化工基础_第2讲_流体流动过程及流体输送设备冯启.pptx

合集下载

化工基础第讲流体流动过程及流体输送设备冯启

化工基础第讲流体流动过程及流体输送设备冯启

第二章流体流动过程及输送机械2.1流体的矜力学基本方程貞2.2流体流动的基本规律化工生产中处理的原料、中间产物,产品,大多数是流体,涉及的过程大部分在流动条件下进行。

流体的流动和输送是必不可少的过程操作。

研究流体的流动和输送主要是解决以下问题。

①选择输送流体所需管径尺寸,确定输送流体所需能量和设备。

②流体性能参数的测量,控制。

③研究流体的流动形态,为强化设备和操作提供理论依据。

④了解输送设备的工作原理和操作性能,正确地使用流体输送设备。

2. 1流体静力学基本方程式1.密度(p10)'单盂体积流体所具有的质量称为流体的密度,其表达式为:P加体出度,1流体体积,m3op= m / Vkg・m・3 ; m流体质量,kg; V ----气体具有可压缩性及热膨胀性,其密度随压力和温度有较大的变化。

气体密度可近似地用理想气体状态方程进行计算:p- pM/RTP—气体绝对压强kN m2或kPa; T—气体温度K; M—气体摩尔质量kg-mol1; R—气体常数'8.314 J・mol"・K・i。

化工生产中所遇到的流体,往往是含有多个组 分的混合物。

对于液体混合物,各组分的浓度常用 质量分数表示。

几一液体混合物中各纯组分液体的密度,kg m-3;—液体混合物中各组分液体的质量分数。

p m —气体混合物平均密度,kg-m 3;M m —气体混合物的平均摩尔质量-+mn P2Pn 对于气体混合物:_ P^mP Y TL RTP1比体积单位质量流体所具有的体积称为流体的比体积,以U表示,它与流体的密度互为倒数:v=l/pQ—流体的比体积,m3 kg1;P一流体的密度,kg-m3o2.压强流体垂直作用于单位面积上的力称为压强:p= P / AP—流体的压力,Pa;P—流体垂直作用于面积A上的力,N;A—作用面积,m2o压力的单位Pa (Pascal,帕),即N-m-2o常用压力单位与Pa之间的换算关系如下: latm=760mmHg=1.01325 X 105Pa=10.33mH20=1.033 kgf-cm 2压强有两种表达方式。

第二章流体流动PPT精品文档46页

第二章流体流动PPT精品文档46页
叶轮的类型

蔽式叶轮:适用于输送清洁液体
敞式和半蔽式叶轮:流道不易堵塞,适用于输送含 有固体颗粒的液体悬浮液,效率低。
按吸液方式:单吸式、双吸式。
后盖板 平衡孔
单吸(a式)
双吸式
单吸式与双吸式叶轮
单吸式:结构简单,液体从叶轮一侧被吸入。
双吸式:吸液能力大,基本上消除轴向推力。
(4 )轴封装置 ----减少泵内高压液体外流,或防止空
(2)泵理论压头与叶片弯曲方向的关系
叶片形式:径向,前弯,后弯
径向叶片: 2 90
后弯叶片: 2 90
H

Q
无关
H与Q降低
前弯叶片: 2 90
H与Q增加
w2
c2
w2
c2
w2
c2
α2 u2
α2 u2
α2 u2
(a)
(b)
(c)
叶片弯曲方向及其速度三角形
c
前弯叶片:压力头小于动
H∞
β 2 >90
压头,冲击损失大。
Hc2u gu2
c2u2cos2
g
—— 离心泵基本方程
3.离心泵基本方程的讨论
H f (泵结构,流)量
(1) 离心泵理论流量Q对理论压头H∞的影响
Q 2r 2 b 2 c 2 s in 2 2r 2 b 2 c 2 r
H u2g c2uu2(u2cg 2rctg2)
H 1 g u 2 22 Q r2 b 22c ut2 g 1 g r222 Q b 2ct2 g
气侵入泵内
填料密封
填料如浸油或渗涂石墨的石棉带、碳纤维、氟纤维 和膨胀石墨等,填料不能压得过紧,也不能压得过
松,应以压盖调节到有液体成滴状向外渗透。

