七年级数学上册 3.2 代数式 第2课时 代数式值的变化 北师大版
2024年秋季新北师大版七年级上册数学教学课件 3.1.2 代数式的值

像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘 必须写乘号;除法要写成分数形式,带分数与字母相乘需把带 分数化为假分数,书写单位名称什么时候不加括号,什么时候 要加括号。注意代数式括号的适当运用。⑤正确进行代换。列 代数式时,有时需将题中的字母代入公式,这就要求正确进行 代换。
知识点2:代数式的值(重点) 1.用具体数值代替代数式里的字母,就可以求出代数式的值。 2.求代数式的值的步骤:(1)用数值代替代数式里的字母。(2)按照
人x人、学生y人,那么该旅游团应付多少门票费?
该旅游团应付门票费(10x+5y)元
2.请同学们在完成上面任务后思考以下问题:
代数式10x+5y还可以表示哪些生活中的问题?
①如果用x(元/kg)表示大米的价格,用y(元/L)表示食用油的价格, 那么10x+5y就表示购买10 kg大米和5 L食用油所用的费用; ②如果用x(cm3)表示某种正方体的体积,用y(cm3)表示某种长方体 的体积,那么10x+5y就表示10个这样的正方体和5个这样的长方体
行促销,下列促销方式描述正确的是( A )
A.按(0.9a-2)元的价格出售,促销方式是先打九折,再优惠2元 B.按(0.9a-2)元的价格出售,促销方式是先优惠2元,再打九折 C.按0.9(a-2)元的价格出售,促销方式是先打九折,再优惠2元 D.按0.9(a-2)元的价格出售,促销方式是先优惠2元,再打一折
回答下列问题。
n
12345678
5n+6 11 16 21 26 31 36 41 46
n2
1
4
9
16 25 36 49 64
(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?
随着n的值逐渐变大,5n+6和n2这两个代数式的值逐渐变大
北师大版七年级数学上册 (代数式)整式及其加减教学课件(第2课时)

知3-导
议一议 观察下图中的多边形,它们的边、角有什么特点? 与同伴进行交流.
知3-讲
各边相等,各角也相等的多边形叫做正多边 形,所以正多边形同时具有各边相等,各角相等 的性质.
(来自《点拨》)
知3-讲
例4 下列说法不正确的是( B ) A.正多边形的各边都相等 B.各边都相等的多边形是正多边形 C.正三角形就是等边三角形 D.六条边、六个内角都相等的六边形都是 正六边形
(1) 设一个人的体重为w( kg),身高为h(m),求 他的身体质量指数.
(2) 张老师的身高是1.75m,体重是65kg,他的 体重是否适中?
(3) 你的身体质量指数是多少?
知识点 1 求代数式的值
知1-讲
一般地,用具体数值代替代数式里的字母, 按照代数式中的运算关系计算得出的结果,叫做 代数式的值.
分成(n-2)个三角形;n边形的对角线 条数为 n(n 3) .
2
(来自《点拨》)
知2-讲
例2 (1)四边形从一个顶点可引出几条对角 线?共有几条对角线?五边形呢?
(2)n边形从一个顶点可引出几条对角线? 共有几条对角线?请说明理由.
导引:根据多边形的定义画出图形,再运用图形 可直观解决问题.
知2-讲
(来自《典中点》)
知1-练
3 下列用具体数值代替代数式中的字母,
其中正确的是( B )
A.当a= 2 时,a2+5= 22 +5
3
3
B.当a=
5
1 2
时,a2+1=
5
1 2
2
+1
C.当a=5时,2a2+8=(2×5)2+8
D.当a=3时,2a+1=23+1
(来自《典中点》)
3.2整式的加减课件(第2课时)课件2024-2025学年北师大版七年级数学上册

=17 + 10 − 14 2
随堂练习
1、计算:
(3)7(3 + 2 − − 1) − 2(3 + );
解: (3)7(3 + 2 − − 1) − 2(3 + )
=73 + 72 − 7 − 7 − 2
=4 2 − 2 + 7 + 3 − 1
=3 2 + 10 − 1
随堂练习
1、计算:
(2)(5 + 3 − 15 2 ) − (12 + 7 + 2 );
解: (2)(5 + 3 − 15 2 ) + (12 + 7 + 2 )
=5 + 3 − 15 2 + 12 + 7 + 2
3 2
2
+ 3 − 4 −
− + 2
+ 4 −
3 2
的差。
2
+
3 2
)
2
随堂练习
1、计算:
(1)(4 2 + 7) + (− 2 + 3 − 1);
解: (1)(4 2 + 7) + (− 2 + 3 − 1)
=4 2 + 7 − 2 + 3 − 1
解: (2) + (5 − 3) − ( − 2)
=4 − +3
= + 5 − 3 − +2
=3 + 3
=5 −
例3 化简下列各式
3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册

