数值分析复习题
数值分析期末考试题

数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。
2. 多项式插值中,牛顿插值多项式可以通过________法来构建。
3. 数值积分中,高斯求积法是一种________方法。
4. 误差传递的估计通常通过________公式来进行。
5. 非线性方程的求解中,二分法是一种________方法。
三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。
2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。
3. 解释插值和拟合的区别,并举例说明各自的应用场景。
4. 阐述数值积分中梯形法则的原理及其误差估计方法。
5. 讨论非线性方程求解中不动点理论和收敛性的关系。
四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。
数值分析复习试题及参考答案

1、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x 的绝对误差限。
解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε()07057.00005.0115.80005.01025.621=⨯+⨯≈x x ε2、设430.56,1021.12≈≈x x均具有5位有效数字,试估计由这些数据计算21x x +的绝对误差限。
解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε0055.0)()()(2121=+=+x x x x εεε3、简答题 (1)已知12622)(256+-+-=x xxxx f ,求]1,0[f 及]6,5,4,3,2,1,0[f 。
解:由f(0)=1,f(1)=5得 []()()41011,0=-=f f f因为最高阶差商只出现在最高次,所以[]26,5,4,3,2,1,0=f(2)求积公式[])1()0(121)]1()0([21)(1f f f f dx x f '-'++≈⎰的代数精度为多少? 解:令()xx f =,则()21211021==⎰xdx x f ,右边=21,左边=右边同理令()2xx f =,()3xx f =均准确成立,()4xx f =时,左边≠右边所以,上式具有3阶精度4、求满足下表条件的Hermit 插值多项式。
x0 1)(x f -1 0 )(x f '-210解:使用重节点差商表法x y 一阶二阶 三阶 0 -1 0 -1 -2 1 0 1 3 1 010 9 6()()1236163212322---=-++--=x x x x xx x x H5、已知函数)(x f y =的数据如下:x1 2 4 -5 )(x f3 4 1 0(1)求3次Lagrange 插值多项式; (2)求3次Newton 插值多项式; (3)写出插值余项。
数值分析考试卷及详细答案解答汇总

姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。
2. 十进制123.3转换成二进制为1111011.0而1。
3. 二进制110010.1001转换成十进制为 50.5625 。
4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。
6.1112=0.69314718...,精确到 10一’的近似值是 0.693。
* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。
数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、分别用Doolittle和Crout分解法求线性代数方程组的解
1
2
3
123x2 135x=3 136x4⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
2、对线性方程组(1)
123
123
123
0.40.41
0.40.82
0.40.83
x x x
x x x
x x x
++=
⎧
⎪
++=
⎨
⎪++=
⎩
;(2)
123
123
123
221
1
221
x x x
x x x
x x x
+-=
⎧
⎪
++=
⎨
⎪++=
⎩
,写出线性方程
组的J-迭代法,G-S迭代法,SOR迭代法的矩阵迭代和分量迭代格式
3
c0
>)近似值的迭代格式。
4、求非线性方程组
1
12
2
121
4-0.11
1
-40
8
x
x x e
x x x
⎧+=
⎪
⎨
++=
⎪
⎩
的牛顿迭代格式。
5、已知函数值(0)1
f=,(1)9
f=,(2)23
f=,(4)3
f=,求不超过三次的拉格朗日插值多项式。
6、已知当1,0,1,2,3
x=-时对应函数值为(1)2
f-=-,(0)1
f=,(1)3
f=,(2)4
f=,(3)8
f=,求四次牛顿插值多项式。
7、确定一个次数不高于4的多项式()
p x满足条件(0)(0)0
p p'
==,(1)(1)1
p p'
==,(2)1
p=
8、求一个次数不高于3的多项式
3()
p x,满足下表所示的插值条件。
10、给定数据如下表,试求形如1y =
的拟合函数。
11、用梯形公式,辛普森公式、柯特斯公式计算定积分()3
3
2
1
275I x
x x dx =-+-⎰的近似
值,并估计其误差(计算结果取5位小数)。
12、应用龙贝格求积算法计算积分10
sin x I dx x
=
⎰
13、写出下列微分方程的向前欧拉,向后欧拉,梯形公式,改进欧拉公式的迭代格式
(01)(0)1y y
x y '=-⎧≤≤⎨
=⎩
取步长0.1h =
14、写出下列微分方程的向前欧拉,向后欧拉,梯形公式,改进欧拉公式的迭代格式
222sin (0)0.4(0)0.6x y y y e x y y '''⎧-+=⎪
=-⎨
⎪'=-⎩
取步长0.1h =
15、考虑如下二维系统
1122121122()2()()()1
tanh(())2()0.3sin 2(0)(2),(0)(2)dy x y x y x dx
dy x y x y x x dx y y y y ππ⎧
=-+⎪⎪
⎪=-+⎨
⎪
==⎪
⎪⎩
([0,2])x π∈ 写出Jacobi 动力迭代格式,G-S 动力迭代格式,SOR 动力迭代格式。