中考真题汇编因式分解

合集下载

2024年全国各省市数学中考真题汇编 专题4因式分解(28题)含详解

2024年全国各省市数学中考真题汇编 专题4因式分解(28题)含详解

专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .92.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.5.(2024·浙江·中考真题)因式分解:27a a -=6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.8.(2024·北京·中考真题)分解因式:325x x -=.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.11.(2024·山东·中考真题)因式分解:22x y xy +=.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.13.(2024·四川广安·中考真题)分解因式:39a a -=.14.(2024·四川自贡·中考真题)分解因式:23x x -=.15.(2024·四川内江·中考真题)分解因式:25m m -=.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.18.(2024·陕西省·中考真题)分解因式:2a ab -=.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.20.(2024·四川宜宾·中考真题)分解因式:222m -=.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.22.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.23.(2024·福建省·中考真题)因式分解:x 2+x =.24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=25.(2024·江西省·中考真题)因式分解:22a a +=.三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()214cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .2.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.【答案】()()222x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.【答案】()()222m x y x y +-【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.5.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.【答案】()()322m m m +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据多项式的结构特征,先提公因式再利用平方差公式因式分解即可得到答案,综合应用提公因式法因式分解及公式法因式分解是解决问题的关键.【详解】解:3312m m -()234m m =-()()322m m m =+-,故答案为:()()322m m m +-.8.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.【答案】6-【分析】本题考查了因式分解的应用,先把2212a b -=的左边分解因式,再把2a b -=-代入即可求出a b +的值.【详解】解:∵2212a b -=,∴()()12a b a b +-=,∵2a b -=-,∴6a b +=-.故答案为:6-.11.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +13.(2024·四川广安·中考真题)分解因式:39a a -=.【答案】()()33a a a +-【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a -=+-,故答案为:()()33a a a +-.14.(2024·四川自贡·中考真题)分解因式:23x x -=.【答案】()3x x -【分析】根据提取公因式法因式分解进行计算即可.【详解】解:()233x x x x -=-,故答案为:()3x x -.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.15.(2024·四川内江·中考真题)分解因式:25m m -=.【答案】()5m m -【分析】原式提取公因式即可得到结果.【详解】原式=()5m m -.故答案为:()5m m -.【点睛】本题考查了提公因式法.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.【答案】()()311a m m +-【分析】先提取公因式3a ,再利用平方差公式分解因式.【详解】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.【点睛】此题考查了综合利用提公因式法和公式法分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式)是解题的关键.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.【答案】()21a -/()21a -+【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.18.(2024·陕西省·中考真题)分解因式:2a ab -=.【答案】a (a ﹣b ).【详解】解:2a ab -=a (a ﹣b ).故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).20.(2024·四川宜宾·中考真题)分解因式:222m -=.【答案】2(1)(1)m m +-【详解】解:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.【答案】3(x ﹣3)2【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.22.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.23.(2024·福建省·中考真题)因式分解:x 2+x =.【答案】()1x x +【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).25.(2024·江西省·中考真题)因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()214cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b c m n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.【答案】(1)证明见解析;(2),m n 不可能都为整数,理由见解析.。

