅炉煤种变化,适当调节pH值、液气比等因素,以保证设计脱硫率的实现;4再生和沉淀分离在塔外,大大降低塔内和管道内的结垢机会;5钠碱循环利用,损耗少,运行成本低;6正常操作下吸收过程无废水排放,脱硫渣无毒,溶解度极小,无二次污染,可综合利用;;7灰水易沉淀分离,可大大降低水池的投资;8钠碱吸收剂反应活性高、吸收速度快,可降低液气比,从而既可降低运行费用,又可减少水池、水泵和管道的投资;9可利用石灰生产线当中的除尘灰作为再生剂(实际消耗物),运行成本低。
10钠-钙双碱法除尘脱硫一体化工艺、设备简单,占地面积小,设备维护费用少,基本不耗钠碱,投资和运行费用低,运行稳定,烟气处理效果良好,非常适合石灰生产线的烟尘治理。
氧化镁脱硫工艺工作原理氧化镁湿法脱硫工艺(简称:镁法脱硫)与石灰-石膏法脱硫工艺类似,它是以氧化镁(MgO)为原料,经熟化生成氢氧化镁(Mg(OH)2)作为脱硫剂的一种先进、高效、经济的脱硫系统。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的氢氧化镁进行化学反应从而被脱除,最终反应产物为亚硫酸镁和硫酸镁混合物。
如采用强制氧化工艺,最终反应产物为硫酸镁溶液,经脱水干燥后形成硫酸镁晶体。
反应过程1、熟化MgO+H2O—>Mg(OH)22、吸收SO2+H2O—>H2SO3SO3+H2O—>H2SO43、中和Mg(OH)2+H2SO3—>MgSO3+2H2OMg(OH)2+H2SO4—>MgSO4+2H2OMg(OH)2+2HC l—>MgCl2+2H2OMg(OH)2+2HF—>MgF2+2H2O4、氧化2MgSO3+O2—>2MgSO45、结晶MgSO3+3H2O—>MgSO3·3H2OMgSO4+7H2O—>MgSO4·7H2O系统组成脱硫系统主要由烟气系统、吸收塔系统、氢氧化镁浆液制备系统、浓缩塔系
统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。
锅炉/窑炉—>除尘器—>引风机—>浓缩塔—>吸收塔—>烟囱来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入浓缩塔、吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。
系统一般装3-4台浆液循环泵,每台循环泵对应一层雾化喷淋层。
当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。
吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。
吸收SO2后的浆液进入循环氧化区,在循环氧化区中,亚硫酸镁被鼓入的空气氧化成硫酸镁晶体。
同时,由吸收剂制备系统向吸收氧化系统供给新鲜的氢氧化镁。