教学反思与改进
我发现一些学生在代数式求值时,仍然会犯一些基本的错误,比如忘记乘以字母的系数,或者在化简时忽略了一些基本的代数规则。这些问题让我意识到,尽管学生们在课堂上能够跟随我的讲解,但在实际操作时,他们可能并没有完全理解代数式的运算逻辑。
5.解答以下实际问题:
-某商店举行打折活动,原价为150元,打九折后的价格是150 * 90% = 135元。
-小明有30元,他想买一个价值25元的商品,他还剩30 - 25 = 5元。
解答:设打折后的价格为x元,根据题意可得原价的80%等于打折后的价格,即120 * 80% = x。化简得到x = 96。所以打折后的价格是96元。
6.总结与布置作业(5分钟)
同学们,通过本节课的学习,我们掌握了代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。希望大家能够课后复习本节课的内容,并完成课后作业,巩固所学知识。
3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
课程基本信息
1.课程名称:3.2代数式的值(第二课时)教学设计
2.教学年级和班级:2024-2025学年人教版(2024版)七年级数学上册
3.授课时间:1课时
4.教学时数:45分钟
3.随堂测试:通过对学生的随堂测试情况进行分析,发现大部分学生能够掌握代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。但仍有部分学生在运算过程中出现错误,需要进一步加强对运算规则的掌握。
北师大版七年级上册数学 3.2 第2课时 代数式的求值 优秀教案

第2课时 代数式的求值1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法.2.会利用代数式求值推断代数式反映的规律.3.能解释代数式求值的实际应用.一、情境导入谁说数学学不好,这不,先前数学成绩很差的小胡,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是小胡设计的一个程序.当输入x 的值为3时,你能求出输出的值吗?二、合作探究探究点一:直接代入法求代数式的值当a =12,b =3时,求代数式2a 2+6b -3ab 的值. 解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得. 解:原式=2×(12)2+6×3-3×12×3=12+18-92=14. 方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、平方运算,要用括号括起来.探究点二:利用程序图求代数式的值有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2016次输出的结果是 W.解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(2016-1)÷3=671…2,所以第2016次输出的结果为2.方法总结:这种程序运算的特点是程序有多个分支,要先对输入的数据进行判断,再选择适当的某个分支按照指明的程序进行运算.探究点三:整体代入法求值(湘西州中考)已知x -2y =3,则代数式6-2x +4y 的值为( )A.0B.-1C.-3D.3解析:此题无法直接求出x 、y 的值,这时,我们就要考虑特殊的求值方法.根据已知x -2y =3及所求6-2x +4y ,只要把6-2x +4y 变形后,再整体代入即可求解.因为x -2y =3,所以6-2x +4y =6-2(x -2y )=6-2×3=0.故选A.方法总结:整体代入法是数学中一种重要的方法,同学们应加以关注.探究点四:代数式在实际问题中的应用如图所示,某水渠的横断面为梯形,如果水渠的上口宽为a m ,水渠的下口宽和深都为b m.(1)请你用代数式表示水渠的横断面面积;(2)计算当a =3,b =1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a 、b 的代数式表示水渠横断面面积;(2)把a =3、b =1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a +b )b (m 2); (2)当a =3,b =1时水渠的横断面面积为12(3+1)×1=2(m 2). 方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.。
3.1 代数式 第二课时代数式的值 课件-2024-2025学年北师大版数学七年级上册

.
18.6在18.5与24之间,体重适中
3.1 代 数 式
知识.巩固
人体血液的质量占人体体重的7%~8%。
(1)如果某人体重是akg,那么他的血液质量大约在什么范围内?
(2)小亮体重是35kg,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量。
解:(1)7%akg~8%a kg
x -
;
y
;
(3)一本数学本x元,一本语文本y元,5本数学本和3本语文本共
(4)今年面粉产量由m kg增长10%后,达到 (1+10
%)m
kg.
(5x+3y)元;
3.1 代 数 式
知识.巩固
1,代数式6a可以表示什么
1. 购物问题:一本书的价格是a元,那么买6本书的总费用就是6a元.
2. 几何问题:一个正六边形的边长是a厘米,那么其周长就是6a厘米.
解:(1)该旅游团应付的门票费是(10x+5y)元.
(2)把x=37,y=15代入代数式,得
10x+5y =10×37+5×15 =445.
因此,他们应付445元门票费.
代数式10x+5y
还可以表示那些
生活中的问题?
3.1 代 数 式
情景导入
例如:1,用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度
)
A.1
B.-1
C.-5
D.5
5. 下图是一个“数值转换机”的示意图,若输入x,y的值分别为4,-2
,则输出的结果是(D
A.15
)
B.5
C.-5
D.-15
随堂练习
6.已知a=2, b=-3,求代数式(−) +
陕西省宝鸡市渭滨区七年级数学上册 3.2 代数式(2)教案 (新版)北师大版-(新版)北师大版初中七

