隧道设计计算书

合集下载

隧道工程课程设计计算书

隧道工程课程设计计算书

目录第1章设计目的 (1)第2章设计原始资料 (1)第3章隧道洞身设计 (1)3.1隧道横断面设计 (1)3.1.1隧道建筑限界的确定 (1)3.1.2隧道内轮廓线的确定 (2)3.2隧道衬砌设计 (3)3.2.1隧道深浅埋的确定及围岩压力计算 (3)3.2.2隧道衬砌方案的拟定 (4)3.2.3隧道衬砌截面强度验算 (5)3.3隧道洞室防排水设计 (5)3.4隧道开挖及施工方案 (6)3.4.1施工方案: (6)3.4.2施工顺序: (7)第4章隧道洞门设计 (8)4.1洞门的尺寸设计 (8)4.1.1洞门类型的确定 (8)4.1.2 洞门尺寸的确定 (8)4.2洞门检算 (9)4.2.1条带“I”的检算 (9)422条带“U”的检算 (11)423条带“川”的检算 (13)总结 (14)参考文献 (15)隧道工程课程设计第1章设计目的通过课程设计,使学生掌握公路隧道支护结构的基本计算设计方法,熟悉矿山法在公路隧道施工中的工艺,掌握公路隧道施工设计的基本方法,以及掌握隧道暗挖洞门的形式,洞门的结构要求,设计方法和洞门作为重力式挡土墙的各种验算。

第2章设计原始资料原始资料取之于“”。

围岩级别:1级围岩容重:26 KN / m3隧道埋深:18m隧道行车要求:三车道高速公路,时速100km/h隧道衬砌截面强度校核:N=18.588tM=-1.523t m隧道洞门验算:地基土摩擦系数f=0.8 p45地基土容重卢19 KN / m3地基容许承载力-J = 80(kPa第3章隧道洞身设计3.1隧道横断面设计3.1.1隧道建筑限界的确定该隧道横断面设计是针对三车道高速公路I级围岩的隧道。

根据《公路隧道设计规范》选取隧道建筑限界基本值如下:W——行车道宽度,取3.75 X3=11.25C ---- 余宽,本设计设置检修道,故C=0。

R――人行道宽度,R=0。

J――检修道宽度,左侧0.75m,右侧1.00m。

隧道课设电子版计算书

隧道课设电子版计算书

计算书一 基本资料高速公路隧道,结构断面如附图1-1所示,围岩级别为III 类,容重324kN/m ϒ=,围岩的单行抗力系数630.510kN/K m =⨯,衬砌材料C20混凝土,弹性模量72.810kpa h E =⨯,容重324kN/m ϒ=。

二 荷载确定1 围岩竖向均布压力:13310.452s s=3; 20kN /;1i(5),B 10.5520.0610.67m,m B m i .0.452 1.56724s q m B q ωγλλωωω--=⨯==+-=+⨯=⨯=⨯⨯=式中: 围岩类别,围岩容重,跨度影响系数,隧道宽度式中0.06为一侧平均超挖量,=515时,=0.1,此处=1+0.1(10.67-5)=1.567所以 考虑到初期支护承担大部分围岩压力,而二次衬砌一般作为安全储备,故对围岩压力进行折减,对于本隧道按照35%折减,即q 35%s q kpa =⨯=2 围岩水平均布力:0.2e q k p a == 四 计算位移1单位位移用辛普生法近似计算,按计算列表进行。

单位位移的计算见附表1-4. 单位位移计算如下:1112221101221022201111M M s M Ms h h s M Ms h hss h hS d E IE I n S y d E IE I n y S d E I E I n δδδδ∆=≈=⨯∆==≈=⨯∆=≈=⨯∑⎰∑⎰∑⎰计算精度校核为:61112222()10δδδ-++=⨯26(1)110ss h y SE I nδ-+∆==⨯=∑ 闭合差0.∆≈ 单位位移计算表 附表1-4注:1. I —截面惯性矩,3b I ,12d b =取单位长度。