专题03 因式分解(共20题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题03 因式分解(共20题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题03因式分解(20题)一、单选题1.(2023·河北·统考中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.2.(2023·甘肃兰州·统考中考真题)计算:255a a a -=-()A .5a -B .5a +C .5D .a【答案】D【分析】分子分解因式,再约分得到结果.【详解】解:255a aa --()55a a a -=-a =,故选:D .【点睛】本题考查了约分,掌握提公因式法分解因式是解题的关键.二、填空题3.(2023·山东东营·统考中考真题)因式分解:22363ma mab mb -+=.【答案】()23m a b -122124mx mx -=⎧∴⎨-=⎩或122222mx mx -=⎧⎨-=⎩或122421mx mx -=⎧⎨-=⎩,1236mx mx =⎧∴⎨=⎩或1244mx mx =⎧⎨=⎩或1263mx mx =⎧⎨=⎩,当1236mx mx =⎧⎨=⎩时,1m =时,123,6x x ==;3m =时,121,2x x ==,故()12,x x 为(3,6),(1,2),共2个;当1244mx mx =⎧⎨=⎩时,1m =时,124,4x x ==;2m =时,122,2x x ==,4m =时,121,1x x ==故()12,x x 为(4,4),(2,2),(1,1),共3个;当1263mx mx =⎧⎨=⎩时,1m =时,126,3x x ==;3m =时,122,1x x ==,故()12,x x 为(6,3),(2,1),共2个;综上所述:共有2327++=个.故答案为:7.【点睛】本题考查了整式方程的代入求值、整式方程的整数解,因式分解的应用,及分类讨论的思想方法.本题的关键及难点是运用分类讨论的思想方法解题.6.(2023·江苏无锡·统考中考真题)分解因式:244x x -+=.【答案】()22x -/()22x -【分析】利用完全平方公式进行因式分解即可.【详解】解:244x x -+=()22x -;故答案为:()22x -.【点睛】本题考查因式分解.熟练掌握完全平方公式法因式分解,是解题的关键.7.(2023·湖北恩施·统考中考真题)因式分解:()21x x -+=.【答案】()21x -/()21x -【分析】利用完全平方公式进行因式分解即可.【详解】解:()()2221211x x x x x -+=-+=-;故答案为a (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法分解因式,熟练掌握平方差公式的结构特征是解本题的关键.12.(2023·吉林长春·统考中考真题)分解因式:21a -=.【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.13.(2023·贵州·统考中考真题)因式分解:24x -=.【答案】(+2)(-2)x x 【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-14.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.15.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--=.【答案】()()x y x z +-【分析】先分组,然后根据提公因式法,因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.8=;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.19.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为.【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.20.(2023·湖南张家界·统考中考真题)因式分解:22x y xy y ++=.【答案】()21+y x 【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:2222(21)(1)x y xy y y x x y x ++=++=+,故答案为:2(1)y x +.【点睛】题目主要考查因式分解的方法,熟练掌握提公因式法及公式法是解题关键.。

2022中考真题分类4——因式分解(参考答案)

2022中考真题分类4——因式分解(参考答案)

2022中考真题分类——因式分解(参考答案)1.(2022·广西河池)多项式244x x −+因式分解的结果是( )A .x (x −4)+4B .(x +2)(x −2)C .(x +2)2D .(x −2)2 【答案】D【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x −+=−.故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.2.(2022·四川绵阳)因式分解:32312x xy −=_________. 【答案】()()322x x y x y +−【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y −=+−. 故答案为:()()322x x y x y +−.【点睛】本题考查了因式分解,正确的计算是解题的关键.3.(2022·广西贺州)因式分解:2312m −=__________.【答案】3(2)(2)m m +−【分析】首先提取公因数3,进而利用平方差公式进行分解即可.【详解】解:原式=3(x 2−4)=3(x +2)(x −2);故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键.4.(2022·湖北恩施)因式分解:3269a a a −+=______.【答案】2(3)a a −【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =−+=−,故答案为:2(3)a a −.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.5.(2022·辽宁锦州·)分解因式:2232x y xy y −+=____________. 【答案】2()y x y −【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=−++=−−x y xy y x xy y y x y y ;故答案为:2()y x y −【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.6.(2022·四川内江)分解因式:a 4−3a 2−4=_____.【答案】(a 2+1)(a +2)(a −2)【分析】首先利用十字相乘法分解为()()2214a a +− ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4−3a 2−4=(a 2+1)(a 2−4)=(a 2+1)(a +2)(a −2),故答案为:(a 2+1)(a +2)(a −2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查.7.(2022·黑龙江绥化)因式分解:()()269m n m n +−++=________.【答案】()23m n +−【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:()()269m n m n +−++ ()()22233m n m n =+−⨯⨯++ ()23m n =+−,故答案为:()23m n +−.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.8.(2022·辽宁沈阳)分解因式:269ay ay a ++=______. 【答案】()23a y +【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:269ay ay a ++=()269a y y ++ ()23a y =+; 故答案为:()23a y +.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.9.(2022·贵州黔东南)分解因式:2202240442022x x −+=_______.【答案】()220221x −##()220221x −【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x −+=−; 故答案为()220221x −.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.10.(2022·四川广元)分解因式:a 3−4a =_____.【答案】()()22a a a +−【分析】根据提公因式及平方差公式进行因式分解即可.【详解】解:原式=()()()2422a a a a a −=+−; 故答案为:()()22a a a +−.【点睛】本题主要考查提公因式和公式法进行因式分解,熟练掌握因式分解是解题的关键.11.(2022·湖南常德)分解因式:329x xy −=________.【答案】(3)(3)x x y x y −+【分析】先提取公因式,然后再根据平方差公式即可得出答案.【详解】原式=32229(9)x xy x x y −=−=(3)(3)x x y x y −+.故答案为:(3)(3)x x y x y −+.【点睛】本题考查分解因式,解题的关键是熟练掌握分解因式的方法.12.(2022·湖南怀化)因式分解:24−=x x _____. 【答案】2(1)(1)+−x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)−=−=+−x x x x x x x , 故答案为:2(1)(1)+−x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.13.(2022·内蒙古赤峰)分解因式:32242x x x ++=______. 【答案】22(1)x x +【分析】先提取公因式,再利用完全平方公式进行因式分解.【详解】解:32242x x x ++,22(21)x x x =++,22(1)x x =+,故答案是:22(1)x x +.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式.14.(2022·四川巴中)因式分解:322a a a −+−=______.【答案】2(1)a a −−【分析】先提取公因式,后采用公式法分解即可【详解】∵322a a a −+−=−a 22)1(a a −+=2(1)a a −−故答案为: 2(1)a a −−.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键.15.(2022·山东威海)因式分解24ax a −=___________ 【答案】(2)(2)a x x +−.【详解】试题分析:原式=2(4)(2)(2)a x a x x −=+−.故答案为(2)(2)a x x +−. 考点:提公因式法与公式法的综合运用.16.(2022·贵州黔西)已知2ab =,3a b +=,则22a b ab +的值为_____. 【答案】6【分析】将22a b ab +因式分解,然后代入已知条件即可求值.【详解】解:22a b ab +()ab a b =+23=⨯6=.故答案为:6【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键.17.(2022·四川广安)已知a +b =1,则代数式a 2−b 2 +2b +9的值为________. 【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +−++,可得9a b ++,即可求解.【详解】解:a 2−b 2 +2b +9()()29a b a b b =+−++29a b b =−++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.。

