中考数学专题复习卷因式分解(含解析)

合集下载

第一单元 第二讲 整式、因式分解++++课件+2025年九年级中考数学总复习人教版(山东)

第一单元 第二讲 整式、因式分解++++课件+2025年九年级中考数学总复习人教版(山东)

C.(a-3)(a+3)
D.a2(a-9)
( A)
2.(2024·广西中考)如果a+b=3,ab=1,那么a3b+2a2b2+ab3的值为 ( D )
A.0
B.1
C.4
D.9
3.(2024·广元中考)分解因式:(a+1)2-4a=__________.
(a-1)2
21
考点4
整式的运算及乘法公式(一题多设问)
81
(7)化简:2b2+(a+b)(a-b)-(a-b)2=_________.
2ab
(8)一个长方形的面积是5xy+4y,宽为y,则长为__________.
5x+4
12
4.因式分解
几个整式的积
因式分解的概念 把一个多项式化成__________________的变形
提取公因
式法
如果一个多项式的各项含有____________,那么就可以把
±12
26
本课结束
C.-1
D.1
(2)若x-5y=7,则代数式3-2x+10y的值为_________.
-11
( C )
5
知识要点
2.整式及有关概念
6
对点练习
2.下列说法中,正确的是
2
A.
不是整式
4
3
B.的系数是-3,次数是3
2
C.3是单项式
D.多项式2x2y-xy是五次二项式
(C )
7
知识要点
3.整式的运算
D.(x3)2=x6
(3)化简-x(x-2)+4x的结果是 ( A )
A.-x2+6x

2021中考数学一轮复习整式及因式分解能力检测题1(附答案详解)

2021中考数学一轮复习整式及因式分解能力检测题1(附答案详解)