2.不考虑轴力的影响2 载位移——主动荷载在基本结构中引起的位移 (1)每一楔块上的作用力竖向力:Q i i qb =式中: 123456781h ,h ,h ,h ,h ,h ,h ,h .2i i ii hb m m m m m m m m d d G S γ---========+=⨯∆⨯表示衬砌外缘相邻两截面之间的竖直投影长度,由附图1-5量的:()2i Bb m m =≈=∑校核 水平压力:E e i i h =式中:12345678h ,h ,h ,h ,h ,h ,h ,h .,,,i q e g b m m m m m m m m a a a --========表示衬砌外缘相邻两截面之间的竖直投影长度,由附图1-5量的: 011sin ()cos ,y ip i i iii i i i i i i N a Q G a Ex x x y y y --=+-∆=-∆=-∆--∑∑相邻两接缝中心点的坐标增值自重力:12i ii h d d G S γ-+=⨯∆⨯ 式中:8hG i d γ--表示接缝i 衬砌截面厚度 。

高速公路隧道计算书

高速公路隧道计算书

高速公路隧道计算书
1. 引言
本文档为高速公路隧道的计算书,旨在对隧道的相关参数进行
计算,并评估其合理性和安全性。

2. 隧道参数计算
2.1 隧道尺寸
根据设计要求和实际情况,计算隧道的尺寸包括净高度和净宽度。

2.2 隧道线型
根据设计要求和地质勘探结果,计算隧道的线型参数,包括纵
断面和横断面的曲线半径等。

2.3 隧道施工方法
根据施工要求和地质情况,计算隧道的施工方法,包括顺做法、逆做法和转向做法等。

2.4 隧道地质参数
根据地质勘探结果和相关地质资料,计算隧道的地质参数,包
括地层土质、岩性等。

2.5 隧道支护结构计算
根据隧道的地质情况和设计要求,计算隧道的支护结构类型和
尺寸,包括锚杆、拱形支护等。

3. 隧道安全性评估
根据隧道的设计参数和施工方法,评估隧道的安全性,包括地
质灾害、水文条件和交通安全等方面进行综合评估。

4. 结论
本文档根据高速公路隧道的相关参数进行计算,并对其安全性
进行评估。

根据计算结果,可以为隧道的设计和施工提供参考依据,确保隧道的合理性和安全性。

以上为《高速公路隧道计算书》的内容摘要,详细计算和评估
请参阅正文。

隧道毕业设计计算书

隧道毕业设计计算书

隧道毕业设计计算书第一章工程概况1.1工程简介曹家湾隧道位于北碚区蔡家岗镇灯塔村南侧约0.8km处,中环路从其北侧约0.4km 处通过,隧道呈南北向设置于规划纵二路及其支路的汇交处,东北、西北、西南均为规划的居民用地,东南侧为商业用地。

曹家湾隧道为单线铁路隧道。

隧道总长为247m,隧道起点里程:YDK41+479.967,终点里程YDK41+726.967,有效中心里程为YDK41+600.917,有效隧道中心里程处轨面高程为340.844m。

隧道主体为明挖法施工。

1.2工程概况1.2.1 地形地貌曹家湾隧道原始地貌属剥蚀丘陵地貌,地形为沟槽与丘包相间分布,地势总体南高北低,地面高程345~366m,相对高差21m。

1.2.2 地层岩性勘查区出露的地层主要为第四纪人工填土层(Q4ml)、残坡积层(Q4el+dl),下伏基岩为侏罗系中统沙溪庙组(J2S),岩性以砂岩和砂质泥岩为主,各层岩土特征分述如下:1.第四纪全新统(Q4)(1)人工填土(Q4ml)为杂色,主要由粉质粘土、砂岩、砂质泥岩碎石块组成;块碎石含量10~20%,局部达40%,粒径为20~300mm,结构稍密,稍湿,回填时间大于5年,分布于曹家湾隧道西侧村庄一带,钻孔揭示厚0.90~1.30m。