2.代数式(二)一、学生起点分析本节课是教材第三章《整式及其加减》的第二节第2课时,学生在前1课时已经初步了解了代数式和代数式值的概念,通过对代数式实际意义的解释,降低了抽象的字母表示数的难度,本节课学生将会很快的掌握求代数式值的方法,更好的感受抽象的字母和具体的数之间的关系。
一开始的两个数值转换机显得生动有趣,难度也不大,所以学生主动参与意识更强,课堂氛围更浓烈,分析能力和综合思维能力会有一定程度的提高。
二、教学任务分析本课时的教学内容一开始就用两个数值转换机直奔教学主题――求代数式的值。
因为内容生动有趣,难度也不大,虽然两个数值转换机的运算顺序不同,列出的代数式也不同,但是学生结合上一节的内容很自然地正确写出两个不同的代数式,再通过具体的字母的值来求代数式的值,然后通过一个表格,让学生感受不同的代数式在字母取相同值的代数式的值的不同,并感知代数式的值随字母变化时值的变化情况,激发学生学习兴趣,渗透变量之间的关系,渗透字母的取值和代数式值对应的思想。
教学中要充分利用学生的积极性,争取学生主动参与,通过丰富有趣的类比让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,教学过程中要注重培养学生正确运用数学语言进行表达和交流的能力.根据以上分析,确定本节课的教学目标如下:1.在代数式求值过程中,初步感受函数的对应思想;2.感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。
教学重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.教学难点:正确地求出代数式的值.三、教学过程分析本节课由五个教学环节组成,它们是①旧知归纳,直奔主题②创设背景,理解概念③习题精选意义升华④练习交流,巩固提高.其具体内容与分析如下:第一环节旧知归纳,直奔主题内容:回顾上节课所学习代数式和代数式值的概念,介绍数值转换机。
目的:通过复习上一节知识内容,直接点出本节主题,在于降低教学难度,向学生介绍数值转换机,激发学生兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.目的在于引导学生体验字母取值和代数式值的对应思想。
2023-2024学年北师大版七年级数学上册3

5)-60 =125+15-60 =80
注意:相同的代数式可以看作一个字母——整体代换
注意事 项
求代数式的值的注意事项:
(1)代入数值前应先指明字母的取值,把“当……时”
写出来。
(2)如果字母的值是负数、分数,并且要计算它的乘
(2)你们用同一个公式计算的结果相同吗?为什么?
探究新知 例1、已知圆的半径为R,圆周率是 ,求当半径的值
分别为R 4cm, R 2.5cm, R 2 cm时的圆面积。 3
解:当R 4cm时, R2 42 16 ( cm2 )
当R 2.5cm时, R2 2.52 6.25 ( cm2 )
随堂练习
1.当m=3,n=-2时,代数式m2-2n2的值是1______
解析:
将m=3,n=-2代入m2-2n2得9-2×(-2)2=1.故填1.
2、若x2-2x+1=0,则2x2-4x=-2
.
解析: 根据已知条件目前还解不出x的值,所以把x22x+1=0进行整体思考,将x2-2x+1=0变形为x2-2x=-
当堂测试
5.如图是一种分类数值转换机,若开始输入x的值是14,
则第2021次输出的结果是 8 .
当堂测试
6.已知代数式 5x2﹣2x,请按照下列要求分别求值: (1)当 x=1 时,求代数式 5x2﹣2x 的值; (2)当 时,求 5x2﹣2x 的值.
分层作 【业基础达标作业】
1.若 x=﹣2,则﹣ x3 的值是( B )
解:(1)他的血液质量大约在6%a千克—7.5%a千克之间. (2)亮亮的血液质量大约在2.1千克—2.625千克之间. (3)体重50公斤的血液质量约在3千克—3.5千克之间.