师范类《化工基础》PPT课件 CH2 流体的流动与输送

师范类《化工基础》PPT课件 CH2 流体的流动与输送

V— 该条件下气体的体积,单位为m3 T—该条件下系统的温度,单位为K
M—气体的摩尔质量,单位为kg.mol-1
R—摩尔气体常数,8.314J.K-1.mol -1 或0.08206m3.atm.k-1.kmol-1
2021/7/14
第二章 流体的流动与输送
5
化工基础
College of Chemistry & Materials
加厚管壁厚
mm
2.75 3.25 3.5 4 4 4.25 4.5 4.5 4.75 5 5.5 5.5
2021/7/14
第二章 流体的流动与输送
24
化工基础
College of Chemistry & Materials
例 20℃的水经管道输送,每小时输送72吨。试对水管管径 进行初选。
流体静力学方程式表示的意义
当液面压强有变化时,液体内部各点压强也发生相同大小的变化。
p2 p0 gh
(3)
• 连通着的同一流体同一水平面各点的压强相等。
• 静止流体内任一点的压强与流体性质(ρ)和位置(h)有关。 p = f(ρ,h)
2021/7/14
第二章 流体的流动与输送
15
化工基础
College of Chemistry & Materials
☆工业上流体的流速一般:v液<v气<v蒸汽 粘度越大,v越小
2021/7/14
第二章 流体的流动与输送
21
液 体
气 体
蒸 气
2021/7/14
化工基础
College of Chemistry & Materials
流体在一般管路中的流速范围

化工原理(流体流动) PPT

化工原理(流体流动) PPT
指示液密度ρ0,被测流体密度 为ρ,图中a、b两点的压力是相 等的,因为这两点都在同一种静 止液体(指示液)的同一水平面 上。通过这个关系,便可求出p1
-p2的值。
注:指示剂的选择
根据流体静力学基本方程式则有:
U型管右侧 U型管左侧
pa=p1+(m+R)ρg pb=p2+mρg+Rρ0g
pa=pb
在气体压力较高、温度较低时,气体的密度需要采用真实 气体状态方程式计算。
气体混合物: 当气体混合物的温度、压力接近理想气体时,
仍可用式(1-3)计算气体的密度。
Mm = M1y1 + M2y2 + … + Mnyn
(1-6)
式中 :M1、M2、… Mn—— 气体混合物各组分的分子量;
y1 、 y2 、 … yn —— 气体混合物各组分的摩尔分率。
p1-p2=R(ρ0-ρ)g
测量气体时,由于气体的ρ密度比指示液的密度ρ0小得多,故
ρ0-ρ≈ρ0,上式可简化为
p1-p2=Rρ0g
下图所示是倒U型管压差计。该压差计是利用被测量液体本
身作为指示液的。压力差p1-p2可根据液柱高度差R进行计算。
例1-4 如附图所示,常温水在管道中流过。为测定a、b两点的压 力差,安装一U型压差计,试计算a、b两点的压力差为若干? 已知水与汞的密度分别为1000kg/m3及13600kg/m3。
解:应用混合液体密度公式,则有
1
m

a1
1

a2
2
0.6 0.4 1830 998
7.285 10 4
m 1370 kg / m3
例1-2 已知干空气的组成为:O221%、N278%和Ar1%(均为体积 %)。试求干空气在压力为9.81×104Pa、温度为100℃时的密度。

流体流动与输送技术—认识流体输送过程(化工原理课件)

流体流动与输送技术—认识流体输送过程(化工原理课件)

三、管路的试压与吹扫 管路安装完毕后,应作强度与严密度试验,检验管路是否符合设计要求
,试验是否有漏气或漏液现象,称为试压。管路的操作压力不同,输送的物 料不同,试压的要求也不同。试压主要采用液压试验,少数也可采用气压试 验。当管路系统进行水压试验,试验压力(表压)为294KPa,在试验压力 下维持5分钟,未发生渗漏现象,则水压试验为合格。
10. 在焊接或螺纹连接的管路上应适当配置一些法兰或活接头,以利于安 装、拆卸和检修。
11. 阀门的仪表的安装高度主要考虑操作的安全和方便。 12. 某些不能耐高温的材料(如聚四氟乙烯管、橡胶管)制成的管路应避 开热管路,输送冷流体(如冷冻盐水)的管路应与热流体的管道相互避开。
因此在布置管路时,应参阅有关资料,依据上述原则制订方案,确保 管路的布置安全、科学、合理、经济。
7. 一般情况下,管路采用明线安装,但上下水管及废水管采用埋地铺设, 埋地安装深度应当在当地冰冻线以下。(为方便安装、检修和管理,管路尽 量架空敷设)
8.输送有毒或腐蚀性介质的管道,不得在人行道上空设置阀件、法兰等 ,以免泄露时发生事故;输送易燃易爆介质的管道,一般应设有防火、防爆 安全装置。
9. 管道不应挡门、挡窗;应避免通过电动机、配电盘、仪表盘的上空;在 有吊车的情况下,管道的布置不应妨碍吊车工作。管路的布置不应妨碍设备 、管件、阀门、仪表的检修。塔和容器的管路不应从人孔正前方通过,以免 影响打开人孔。
六、管路的防腐 在化工管路中使用的管材,一般大都采用金属材料。由于各种外界环境
因素和通过介质的作用,都会引起金属的腐蚀。金属腐蚀分为化学腐蚀和电 化学腐蚀两种。为了延长管路的使用寿命,确保化工生产安全运行,必须采 取有效的防腐措施。
管路的主要防腐措施,是在金属表面涂上不同的防腐材料,经过固化而 形成油漆,牢固地结合在金属表面上。由于油漆把金属表面同外界严密隔绝 ,阻止金属与外界介质进行化学反应或电化学反应,从而防止了金属的腐蚀 。