(2)残破积层(Q4el+dl)为粉质粘土,褐黄色,灰褐色,一般呈可塑状,韧性中等,干强度中等,切面较光滑,稍有光泽,无摇振反应。

场地内广泛分布,钻孔揭示厚0.20~0.55m。

2.侏罗系中统沙溪庙组(J2S)砂质泥岩:紫红色、褐红色,矿物成分主要为粘土矿物,粉砂泥质结构,泥质胶结,中厚层状构造,夹砂质团块、条带及透镜体。

中等风化岩体裂隙不发育,岩体较完整,岩质软,属软岩。

岩体基本质量等级为Ⅳ级。

砂岩:灰色,细~中粒结构,厚层状构造,泥钙质胶结,以钙质胶结为主,矿物成分主要为石英、长石、云母等。

中等风化岩体裂隙不发育,岩体较完整岩质较硬岩石基本质量等级为Ⅳ级。

隧道毕业设计计算书

隧道毕业设计计算书
0.55
0.60
Ⅱ、Ⅲ级围岩为
表面不光滑时
1.3设计标准及遵循规范
1.3.1 设计标准
(1)隧道按规定的远期的交通量设计,采用分离式单向行驶两车道隧道(上、下行分离)。
(2)隧道设计车速、几何线形与净空按100km/h计,隧道照明设计速度按照100km/h设计。
1.3.2 遵循规范
(1)、《公路隧道设计规范》JTGD70-2004
This highway tunnel for separate one-way road two-lane tunnel, stretches of the left line, the basic situation of 298m surrounding rockⅡlevel for: long 155m; ZhangGuiHuanong 90m surroundingⅣlevel 53m surrounding long.
表1-1 各类围岩主要物理力学指标表
围岩级别
力学指标



备注
密度ρ(×103kg/m3)
2.50~2.60
2.60~2.80
2.70~2.90
弹性抗力系数K(MPa/m)
400~500
1000~1200
1400~1600
弹性模量(静态) E(Gpa)
8.0~10.0
15.0~20.0
25.0~30.0
Tunnel after many calculation and checking, DongMen, lining and ventilation, etc, can normal construction requirements.
[Key words]:tunnel; Ventilation; Composite linings; New arcane