数学中考试题分类汇编(整式、因式分解)

数学中考试题分类汇编(整式、因式分解)

图7以下是山东任梦送的分类(梅州)考察了分式方程的解法,注意不要忘记验根。

如图7所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1) 用a ,b ,x 表示纸片剩余部分的面积;(2) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. (茂名)下列运算正确的是( )A.-22=4 B.22-=-4C. a ·a 2 = a 2 D.a +2a =3a (茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )m 平方 -m ÷m +2 结果A.m B.m2C.m +1 D.m -1分解因式:3x 2-27= .3(x +3)(x -3) 以下是河南省高建国分类:(巴中市)把多项式32244x x y xy -+分解因式,结果为 . (巴中市)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . (自贡市)先化简,再求值。

其中3=x ,2=y222)11(y xy x xy x y +--以下是湖北孔小朋分类:10.(福建福州)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,, 则代数式22008m m -+的值为( )A .B .C .D .11.(福建福州)因式分解:244x x ++= .11 1 12 1 13 3 1 14 64 1 ......................................... Ⅰ 1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++ Ⅱ以下是河北省柳超的分类(贵阳市)11.分解因式:24x -= .(遵义市)9.计算:2(2)a a -÷= .(遵义市)19.(6分)现有三个多项式:2142a a +-,21542a a ++,212a a -,以下是江西康海芯的分类:1. (郴州市)因式分解:24x -=____________辽宁省 岳伟 分类郴州市1、因式分解:24x -=____________郴州市2、下列计算错误的是( )A .-(-2)=2B 822=.22x +32x =52x D .235()a a = 2.(湖州市)当1x =时,代数式1x +的值是( ) A .1 B .2 C .3 D ,45.(湖州市)计算23()x x -所得的结果是( ) A .5x B .5x -C .6xD .6x -以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(·东莞市)下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a2.(•南宁市)下列运算中,结果正确的是:(A )a a a =÷33 (B )422a a a =+ (C )523)(a a = (D )2a a a =⋅3.(•南宁市)因式分解:=-x x 34.(•南宁市)计算:4245tan 21)1(10+-︒+--。

中考试题分考点解析汇编:因式分解

中考试题分考点解析汇编:因式分解

因式分解一、选择题1.(2011浙江金华、丽水3分)下列各式能用完全平方公式进行分解因式的是A 、x2+1B 、x2+2x ﹣1C 、x2+x+1D 、x2+4x+4【答案】D 。

【考点】运用公式法因式分解。

【分析】完全平方公式是:(a ±b )2=a 2±2a b +b 2,由此可见选项A 、B 、C 都不能用完全平方公式进行分解因式,只有D 选项可以。

故选D 。

2.(2011辽宁丹东3分)将多项式32x xy -分解因式.结果正确的是 A .22()x x y - B .2()x x y - C .2()x x y + D .()()x x y x y +-【答案】D 。