2021中考数学一轮复习整式及因式分解能力检测题1(附答案详解)1.x 2+5 可以写成( )A .x 2.x 5B .x 2.x 5C .2x .x 5D .2x .5x2.下列运算中,结果正确的是( )A .347a a a +=B .24434a a a +=C .32a a a -=D .2244a a -= 3.3x 2y ﹣5yx 2=( )A .﹣2B .﹣2yx 2C .﹣2xyD .不能运算 4.如果多项式6xy 2-7x 3y +Mxy 2-8合并同类项后是四次二项式,那么M 为( ) A .M =7 B .M =8 C .M =6 D .M =-65.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的12)后,得图③,④,…,记第n (n≥3)块纸板的周长为P n ,则P 2018﹣P 2017的值为( )A .20171()4 B .20181()4 C .20171()2 D .20181()26.如果257+513能被n 整除,则n 的值可能是( )A .20B .30C .35D .407.下列概念表述正确的是( )A .单项式x 3yz 4系数是1,次数是4B .单项式232a b π-的系数是12-,次数是6C .多项式2a 2b -ab -1是五次三项式D .x 2y +1是三次二项式8.下列各式:(1)1-34x 2y ;(2)a•30;(3)20%xy ;(4)a-b+c ;(5)2223a b -;(6)t-2℃,其中符合代数式书写要求的个数有( )A .5个B .4个C .3个D .2个9.计算(x 2-3x +n)(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( ) A .m =3,n =1 B .m =0,n =0 C .m =-3,n =-9 D .m =-3,n =8 10.下列计算正确的是( )A .x 4+x 4=x 16B .(﹣2a )2=﹣4a 2C .x 7÷x 5=x 2D .m 2•m 3=m 611.多项式323π215x y xy --+的次数是______ . 12.已知当x =2时,320ax bx +-=,则当2x =时,37ax bx ++__________. 13.下列式子中:①mn +a ;②ax 2+bx +c ;③-6ab ;④2x y +;⑤a b x -;⑥5+7x .整式有________.(填序号)14.已知有理数a 、b 、c 在数轴上的对应点如图所示,那么代数式a b a c c b +--+-的化简结果是__________.15.计算:()23a a ÷-=________.16.化简:2(23)a a ----的结果是___________.17.(-a 3)2(-a 2)3= ________,10m+1×10n+11=________ .18.若(mx -6y )与(x +3y )的积中不含xy 项,则m 的值是________.19.2a 2-a(2a-5b)-b(2a-b)= ___________;20.已知2139108n n -+=,则代数式(22)n n -的值为__________.21.求代数式()()()x y z y z x z x y ---+-的值,其中1x 4=,1y 2=,3z 4=-. 22.把下列各式因式分解:(1)16x 2-25y 2;(2)x 2-4xy +4y 2;(3)(a +2b)2-(2a -b)2;(4)(m 2+4m)2+8(m 2+4m)+16;(5)81x 4-y 4.23.计算: (1)(-3)0+21()3-+(-2)3; (2)(-2a 3)2·3a 3+6a 12÷(-2a 3) ; (3)(x+1)(x ﹣2)﹣(x ﹣2)2 .24.化简:|2x ﹣3|+|3x ﹣5|﹣|5x+1|25.计算:计算:(1)157(36)2612⎛⎫+-⨯- ⎪⎝⎭. (2)()2411336⎡⎤--⨯--⎣⎦. 化简: ①、()()32322312x x x x-+++- ②、22(331)(568)a a a a ---+-26.填表从填好的表中,你能发现什么规律?若发现了请写在下面的横线上:______________________27.先化简,再求值 ()()221362421x y xy xy x y ⎡⎤----+⎣⎦,其中12x =-,1y =. ()()()22222322x y xy xy x y ---,其中1x =-,2y =.28.指出下列各单项式的系数和次数.(1)3x 3;(2)-65xyz ;(3)23mn ;(4)-4x ;(5)-mx ;(6)237x y π. 29.数学老师在黑板上抄写了一道题目:“当a=2,b=﹣2时,求多项式3a 3b 3﹣12a 2b+b ﹣(4a 3b 3﹣14a 2b ﹣b 2)+(a 3b 3+14a 2b )﹣2b 2+3的值”,甲同学做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢? 30.求[4(xy ﹣1)2﹣(xy+2)(2﹣xy )]÷14xy 的值,其中x=(﹣cos60°)﹣1,y=﹣sin30°.参考答案1.A【解析】根据同底数幂的乘法法则可得,x 2.x 5 =x 2+5 ,故选A..2.C【解析】【分析】根据合并同类项法则依次判断即可解答.【详解】选项A ,3a 与4a 不是同类项不能合并,选项A 错误;选项B ,23a 与4a 不是同类项不能合并,选项B 错误;选项C ,根据合并同类项法则可得32a a a -=,选项C 正确;选项D ,根据合并同类项法则可得22243a a a -=,选项D 错误.故选C .【点睛】本题考查了合并同类项,熟知合并同类项法则是解决问题的关键.3.B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行计算即可.【详解】原式=3x 2y ﹣5yx 2=﹣2yx 2.故答案为B .