高速公路隧道设计计算书

高速公路隧道设计计算书

高速公路隧道设计计算书1. 引言此文档旨在提供高速公路隧道设计的计算书。

通过详细说明设计计算的相关参数和步骤,以确保隧道的安全和可靠性。

2. 隧道几何参数计算2.1 隧道断面尺寸计算根据设计要求和道路标准,计算隧道的断面尺寸。

考虑隧道的通行能力和施工限制,确保满足道路交通的需求。

2.2 隧道长度计算根据路线规划和土地使用情况,计算隧道的长度。

考虑隧道的地质条件和环境保护要求,确保隧道的稳定和安全性。

2.3 隧道纵坡计算根据道路纵坡和地形要求,计算隧道的纵坡。

确保隧道内的车辆行驶平稳,避免出现陡坡和坡度过大的情况。

3. 隧道结构设计计算3.1 隧道支护方式选择根据地质勘察结果和工程要求,选择适当的隧道支护方式。

考虑地层的稳定性和隧道使用寿命,确保隧道的结构安全可靠。

3.2 隧道设计荷载计算根据设计车辆的荷载和道路使用要求,计算隧道的设计荷载。

考虑车辆的重量和速度,确保隧道的结构可以承受荷载。

3.3 隧道混凝土衬砌厚度计算根据隧道的尺寸和设计荷载,计算隧道混凝土衬砌的厚度。

考虑混凝土的强度和耐久性,确保隧道的结构稳定和耐久。

4. 隧道排水设计计算4.1 隧道排水量计算根据降雨量和地质条件,计算隧道的排水量。

考虑隧道内的地下水位和地面径流,确保隧道保持干燥和安全。

4.2 隧道排水系统设计根据隧道的结构和排水量要求,设计有效的隧道排水系统。

确保排水系统的畅通和排水能力满足设计要求。

5. 结论通过以上计算,我们可以得出隧道设计的相关参数和结构要求。

这些计算书将为隧道设计工作提供参考,并确保隧道的安全和可靠性。

---以上是高速公路隧道设计计算书的概要内容。

为保证设计的准确性,请根据具体工程要求进行详细计算和结构设计。

隧道工程课程设计计算书

隧道工程课程设计计算书

隧道工程课程设计计算书设计参数:-隧道长度:2000m-隧道净宽:10m-隧道净高:6m-土体密度:18.5kN/m3-土体内摩擦角:30°-地下水位:5m-隧道内地下水位:2m-土体内抗剪强度参数:φ=30°计算步骤:1.计算隧道内各个断面的相对稳定性;2.计算隧道支护结构的尺寸和索力;3.计算隧道开挖的顺序和土体的应力状态;4.计算隧道的变位量和不同支护结构的变形量;5.计算隧道内构筑物的稳定性;6.计算隧道坍塌和局部沉降的可能性。

1.相对稳定性计算:计算隧道内两个断面的相对稳定性,以确定隧道开挖顺序和施工方法。

首先计算土体的自重应力,然后计算水压力和隧道开挖导致的土体应力变化。

根据土体内摩擦角和土体内抗剪强度参数,计算土体的剪应力和相对稳定性。

2.支护结构的尺寸和索力计算:根据隧道净高和净宽,计算隧道内的支护结构的尺寸和索力。

使用经验公式或数值模拟方法计算支护结构的索力。

3.土体的应力状态计算:根据施工顺序和隧道支护结构的施工过程,计算隧道开挖时土体的应力状态。

包括计算土体的剪应力和轴向应力。

4.隧道的变位量和变形计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道开挖时的变位量。

使用弹塑性模型计算不同支护结构的变形量。

5.隧道内构筑物的稳定性计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道内构筑物的稳定性。

包括计算构筑物的动力稳定性和长期稳定性。

6.隧道坍塌和局部沉降的可能性计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道开挖过程中的坍塌和局部沉降的可能性。

通过计算应力集中和土体塑性区域的发展,评估土体失稳的可能性。

以上是隧道工程课程设计计算书的主要内容,涉及隧道设计的各个方面。

通过对土体的力学性质、支护结构的尺寸和索力以及隧道开挖过程中土体应力状态的计算,可以确定隧道的稳定性和施工方法。

一个隧道计算书

一个隧道计算书

一、 结构尺寸隧道内径:5400;隧道外径:6000;管片厚度:300mm 管片宽度:1500mm 二、 计算原则选择区间隧道地质条件较差、隧道埋深较大、地面有特殊活载(地面建筑物 桩基、铁路线等)等不同地段进行结构计算。

三、 计算模型计算模型采用修正惯用设计法。

考虑管片接头影响,进行刚度折减后按均质圆 环进行计算;水平地层抗力按三角形抗力考虑;计算结果考虑管片环间错缝拼装 效应的影响进行内力调整。

弯曲刚度有效率 n =0.8,弯矩增大系数E =0.3。

计算 简图如下图所示。

使用ANSYS?序软件进行结构计算。

四、 计算荷载荷载分为永久荷载、活载、附加荷载和特殊荷载等四种。

1) 永久荷载:管片自重、水土压力、上部建筑物基础产生的荷载。

考虑地层特征 采取水土合算或水土分算。

2) 活载:地面超载一般按20KN/m 计;有列车通过地段按40KN/m 计。

3) 附加荷载:施工荷载一一盾构千斤顶推力,不均匀注浆压力,相邻隧道施工影 响等。

4) 特殊荷载:地震力一一按抗震基本烈度为7度计算,人防荷载按六级人防计算, 按动载化为静载计算。

五、 内力计算1、一般地段:地质条件较差、埋深较大地段(地面超载 20KN/m ):里程YCK5+990地面超载压力基底竖向反力修正惯用设计法计算模型计算模型节点划分选取地质钻孔为MEZ2-A073隧道埋深约33.9m,地下水位在地面下5.0m。