【考点】提公因式法与公式法因式分解。

【分析】先提取公因式x ,再根据平方差公式进行二次分解:()()()3222x xy x x y x x y x y -=-=+-。

故选D 。

3.(2011广西南宁3分)把多项式x3-4x 分解因式所得结果是A .x(x2-4)B .x(x +4)(x -4)C .x(x +2)(x -2)D .(x +2)(x -2) 【答案】C 。

【考点】提取公因式法和应用公式法因式分解。

【分析】根据提取公因式法和应用公式法因式分解,将多项式分解到不能再分解:()()()324422x x x x x x x -=-=+-,故选C 。

4.(2011广西梧州3分)因式分解x2y -4y 的正确结果是 (A )y (x+2)(x -2) (B )y (x+4)(x -4) (C )y (x2-4) (D )y (x -2)2 【答案】A 。

【考点】提取公因式和应用公式法因式分解。

【分析】根据提取公因式和应用平方差公式因式分解:x2y -4y =y (x2-4)=y (x+2)(x -2)。

故选A 。

6.(江苏无锡3分) 分解因式2x2—4x+2的最终结果是A .2x(x -2)B .2(x2-2x+1)C .2(x -1)2D .(2x -2)2 【答案】C 。

中考数学历年各地市真题 整式与因式分解

中考数学历年各地市真题 整式与因式分解

中考数学历年各地市真题部分省市中考数学试题分类汇编整式与因式分解12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____【关键词】因式分解【答案】x(x+1)(x-1)12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____【关键词】因式分解【答案】x(x+1)(x-1)1、(2010年宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x =D 、422x x x =+【关键词】整式运算【答案】C2(2010年宁波市)、若3=+y x ,1=xy ,则=+22y x ___________。

【关键词】完全平方公式【答案】71、(2010年宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x =D 、422x x x =+【关键词】整式运算【答案】C2(2010年宁波市)、若3=+y x ,1=xy ,则=+22y x ___________。

【关键词】完全平方公式【答案】711.(2010浙江省喜嘉兴市)用代数式表示“a 、b 两数的平方和”,结果为_______.【关键词】代数式【答案】22b a +14.(2010浙江省喜嘉兴市)因式分解:2mx 2-4mx +2m = .【关键词】提公因式、完全平方公式【答案】2)1(2-x m17、(2010浙江省喜嘉兴市)计算:a (b +c )-ab【关键词】单项式与多项式的积、整式加减【答案】ab c b a -+)(ab ac ab -+=ac =.7(2010年浙江省金华). 如果33-=-b a ,那么代数式b a 35+-的值是( ▲ )A .0B .2C .5D .8【关键词】整体带入、代数式【答案】D11(2010年浙江省金华). 分解因式=-92x .【关键词】分解因式【答案】(x -3)(x +3);4.(2010年浙江台州市)下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a=÷【关键词】幂的有关运算【答案】C12.(2010年浙江台州市)因式分解:162-x = ▲ .【关键词】因式分解、平方差公式【答案】)4)(4(-+x x9. (2010年益阳市)若622=-n m ,且3=-n m ,则=+n m . 【关键词】平方差【答案】215.(2010年益阳市)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值. 【关键词】完全平方公式、整式加减【答案】15.解法一:原式=2)21(-+x=2)1(-x原式= 2)3(=3 解法二:由31=-x 得13+=x化简原式=444122+--++x x x =122+-x x =1)13(2)13(2++-+ =12321323+--++=32. (2010江西) 计算 -(-3a)2的结果是( )A .-6a 2B . -9a 2C . 6a 2D . 9a 2【关键词】有关幂的运算【答案】B9.(2010江西) 因式分解:=-822a . 【关键词】因式分解、平方差公式【答案】)2)(2(2-+a a(2010年广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3【关键词】去括号【答案】D(2010年广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解【答案】ab (3b +a )(2010年四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+【关键词】幂的运算【答案】B(2010年四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x -【关键词】因式分解【答案】D第3章 整式与因式分解2.(2010年重庆)计算232x x ⋅的结果是( )A .x 2B .52xC .62xD .5x【答案】B2.(2010年重庆)计算232x x ⋅的结果是( )A .x 2B .52xC .62xD .5x【答案】B(2010年广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3【关键词】去括号【答案】D(2010年广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解【答案】ab (3b +a )(2010年四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+【关键词】幂的运算【答案】B(2010年四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x -【关键词】因式分解【答案】D12.(2010年安徽省芜湖市)因式分解:9x 2-y 2-4y -4=__________.【关键词】分解因式、完全平方公式、平方差公式【答案】)23)(23(--++y x y x12. (2010年浙江省东阳县)因式分解:x 3-x=___ ____【关键词】因式分解【答案】x(x+1)(x-1)(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【关键词】先运用提公因式法再运用完全平方公式【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用【答案】5(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【关键词】先运用提公因式法再运用完全平方公式【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用【答案】5(2010年山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【关键词】先运用提公因式法再运用完全平方公式【答案】D12.(2010年山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用【答案】52.(2010重庆市)计算2x 3〃x 2的结果是()A .2xB .2x 5C .2x 6D .x 5解析:由单项式乘法法则知, 2x 3〃x 2=2x 5 .答案:B.2.(2010重庆市)计算2x 3〃x 2的结果是()A .2xB .2x 5C .2x 6D .x 5解析:由单项式乘法法则知, 2x 3〃x 2=2x 5 .答案:B.(2010日照市)10.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3. ………………………①我们把等式①叫做多项式乘法的立方公式。