【点睛】本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则.4.D【解析】【分析】如果多项式6xy 2-7x 3y +Mxy 2-8合并同类项后是四次二项式,那么6+M=0.【详解】6xy 2-7x 3y +Mxy 2-8=(6+M)xy 2-7x 3y -8,因为多项式合并同类项后是四次二项式, 所以,6+M=0所以,M=-6故选:D【点睛】本题考核知识点:合并同类项.解题关键点:熟练合并同类项.5.C【解析】【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P 1,P 2,P 3,P 4,根据周长相减的结果能找到规律即可求出答案.【详解】P 1=1+1+1=3,P 2=1+1+12=52, P 3=1+1+14×3=114, P 4=1+1+14×2+18×3=238, …∴p 3-p 2=114-52=14=21()2; P 4-P 3=238-114=18=31()2, 则P n -P n-1=11()2n -, 故P 2018﹣P 2017=20171()2故答案为20171()2 【点睛】本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好. 6.B【解析】试题解析:()71314131313122555555156530+=+=⨯+=⨯=⨯, 则n 的值可能是30;故选B.7.D【解析】【分析】根据单项式的系数和次数,多项式的项数和次数的定义来判断.【详解】解:A :x 3yz 4的系数是1,次数是8,故A 错误;B :232a b π-的系数是2π-,次数是5,故B 错误; C :2a 2b -ab -1是三次三项式,故C 错误;D :x 2y +1是三次二项式,故D 正确.故选D.【点睛】本题考查了单项式和多项式的相关概念.8.B【解析】试题解析:(1) 2314x y -,正确; (2)正确的书写格式是30a ;(3)20%xy ,正确;(4)a −b +c ,正确; (5) 2223a b -,正确; (6)正确的书写格式是(t −2)℃.其中符合代数式书写要求的个数有4个.故选B.9.A【解析】试题解析:(x 2-3x+n )(x 2+mx+8)=x 4+mx 3+8x 2-3x 3-3mx 2-24x+nx 2+nmx+8n=x 4+(m-3)x 3+(8-3m+n )x 2-24x+8n ,∵不含x 2和x 3的项,∴m-3=0,∴m=3.∴8-3m+n=0,∴n=1.故选A .10.C【解析】【分析】根据二次根式运算法则即可解答.【详解】x 4+x 4=2x 4 ,故选项A 错;(﹣2a )2=4a 2,故选项B 错;x 7÷x 5=x 2 ,故选项C 正确;m 2•m 3=m 5,故选项D 错.故选:C【点睛】本题考核知识点:二次根式运算. 解题关键点:熟记二次根式运算法则.11.4【解析】分析:根据多项式次数的定义求解.多项式的次数是多项式中最高次项的次数,可得答案. 详解:多项式﹣335x y π﹣2xy 2+1的次数是 4. 故答案为:4.点睛:本题考查了多项式的次数,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.12.9【解析】由题意得:8a+2b-2=0,所以:8a+2b=2,当x=2时,37ax bx ++=8a+2b+7=2+7=9,故答案为:9.13.①②③④⑥【解析】①mn +a 是多项式也是整式;②ax 2+bx +c 是多项式也是整式;;③-6ab 是单项式也是整式;④x y2+是多项式也是整式;;⑤a bx-是多项式也是整式;;⑥5+7x是多项式也是整式;.故答案为:①②③④⑥14.-2b【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:a<0<b<c,且|b|<|a|,∴a+b<0,a-c<0,c﹣b>0,则原式=-(a+b)+(a-c)+(c-b)=-a-b+a-c+c-b=-2b.故答案为-2b.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.15.a【解析】分析:先化简(﹣a)2,然后再依据同底数幂的除法法则计算即可.详解:原式=a3÷a2=a..故答案为a.点睛:本题主要考查的是同底数幂的除法,熟练掌握相关法则是解题的关键.16.3【解析】()223a a----=223a a-++=3.故答案为:3.17.-a1210m+n+12【解析】分析:第一题先算幂的乘方,再根据同底数幂的乘法计算;第二题直接根据同底数幂的乘法计算.详解:(-a3)2(-a2)3=a6·(-a6) = -a12,10m+1×10n+11=10m+n+12.故答案为:(1) -a12(2) 10m+n+12点睛:本题考查了幂的乘方和同底数幂的乘法运算,熟练掌握同底数幂的运算法则和幂的乘方运算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相乘,底数不变指数相加.18.2【解析】分析:先运用多项式的乘法法则,进行乘法运算,再合并同类项,因积中不含xy 项,所以xy 项的系数为0,得到关于m 的方程,解方程可得m 的值.详解:∵(mx ﹣6y )×(x +3y )=mx 2+(3m ﹣6)xy ﹣18y 2,且积中不含xy 项,∴3m ﹣6=0,解得:m =2.故答案为2.点睛:本题主要考查多项式乘多项式的法则,根据不含某一项就是让这一项的系数等于0列式是解题的关键.19.3ab+b 2【解析】2a 2-a(2a-5b)-b(2a-b)=2a 2-2a 2+5ab-2ab+b 2=3ab+b 2故答案是:3ab+b 2.20.4.【解析】解:∵原式可化为22331083nn += ,∴32n (13+1)=108,∴32n =81,∴32n =34,解得n =2,∴原式=22=4.故答案为:4.点睛:本题考查的是幂的乘方与积的乘方法则,先根据题意得出n 的值是解答此题的关键. 21.