地层由上至下分别为<1>-7.3m; <5-1>-39.2m ; <5-2>-20m。

隧道所穿过地层为<5-2>。

隧道横断面与地层关系如下图所示:<!> [<5- 1 >O<5 —2>隧道横断面与地层关系2、列车通过地段:地面超载 40KN/m,里程YCK6+050选取地质钻孔为 MEZ2-A166隧道埋深约35.5m,地下水位在地面下12.5m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《地下结构课程设计》任务书——地铁区间隧道结构设计学校:交通大学学院:土木建筑工程学院:俊学号:11231214班级:土木1108班指导教师:贺少辉、晓静目录一.设计任务 (3)1.1 工程地质条件 (3)1.2 其他条件 (3)二.设计过程 (5)2.1 根据给定的隧道或车站埋深判断结构深、浅埋 (5)2.2 计算作用在结构上的荷载 (5)2.2.1永久荷载 (5)2.2.2可变荷载 (7)2.3 进行荷载组合..................................... 错误!未定义书签。

2.3.1承载能力极限状态................................ 错误!未定义书签。

2.3.2正常使用极限状态 (7)2.4 绘出结构受力图 (8)2.5 利用midas程序计算结构力 (8)2.5.1 midas程序建模过程 92.5.2 绘制力分析图 11三. 结构配筋计算 ......................................... 错误!未定义书签。

3.1 基本条件 11 3.1 顶板配筋计算 (15)3.2 侧板配筋计算 (18)3.3 底板配筋计算 (20)四.最终配筋: (23)五.参考资料 22六、设计总结............................................. 错误!未定义书签。

一、设计任务对某区间隧道进行结构检算,求出力,并进行配筋计算。

具体设计基本资料如下:1.1 工程地质条件线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。

其主要物理力学指标如表1,本地区地震烈度为6度。

1.2 其他条件地下水位在地面以下12m处;隧道顶板埋深14m;采用暗挖法施工,隧道断面型式为马蹄形。

隧道位置形状图隧道部尺寸设计:二、设计过程2.1 根据给定的隧道埋深判断结构深、浅埋;可以采用《铁路隧道设计规》推荐的方法,即有ℎ∗=0.45×2ℎ−1×[1+ℎ(ℎ−5)]上式中s为围岩的级别;B为洞室的跨度;i为B每增加1m时的围岩压力增减率。

由于隧道拱顶埋深14m,位于粉土层、细砂层和圆砾土中,根据《地铁设计规》10.1.2可知“暗挖结构的围岩分级按现行《铁路隧道设计规》确定”。

围岩为Ⅵ级围岩。

则有ℎ∗=0.45×2ℎ−1×[1+ℎ(ℎ−5)]=0.45×26−1×[1+0.1(11.9−5)]=24.34ℎ因为埋深ℎℎ(=14ℎ)<ℎ∗=24.34ℎ,可知该隧道为极浅埋。

2.2 计算作用在结构上的荷载;1 永久荷载A 顶板上永久荷载a. 顶板自重(考虑初衬和二衬的自重)q=γd=25×(0.45+0.3)=18.75KPab 地层竖向土压力由于拱顶埋深14m,则顶上土层有杂填土、粉土、细砂,且地下水埋深12m,应考虑土层压力和地下水压力的影响。