化工原理流体流动与输送机械精品PPT课件

化工原理流体流动与输送机械精品PPT课件
1.1.1.连续介质的假定
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
(5)流体输送设计型和操作型问题的定量计算。 ∮基本内容:
(1)密度、比容、比重及影响因素;压力、压力的不同表示方法, 流体静止的基本方程;U型管压差计、皮托管、液位计、液封、 流体流动的基本方程、连续性方程、柏努里方程;
(2)粘度、牛顿粘性定律、雷诺数、边界层效应、边界层形成、 边界层分离。
(3)直管阻力、局部阻力、当量长度、当量直径、因次分析法。 (4)简单管路计算,各流量计的结构及测定原理; (5)离心泵基本原理、构造;离心泵基本方程式;离心泵主要特 性参数、特性曲线、安装高度、工作点与流量调节;
17
1 流体流动与输送机械——1.2 流体静力学
(2)双液体U管压差计
适用于压差较小的场合。
密度接近但不互溶的两种指示液A和
C
(A C ) ;
扩大室内径与U管内径之比应大于
10 。
p1 p2 Rg( A C )
18
1 流体流动与输送机械——1.2 流体静力学
(3) 倒U形压差计 指示剂密度小于被测流体密度,
如空气作为指示剂
p1 p2 Rg( 0 ) Rg
(4) 倾斜式压差计 适用于压差较小的情况。
(5) 复式压差计 适用于压差较大的情况。
19
1 流体流动与输送机械——1.2 流体静力学

第章流体流动过程及输送设备-精选

第章流体流动过程及输送设备-精选
2020/5/31
第一节 概 述
一、流体 1、定义:就是具有流动性的物质,是对气态物料和液态物料的总 称。气液二态的区别:可压缩性,前者具有此性,后者不具备此点。 2、流体的特性:可流动性,表现①流体质点可以任意分割和无限 流动;②无固定的形状;③质点在内部可以相对位移。 3、理想流体与实际流体 为了便于研究某些复杂的实际问题, 从而提出理想流体这个概念 。 (1)理想流体:是指不具有粘性,流动时不产生磨擦阻力的流体。 其核心是质点相对运动过程中无力的作用,包含理想液体和理想气体。 (2)实际流体:是指具有粘性,流动时产生摩擦阻力的流体,实际 液体可认为没有压缩性。 4、流体的连续性与压缩性 (1)连续性:是指流体是由大量质点组成、彼此间没有间隙、完 全充满所占空间连续介质。 (2)压缩性:是指流体的体积随压强和温度而变的这个性质。实 际202液0/5/体31 的压缩性很小,在工程上可按不可压缩性流体考虑。
qmqvuA
(2-10)
2020/5/31
第一节 概 述
4、流体的黏度 流体流动时流层间产生内摩擦力的特性,称为流体黏性。粘性 ↑,流动性↓。从桶底把一桶油放完比一桶水放完要慢得多。其原因 是油黏性比水大,即流动时内摩擦力较大,因而流体阻力较大,流速 较小。 现用两块平行木板夹水做实验来说明:如果给上板施加一恒力F 使其运动,假设两板间某层液体速度为u,与其相邻上层液体的速度 为u +△u,两液层垂直方向y的距离为△y,则(△u/△y) 表示速度沿 法线方向上的变化率,称为速率梯度。管内流体速度的变化呈曲线分 布。(任取微距离dy,其速度变化为du,则du/dy亦称为速率梯度)。
在化工生产中,流体输送操作多 属于稳定流动。所以本章只讨论稳定 流动。
2020/5/31