中考数学专题复习:因式分解

中考数学专题复习:因式分解

中考数学专题复习:因式分解一、单项选择题(共6小题)1.下列从左到右的变形是因式分解的是()A.(x-a)(x+a)=x2-a2B.4a2+4a+1=4a(a+1)+1 C.(a+b)2=a2+2ab+b2D.x2-4y2=(x-2y)(x+2y) 2.下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)2 3.已知x-y=2,xy=3,则xy2-x2y的值为()A.5B.6C.-6D.12 4.下列因式分解正确的是()A.a(a-b)-b(a-b)=(a-b)(a+b)B.a2-9b2=(a-3b)2C.a2+4ab+4b2=(a+2b)2D.a2-ab+a=a(a-b)5.已知a-b=2,则a2-b2-4b的值为()A.2B.4C.6D.86.若4x2+(k-1)x+9能用完全平方公式因式分解,则k的值为()A.±6B.±12C.-13或11D.13或-11二、填空题(共4小题)7.分解因式:4-4m2=__________.8.因式分解-a3+2a2-a=__________.9.若x2+ax+4=(x-2)2,则a=__________.10.若a+b=2,ab=2,则12a3b+a2b2+12ab3的值是__________.三、解答题(共6小题)11.将下列各式因式分解:(1)a4-16;(2)-mp2+4mp-4m;(3)(x-3)x2+9(3-x);(4)(m2+2m)2+2(m2+2m)+1.12.已知b2-4b+a2+10a+29=0,求3a+20222⎪⎭⎫⎝⎛b的值。

13.如图,你能用若干个边长为a的小正方形与长、宽分别为a,b的小长方形拼成一个长方形ABCD吗?若能,请画出示意图,再写出表示长方形ABCD面积的一个多项式,并将其因式分解。

专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)

专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)