ℎ=∑ℎℎℎℎ顶=2.3×16+4.5×18+5.2×19+2×(26.6−10)=249.8ℎℎℎc. 地层竖向水压力ℎ=ℎℎ.ℎ=2×10=20ℎℎℎ水(顶)B 底板上永久荷载(考虑初衬和二衬的自重)a. 底板自重q=γd=25×(0.3+0.5)=20KPab. 水压力(向上):ℎ水(底)=ℎℎ.ℎ=10×(14−12+8.812)=108.12ℎℎℎC 侧墙上永久荷载地层侧向压力按主动土压力的方法计算,由于埋深在地下水位以下,需考虑地下水的影响。

(采用水土分算)ℎℎ上=ℎℎℎ2(45ℎ−ℎ上)=ℎℎℎ2(45ℎ−22)=0.455ℎℎ中=ℎℎℎ2(45ℎ−ℎ上2)=ℎℎℎ2(45ℎ−252)=0.406ℎℎ下=ℎℎℎ2(45ℎ−ℎ下2)=ℎℎℎ2(45ℎ−232)=0.438a. 侧墙自重q=γ.d=25×(0.45+0.3)=18.75KPab. 隧道侧墙上部土压力:用朗肯主动土压力方法计算ℎ侧=(∑ℎℎℎℎ)ℎℎ上=[2.3×16+4.5×18+5.2×19+2×(26.6−10)]ℎℎ上=113.7ℎℎℎc. 对于隧道侧墙图层分界处土压力,隧道侧墙有两处分界处土压力:第一处:q上=(∑ℎℎℎℎ)Ka上=(249.8+(14.4−14.0)×(26.6−10))Ka上=116.7KPaq中1=(∑ℎℎℎℎ)Ka中=(249.8+(14.4−14.0)×(26.6−10))Ka中=104.2KPa 第二处:q中2=(∑ℎℎℎℎ)Ka中=(256.6+(22.2−14.4)×(27−10))Ka中=158.0KPaq下=(∑ℎℎℎℎ)Ka下=(256.6+(22.2−14.4)×(27−10))Ka下=170.5KPa d. 对于隧道侧墙底部土压力q底=(∑ℎℎℎℎ)Ka下=(256.6+(22.2−14.4)×(27−10)+0.612×(27.5−10)Ka下=175.2KPae. 对于隧道侧墙水压力ℎ水(上)=ℎℎ.ℎ1=10×(14−12)=20ℎℎℎℎ水(下)=ℎℎ.ℎ2=10×(14−12+8.812)=108.12ℎℎℎ2 可变荷载A顶板上可变荷载按《地铁设计规》10.2.1中第三条规定:在道路下面的潜埋暗挖隧道,地面的车辆荷载按20KPa的均布荷载取值,并不计动力作用影响。

人行荷载按照4KPa的均布荷载取值,并不计动力作用影响。

B底板上可变荷载主要为列车车辆运行的可变荷载,一般取为[(140×4)÷19.62]÷5=5.7KPaC 侧墙上可变荷载由于到隧道上部地面车辆的运行和过往的行人,会导致侧向压力的增大:ℎ倒=(20+4)×ℎℎ=24×0.406=9.7ℎℎℎ2.3 进行荷载组合1、承载能力极限状态荷载组合采用1.2恒载+1.4活载根据以上各种计算,作用在隧道上的设计荷载有:拱顶:设计恒载:-408.44ℎℎℎ设计活载:-33.6ℎℎℎ底板:设计恒载:132.46ℎℎℎ设计活载:-8ℎℎℎ侧墙(顶部):设计恒载: 180.50ℎℎℎ(x方向)设计活载: 11.62ℎℎℎ(x方向);(底部):设计恒载: 382.48ℎℎℎ(x方向);设计活载: 11.62ℎℎℎ(x方向);2、正常使用极限状态荷载组合采用恒载+活载根据以上各种计算,作用在隧道上的设计荷载有:拱顶:设计恒载:-302.55ℎℎℎ设计活载:-24ℎℎℎ底板:设计恒载:88.12ℎℎℎ设计活载:-5.7ℎℎℎ侧墙(顶部):设计恒载: 133.7ℎℎℎ(x方向)设计活载: 8.3ℎℎℎ(x方向);(底部):设计恒载:283.32ℎℎℎ(x方向);设计活载: 8.3ℎℎℎ(x方向);2.4绘制结构受力图根据承载能力极限状态荷载组合值,可以分别计算出拱顶、底板、侧墙和中墙的设计荷载值,如下图:2.5、利用midas程序计算结构力用隧道通用有限元程序—MIDAS/GTS,MIDAS/GTS是目前最先进的土木隧道结构分析系统,它对土木隧道结构的分析中所需要的各种功能进行了综合的考虑。