化工基础 2 流体流动

化工基础 2 流体流动

3、压缩机(Compressor)
工业上使用的压缩机主要有往复式和离心式两种类型。 往复式压缩机 (Reciprocating Compressor) 结构:主要部件有气缸、活塞 、吸入和压出活门。 工作原理:与往复泵相似,依 靠活塞往复运动和活门的交替 动作将气体吸入和压出。 气体在压缩过程中体积缩小、 密度增大、温度升高。
2013-3-4
第二章 流体的流动与输送
26
化工基础
College of Chemistry & Materials
离心式压缩机 离心式压缩机又称透平压缩机,其主要结构和工作原理与离 心鼓风机相似,但压缩机有更多的叶轮级数,通常在10级以 上,因此可产生很高的风压。 由于压缩比较高,气体体积收缩大,温升也高,所以压缩机 也常分成几段,每段又包括若干级,叶轮直径逐级减小,且 在各段之间设有中间冷却器。 离心式压缩机流量大,供气均匀,体积小,维护方便,且机 体内无润滑油污染气体。
2013-3-4 第二章 流体的流动与输送 9
化工基础
College of Chemistry & Materials
5、离心泵的主要性能和和特性曲线
⑴ 离心泵的主要性能参数主要 转速n:转/分 流量qv:m3/h 扬程H:(外压头),并不是升扬高度。 功率Pe:Pe=qvρ g H,
效率η : η =Pe/Pa
2013-3-4 第二章 流体的流动与输送 28
化工基础
College of Chemistry & Materials
涡旋式压缩机
20 世纪 90 年代开发的高科技压缩机,结 构简单,只有四个运行部件。压缩机工作 腔由相运动涡卷付形成多个相互封闭的镰 形工作腔,当动涡卷作平动运动时,使镰 形工作腔由大变小而到压缩和排出空气。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需能量和设备。 ②流体性能参数的测量, 控制。 ③研究流体的流动形态,为强化设备和操作提供
理论依据。 ④了解输送设备的工作原理和操作性能,正确地
使用流体输送设备。
2.1 流体静力学基本方程式
1.密度(p10)
单位体积流体所具有的质量称为流体的密度,
其表达式为:
ρ= m/V
ρ——流体密度,kɡ·m-3 ; m——流体质量,kg;V——
④ 微差压差计

⑤ 倒U形管压差计
p1 p2 gR
0
z1
1 p1
1
0 R
z2 2 p2 2
倒U形管压差计
(2) 液封高度 目的:
① 恒定设备内的压力, 防止超压;
② 防止气体外泄; 水封
液封高度计算:

液p


溢流
h0
0
0
安全液封
p
0
0
h.0
煤气柜
水 气体
习题p54,1, 2
流体体积,m3。
气体具有可压缩性及热膨胀性,其密度随压力
和温度有较大的变化。气体密度可近似地用理想气
体状态方程进行计算: ρ= pM/RT
p—气体绝对压强 kN·m-2或kPa;T—气体温度 K;M—气
体摩尔质量 kg·mol-1;R—气体常数,8.314 J·mo1-1·K-1。
化工生产中所遇到的流体,往往是含有多个组 分的混合物。对于液体混合物,各组分的浓度常用 质量分数表示。
1 p1
1
z1
2 p2
2
z2
z1 z2 R 0
p1 p2 ( )gR
若 ( ) 则 R
若 则 p1 p2 gR
R 0
U 形管压差计
若U形管压差计一端与大气相通,则可测得表压(或绝压)。
p0 p1 gz1
1 p1
1 pa
z1
R
0
0
③ 倾斜液柱压差计
p1
p2
R
α
倾斜液柱压差计
压强有两种表达方式。一是以绝对真空为起点 而计量的压强;另一是以大气压强为基准而计量的 压强,当被测容器的压强高于大气压时,所测压强 称为表压,当测容器的压强低于大气压时,所测压 强称为真空度。
两种表达压强间的换 算关系为
表压=绝对压强-大气压强 真空度=大气压强-绝对压强
流体压强的重要特性: 流体压强处处与它的作用面垂直,并且总是指
ρn—液体混合物中各纯组分液体的密度,kg·m-3; xmn—液体混合物中各组分液体的质量分数。 对于气体混合物:
ρm—气体混合物平均密度,kg·m-3; Mm—气体混合物的平均摩尔质量
比体积 单位质量流体所具有的体积称为流体的比体积,
以υ表示,它与流体的密度互为倒数:
υ=1/ρ υ一流体的比体积,m3·kg-1; ρ—流体的密度,kg·m-3。
质量流速的定义是单位时间内流体流经管路单
位截面积的质量,以G表示,单位为 kg·s-1·m-2,表
达式为:
G = qm/A
流速和质量流速两者之间的关系:
G =ρu 工业上用的流速范围大致为:
液体1.5 ~ 3.0m·s-1,高粘度液体0.5 ~ 1.0 m·s-1;气 体102 ~ 0 m·s-1,高压气体15 ~ 25 m·s-1;饱和水蒸 气204 ~ 0 m·s-1,过热水蒸气30 ~ 50 m·s-1。 练习:习题3
向流体的作用面
流体中任一点压强的大小与所选定的作用面 在空间的方位无关
3.流体静力学基本方程式 流体处于静止状态下所受的压力和重力的平衡关系
受力分析(图2-2)