专题3因式分解(共41题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.2.(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 3.(2021·贵州铜仁市·中考真题)下列等式正确的是( )A .3tan452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+- 【答案】D【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.【详解】 A. 3tan45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意 C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意 故选D .【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.4.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题5.(2021·四川成都市·中考真题)因式分解:24x -=__________.【答案】(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-6.(2021·云南中考真题)分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.7.(2021·山东临沂市·中考真题)分解因式:2a 3﹣8a=________.【答案】2a (a+2)(a ﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.8.(2021·广西柳州市·中考真题)因式分21x -= .【答案】(1)(1)x x +-.【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.9.(2021·浙江宁波市·中考真题)分解因式:23x x -=_____________.【答案】x(x -3)【详解】直接提公因式x 即可,即原式=x (x -3).10.(2021·江苏宿迁市·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).11.(2021·浙江丽水市·中考真题)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____.【答案】(a +1)2【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.13.(2021·吉林长春市·中考真题)分解因式:22a a +=_____.【答案】22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】 22(2)a a a a +=+.【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.14.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.15.(2021·江苏苏州市·中考真题)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.(2021·浙江台州市·中考真题)因式分解:xy -y 2=_____.【答案】y (x -y )【分析】根据提取公因式法,即可分解因式.【详解】解:原式= y (x -y ),故答案是:y (x -y ).【点睛】本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.17.(2021·江西中考真题)因式分解:224x y -=______.【答案】(2)(2)x y x y +-【分析】直接利用平方差公式分解即可.【详解】解:224(2)(2)x y x y x y -=+-.故答案为:(2)(2)x y x y +-.【点睛】本题考查了分解因式-公式法,熟练掌握平方差公式的结构特征是解题的关键.18.(2021·甘肃武威市·中考真题)因式分解:242m m -=___________.【答案】()22m m -【分析】先确定242m m -的公因式为2m ,再利用提公因式分解因式即可得到答案.【详解】解:()24222.m m m m -=- 故答案为:()22m m -【点睛】本题考查的是提公因式分解因式,掌握公因式的确定是解题的关键.19.(2021·湖北黄石市·中考真题)分解因式:322a a a -+=______.【答案】()21a a -.【分析】观察所给多项式有公因式a ,先提出公因式,剩余的三项可利用完全平方公式继续分解.【详解】解:原式()221a a a =-+, ()21a a =-,故答案为:()21a a -.【点睛】本题考查了用提公因式法和公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,有公因式要先提公因式,再考虑运用公式法分解,注意一定要分解到无法分解为止.20.(2021·四川泸州市·)分解因式:244m -=___________.【答案】()()411m m +-.【分析】先提取公因式4,再利用平方差公式分解即可.【详解】解:()()()224441411m m m m -=-=+-. 故答案为:()()411m m +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2021·四川乐山市·中考真题)因式分解:249a -=________.【答案】(23)(23)a a -+【分析】此多项式可直接采用平方差公式进行分解.【详解】解:22249(2)3a a -=-=(23)(23)a a -+.故答案为:(23)(23)a a -+.【点睛】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.(2021·江苏无锡市·中考真题)分解因式:328x x -=_________.【答案】2x (x +2)(x -2)【分析】先提取公因式2x ,再利用平方差公式分解即可得.【详解】解:原式=2x (x 2-4)=2x (x +2)(x -2);故答案为:2x (x +2)(x -2).【点睛】本题主要考查了因式分解,解题的关键是掌握提公因式法和平方差公式.23.(2021·广西来宾市·中考真题)分解因式:224a b -=______.【答案】()()22a b a b +-【分析】利用平方差公式进行因式分解即可.【详解】解:224a b -=()222a b -=()()22a b a b +-.故答案为()()22a b a b +-.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.24.(2021·浙江绍兴市·中考真题)分解因式:221x x ++= ___________ .【答案】2(1)x +【分析】根据完全平方公式因式分解即可.【详解】解:221x x ++=2(1)x +故答案为:2(1)x +.【点睛】此题考查的是因式分解,掌握利用完全平方公式因式分解是解决此题的关键. 25.(2021·湖北恩施土家族苗族自治州·中考真题)分解因式:2a ax -=__________.【答案】()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.26.(2021·山东菏泽市·中考真题)因式分解:322a a a -+-=______.【答案】2(1)a a --【分析】先提取公因式,后采用公式法分解即可【详解】∴322a a a -+-=-a 22)1(a a -+=2(1)a a --故答案为: 2(1)a a --.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键. 27.