MIDAS/GTS的广泛使用,为土木建筑物的建模和分析提供了很大的便利。

1、建立隧道模型首先定义材料属性,本设计采用C30混凝土,截面厚度为0.45m,长度按1m来计算,然后利用Midas GTS绘制二维隧道截面模型,并划分节点数为54个,如图所示:然后建立单元坐标系及节点号如图所示:边界条件利用曲面弹簧功能定义模型的边界条件。

选择赋予地基弹簧的节点后输入相应的地基反力系数,根据隧道跨越的不同土体建立不同的地基反力系数。

荷载组合:根据承载能力极限状态荷载组合,组合设计为1.35倍静力荷载+1.4倍动力荷载;根据正常使用极限状态荷载组合,组合设计为静力荷载+动力荷载。

2、根据MIDAS软件绘制受力图如图:轴力图弯矩图剪力图:三、结构配筋计算1.基本条件2、 顶板配筋计算2.1 设计条件通过上述数据,我们发现在使用期间顶板承受的最大正弯矩和最大负弯矩值为最大弯矩:199.95kN.m 最大轴力:2237.58kN5.2.2 计算过程截面尺寸:'*1000450;50s s b h mm mm a a mm =⨯==取计算长度 :011.90.611.3;l m =-= 045050400s h h a mm =-=-=弯矩设计值199.95M KN m =⋅,轴力设计值2237.58N KN =,偏心矩: 0199.95100089.362237.58M e mm N ==⨯= 附加偏心矩: 450max{15,20}2030a e mm === 初始偏心矩:089.3620109.36i a e e e mm =+=+=偏心距增大系数:10.50.514.31000450 1.4412237.581000c f A N ς⨯⨯⨯===>⨯,取0.11=ς 011.325150.45l h ==> 所以构件长细比对截面曲率影响的系数20.92ς= 则偏心矩增大系数:201202111400/111.31 1.00.921400109.36/4000.452.63i l e h h ηςς⎛⎫=+ ⎪⎝⎭⎛⎫=+⨯⨯ ⎪⨯⎝⎭= 则计算偏心距为: 02.63109.362880.30.3400120i e mm h mm η=⨯=>=⨯=因此,可按大偏心受压构件进行计算①求受压区钢筋面积's A4502885046322i s h e e a mm η=+-=+-= 取55.0==b εε则受压区钢筋面积:()()()()20'''02210.5223758046314.310004000.5510.50.55300450501254c b b s y s Ne f bh A f h a mm ξξ--=-⨯-⨯⨯⨯⨯-⨯=⨯-=选用6Φ18,'s A =15272mm求受拉区钢筋面积s A受压区计算高度:04001672100s x h mm a mm=-==>=01670.420.55400b x h ξξ===<= 则受拉区钢筋面积为:022min ()2()4502237580(25050)2300(45050)13980.00210005501100i s s y sh N e a A f h a mm bh mm ηρ'-+='-⨯-+=-=>=⨯⨯= 经过反复的裂缝宽度验算,采用6Φ18,s A =15272mm15273000.070.55100045014.3y s c f A bh f ξ==⨯=<⨯,非超筋,满足要求。

相关文档
最新文档