z1g
p1 ρ
z2g
p2 ρ
关于静力学方程的讨论
① 等压面
z1g
p1 ρ
z2g
p2 ρ
定义: 静止、连续的均质流体,处于同一水平面上的各点压强相等
2.定态流动和非定态流动
流体在管道或设备中流动 时,若在任一截面上流体的 流速、压力、密度等有关物 理量仅随位置而改变,但不 随时间而改变,称为定态流 动;反之,若流体在各截面 上的有关物理量中,只要有 一项随时间而变化,则称为 非定态流动。
重力场中的压力分布
⑤ 静力学方程的几种不同形式
p1
z1g
p2
z2g
Pa
J / kg
p1
g
z1
p2
g
z2
4.流体静力学基本方程式的应用
4.1 压强的测定
① 测压管和气压计 气压计:
p=0
h p0
测压管: 表压:
绝压: p gh p0
气压计 p0 h
p 测压管
② U形管压差计 选基准面列静力学方程
第二章 流体流动过程及输送机械
2.1 流体的静力学基本方程式 2.2 流体流动的基本规律
化工生产中处理的原料、中间产物,产品,大 多数是流体,涉及的过程大部分在流动条件下进行。 流体的流动和输送是必不可少的过程操作。
研究流体的流动和输送主要是解决以下问题。 ①选择输送流体所需管径尺寸,确定输送流体所
练习
2.2 流体流动的基本规律
物料衡算式:连续性 能量衡算式:伯努利
方程
方程
1.流量和流速
单位时间内流体流经管道任一截面的流体量,
称为流体的流量。若流体量用体积来计量,称为体
积流量,以符号qv表示,单位为m3·s-1 或m3·h-1 ; 若流体量用质量来计量,则称为质量流量,以符号
qm表示,其单位为kg·s-1 或kg·h-1 。若流体量用物 质的量表示,称为摩尔流量,以符号qn表示,其单 位为mol·s-1。 体积流量和质量流量的关系为: qm=ρqV 质量流量与摩尔流量的关系为
qm=Mqn
单位时间内,流体在管道内沿流动方向所流过的 距离,称为流体的流速,以u表示,单位为 m·s-1。
管道中心的流速最大,离管中心距离越远,流 速越小,而在紧靠管壁处,流速为零。
通常所说的流速是指管道整个截面上的平均流速 ,以流体的体积流量除以管路的截面积所得的值来 表示:
u = qV/A
A —— 与流体流动方向相垂直的管道截面积,m2
实例:
p1
p2
p
1
1
2
2
3
3
4
4
5
5
等压面概念
② p0一定,p仅和、h有关 p p0 gh
③ p0变化某一数值,则 p改变同样大小数值—压力的可传递性
④ 静止流体内部,各不同截面上的压力能和势能两者之和为常数。
gz1
p1
gz2
p2
或 gz p 常数
po
h1 1 p1 zo
2 z1 z2 p2
2.压强 流体垂直作用于单位面积上的力称为压强:
p= P/A
p—流体的压力,Pa; P—流体垂直作用于面积A上的力,N; A—作用面积,m2。 压力的单位Pa(Pascal,帕),即N·m-2。
常用压力单位与Pa之间的换算关系如下:
1atm=760mmHg=1.01325×105Pa=10.33mH2O= 1.033 kgf·㎝-2
相关文档
最新文档