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∴2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键. 28.(2021·湖南长沙市·中考真题)分解因式:22021x x -=______.【答案】(2021)x x -【分析】利用提公因式法进行因式分解即可得. 【详解】解:22021(2021)x x x x -=-, 故答案为:(2021)x x -. 【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键. 29.(2021·湖南株洲市·中考真题)因式分解:264x xy -=__________. 【答案】()232x x y - 【分析】直接提出公因式2x 即可完成因式分解. 【详解】解:()264232x xy x x y -=-;故答案为:()232x x y -. 【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是找到它们的公因式,提出公因式后再检查分解是否彻底即可,本题为基础题,考查了学生对基础知识的掌握与运用. 30.(2021·陕西中考真题)分解因式:3269x x x ++=______. 【答案】()23x x + 【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案. 【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +. 【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.31.(2021·湖南岳阳市·中考真题)因式分解:221x x ++=______. 【答案】()21x +. 【详解】解:()22211x x x ++=+.故答案为:()21x +. 【点睛】此题考查了运用公式法因式分解,熟练掌握完全平方公式是解答此题的关键. 32.(2021·湖南邵阳市·中考真题)因式分解:23xy x -=______. 【答案】()()x y x y x -+ 【分析】提公因式与平方差公式相结合解题. 【详解】解:2322()()()xy x x y x x y x y x -=-=-+, 故答案为:()()x y x y x -+. 【点睛】本题考查因式分解,涉及提公因式与平方差公式,是重要考点,难度较易,掌握相关是解题关键. 33.(2021·四川眉山市·中考真题)分解因式:3x y xy -=______. 【答案】()()11xy x x +- 【分析】先利用提公因式法提出公因式xy ,再利用平方差公式法进行变形即可. 【详解】解:()()()32111x y xy xy x xy x x -=-=+-;故答案为:()()11xy x x +-. 【点睛】本题考查了提公因式法和公式法(平方差公式)进行的因式分解的知识,解决本题的关键是牢记因式分解的特点和基本步骤,分解的结果是几个整式的积的形式,结果应分解到不能再分解为止,即分解要彻底,本题易错点是很多学生提公因式后以为分解就结束了,因此要对结果进行检查. 34.(2021·湖南衡阳市·中考真题)因式分解:239a ab -=__________. 【答案】()33a a b - 【分析】利用提取公因式法因式分解即可 【详解】解:()23933a ab a a b -=-故答案为: ()33a a b - 【点睛】本题考查提取公因式法因式分解,熟练掌握因式分解的方法是关键 35.(2021·北京中考真题)分解因式:2255x y -=______________. 【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解. 【详解】解:()()()22225555x y x y x y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 36.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m -=2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 37.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b .【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b故答案为:(a b b .【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键.三、解答题38.(2021·黑龙江大庆市·中考真题)先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.39.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos4512π-⎛⎫-+-+︒- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)2=++⨯-411=++6=+(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.40.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∴2x y -=,∴1121y x x y xy xy---===,∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.41.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .【答案】(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616. 【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .【详解】 解:(1)168不是“合和数”,621是“合和数”. 1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=, 621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-.∴()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-. ∴()()21054()2105P M m m G M k Q M n n ++====--(k 是整数).39m ≤≤,8514m ∴≤+≤,k 是整数,58m ∴+=或512m +=,∴当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.∴当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616. 【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学真题汇编:因式分解
一.选择题(共3小题)
1.(2018•济宁)多项式4a﹣a3分解因式的结果是()
A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.
【解答】解:4a﹣a3
=a(4﹣a2)
=a(2﹣a)(2+a).
故选:B.
2.(2018•邵阳)将多项式x﹣x3因式分解正确的是()
A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.
【解答】解:x﹣x3=x(1﹣x2)
=x(1﹣x)(1+x).
故选:D.
3.(2018•安徽)下列分解因式正确的是()
A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)
C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)
【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.
【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;
B、x2+xy+x=x(x+y+1),故此选项错误;
C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;
D、x2﹣4x+4=(x﹣2)2,故此选项错误;
故选:C.
二.填空题(共21小题)
4.(2018•温州)分解因式:a2﹣5a= a(a﹣5).
【分析】提取公因式a进行分解即可.
【解答】解:a2﹣5a=a(a﹣5).
故答案是:a(a﹣5).
5.(2018•徐州)因式分解:2x2﹣8= 2(x+2)(x﹣2).
【分析】观察原式,找到公因式2,提出即可得出答案.
【解答】解:2x2﹣8=2(x+2)(x﹣2).
6.(2018•怀化)因式分解:ab+ac= a(b+c).
【分析】直接找出公因式进而提取得出答案.
【解答】解:ab+ac=a(b+c).
故答案为:a(b+c).
7.(2018•潍坊)因式分解:(x+2)x﹣x﹣2= (x+2)(x﹣1).
【分析】通过提取公因式(x+2)进行因式分解.
【解答】解:原式=(x+2)(x﹣1).
故答案是:(x+2)(x﹣1).
8.(2018•吉林)若a+b=4,ab=1,则a2b+ab2= 4 .
【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.
【解答】解:∵a+b=4,ab=1,
∴a2b+ab2=ab(a+b)
=1×4
=4.
故答案为:4.
9.(2018•嘉兴)分解因式:m2﹣3m= m(m﹣3).
【分析】首先确定公因式m,直接提取公因式m分解因式.
【解答】解:m2﹣3m=m(m﹣3).
故答案为:m(m﹣3).
10.(2018•杭州)因式分解:(a﹣b)2﹣(b﹣a)= (a﹣b)(a+b+1).【分析】原式变形后,提取公因式即可得到结果.
【解答】解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1),
故答案为:(a﹣b)(a﹣b+1)
11.(2018•湘潭)因式分解:a2﹣2ab+b2= (a﹣b)2.
【分析】根据完全平方公式即可求出答案.
【解答】解:原式=(a﹣b)2
故答案为:(a﹣b)2
12.(2018•株洲)因式分解:a2(a﹣b)﹣4(a﹣b)= (a﹣b)(a﹣2)(a+2).【分析】先提公因式,再利用平方差公式因式分解即可.
【解答】解:a2(a﹣b)﹣4(a﹣b)
=(a﹣b)(a2﹣4)
=(a﹣b)(a﹣2)(a+2),
故答案为:(a﹣b)(a﹣2)(a+2).
13.(2018•张家界)因式分解:a2+2a+1= (a+1)2.
【分析】直接利用完全平方公式分解因式得出答案.
【解答】解:a2+2a+1=(a+1)2.
故答案为:(a+1)2.
14.(2018•广东)分解因式:x2﹣2x+1= (x﹣1)2.
【分析】直接利用完全平方公式分解因式即可.
【解答】解:x2﹣2x+1=(x﹣1)2.
15.(2018•云南)分解因式:x2﹣4= (x+2)(x﹣2).
【分析】直接利用平方差公式进行因式分解即可.
【解答】解:x2﹣4=(x+2)(x﹣2).
故答案为:(x+2)(x﹣2).
16.(2018•苏州)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12 .
【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.
【解答】解:∵a+b=4,a﹣b=1,
∴(a+1)2﹣(b﹣1)2
=(a+1+b﹣1)(a+1﹣b+1)
=(a+b)(a﹣b+2)
=4×(1+2)
=12.
故答案是:12.
17.(2018•连云港)分解因式:16﹣x2= (4+x)(4﹣x).
【分析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.
【解答】解:16﹣x2=(4+x)(4﹣x).
18.(2018•河北)若a,b互为相反数,则a2﹣b2= 0 .
【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.
【解答】解:∵a,b互为相反数,
∴a+b=0,
∴a2﹣b2=(a+b)(a﹣b)=0.
故答案为:0.
19.(2009•陕西)分解因式:a3﹣2a2b+ab2= a(a﹣b)2.
【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.
【解答】解:a3﹣2a2b+ab2,
=a(a2﹣2ab+b2),
=a(a﹣b)2.
20.(2018•遂宁)分解因式3a2﹣3b2= 3(a+b)(a﹣b).
【分析】提公因式3,再运用平方差公式对括号里的因式分解.
【解答】解:3a2﹣3b2
=3(a2﹣b2)
=3(a+b)(a﹣b).
故答案是:3(a+b)(a﹣b).
21.(2018•泰州)分解因式:a3﹣a= a(a+1)(a﹣1).
【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.
【解答】解:a3﹣a,
=a(a2﹣1),
=a(a+1)(a﹣1).
故答案为:a(a+1)(a﹣1).
22.(2018•内江)分解因式:a3b﹣ab3= ab(a+b)(a﹣b).
【分析】0
【解答】解:a3b﹣ab3,
=ab(a2﹣b2),
=ab(a+b)(a﹣b).
23.(2018•淄博)分解因式:2x3﹣6x2+4x= 2x(x﹣1)(x﹣2).
【分析】首先提取公因式2x,再利用十字相乘法分解因式得出答案.
【解答】解:2x3﹣6x2+4x
=2x(x2﹣3x+2)
=2x(x﹣1)(x﹣2).
故答案为:2x(x﹣1)(x﹣2).
24.(2018•菏泽)若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为﹣12 .
【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.
【解答】解:∵a+b=2,ab=﹣3,
∴a3b+2a2b2+ab3=ab(a2+2ab+b2),
=ab(a+b)2,
=﹣3×4,
=﹣12.
故答案为:﹣12.
三.解答题(共2小题)
25.(2018•齐齐哈尔)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|
(2)分解因式:6(a﹣b)2+3(a﹣b)
【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和特殊角的三角函数值以及绝对值的性质分别化简得出答案;
(2)直接提取公因式3(a﹣b),进而分解因式得出答案.
【解答】解:(1)原式=4+1﹣2×﹣(π﹣3)
=5﹣1﹣π+3
=7﹣π;
(2)6(a﹣b)2+3(a﹣b)
=3(a﹣b)[2(a﹣b)+1]
=3(a﹣b)(2a﹣2b+1).
26.(2018•临安区)阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)
∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误请写出该步的代号: C ;(2)错误的原因为:没有考虑a=b的情况;
(3)本题正确的结论为:△ABC是等腰三角形或直角三角形.
【分析】(1)根据题目中的书写步骤可以解答本题;
(2)根据题目中B到C可知没有考虑a=b的情况;
(3)根据题意可以写出正确的结论.
【解答】解:(1)由题目中的解答步骤可得,
错误步骤的代号为:C,
故答案为:C;
(2)错误的原因为:没有考虑a=b的情况,
故答案为:没有考虑a=b的情况;
(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,
故答案为:△ABC是等腰三角形或直角三角形.。

相关文档
最新文档