原式()2y x z 1=-=【解析】分析:先根据单项式乘多项式的法则计算,合并同类项后提取公因式2y ,然后把14x =,12y =,34z =-代入计算即可., 详解:原式()xy xz yz xy xz yz 2xy 2yz 2y x z =--++-=-=-,当1x 4=,1y 2=,3z 4=-时,原式11321244⎛⎫=⨯⨯+= ⎪⎝⎭. 点睛:本题考查了整式的化简求值,熟练掌握整式的运算法则是解答本题的关键. 22. (1) (4x +5y)(4x -5y);(2)(x -2y)2;(3) (3a +b)(3b -a);(4) (m +2)4.(5)(3x +y)(3x -y)(9x 2+y 2)【解析】试题分析:根据因式分解的方法进行因式分解即可.试题解析:(1)原式()()4545x y x y =+-.(2)原式()22.x y =- (3)原式()()()()()()22?2233a b a b a b a b a b b a ⎡⎤⎡⎤=++-+--=+-⎣⎦⎣⎦.(4)原式()()()222424422.m m m m ⎡⎤⎡⎤=++=+=+⎣⎦⎣⎦ (5)原式()()()()()22222299339x y x y x y x y x y =-+=+-+ 点睛:常用的因式分解的方法:提取公因式法,公式法,十字相乘法,分组分解法. 23.(1)2;(2)9a 9;(3)3x-6【解析】【分析】()1根据有理数的运算顺序进行运算即可;()2根据整式的运算法则进行运算即可;()3根据整式的运算法则进行运算即可.【详解】解:()1原式()2138198 2.=++-=+-= ()2原式()6399994331239.a a a a a a =⋅+-=-=()3原式()22244,x x x x =----+22244,x x x x =---+-3 6.x =-【点睛】考查有理数的混合运算,整式的混合预算,解题的关键是注意运算顺序.24.①9;②﹣10x+7;③﹣6x+1;④﹣9【解析】【分析】根据x的范围分四种情况,利用绝对值的代数意义化简,去括号合并即可得到结果. 【详解】解:①当15x<-时,原式3253519x x x=-+-++=.②当1352x-≤<时,原式325351107x x x x=-+---=-+.③当3523x≤<时,原式23535161x x x x=-+---=-+.④当53x≥时,原式2335519.x x x=-+---=-【点睛】此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.注意分类讨论思想在解题中的应用.25.(1)—27;(2)0;①、21x+;②、2297a a--+;【解析】【分析】(1)先把括号中的每一项分别同-36相乘,再把结果相加减即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;①先去括号,再合并同类项即可求解;②先去括号,再合并同类项即可求解.【详解】解:(1)原式=12×(-36)+56×(-36)-712×(-36)=-18-30+21 =-27(2)−14−16×[3−(−3)2]=-1-16×[3-9]=-1-16×[-6] =-1+1=0;①()()32322312x x x x-+++- =323223122x x x x -+++-=21x +②()()22331568a a a a ---+-=2331a a ---2568a a -+=-22a -9a+7【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.本题还考查了有理数的混合运算,整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.26.x 2-2xy+y 2=(x-y) 2【解析】分析:先根据代数式的求值,把所给的x 、y 的值分别代入x 2-2xy+y 2、(x-y )2,然后根据结果总结规律即可.详解:填表:发现规律:x2-2xy+y2=(x-y)2.点睛:此题主要考查了规律总结题,利用代入法求解即可,解题时注意符号的变化,不要出错.27.(1)-3;(2)22【解析】【分析】(1)先括号,再合并,最后把x、y的值代入计算即可;(2)先括号,再合并,最后把x、y的值代入计算即可.【详解】解:(1)原式=3x2y+2xy﹣4+x2y+1=4x2y+2xy﹣3当x=﹣12,y=1时,原式=4×(﹣12)2×1+2×(﹣12)×1﹣3=﹣3;(2)原式=3x2y﹣2xy2﹣xy2+2x2y=5x2y﹣3xy2当x=﹣1,y=2时,原式=5×(﹣1)2×2﹣3×(﹣1)×22=22.【点睛】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.28.见解析.【解析】【分析】根据单项式的系数和次数的意义进行分析.【详解】解:(1)3x3的系数为3,次数为3.(2)-xyz的系数为-,次数为3.(3)的系数为,次数为2.(4)-的系数为-,次数为1.(5)-mx的系数为-1,次数为2.(6)的系数为,次数为3.【点睛】本题考核知识点:单项式的系数和次数.解题关键点:理解单项式的系数和次数的意义.29.结果一样【解析】试题分析:根据整式的化简,先去括号,合并同类项,化简后,通过结果中没有a可知结果与a的值无关,即可求解.试题解析:原式=3a3b3﹣a2b+b﹣4a3b3+a2b+b2+a3b3+a2b﹣2b2+3=b﹣b2+3,结果与a的值无关,故做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样.30.-12【解析】分析:根据三角函数值及负指数幂化简x、y的值,根据完全平方公式及平方差公式化简整式,再将x、y的值代入可得.详解:原式=[4(x2y2﹣2xy+1)﹣(22﹣x2y2)]•4 xy=(4x2y2﹣8xy+4﹣4+x2y2)4 xy ⋅=(5x2y2﹣8xy)4 xy ⋅=20xy﹣32当x=(﹣cos60°)﹣1=(﹣12)﹣1=﹣2,y=﹣sin30°=﹣12时,原式=20×(﹣2)×(﹣12)﹣32=﹣12.点睛:本题主要考查整式的化简求值能力,根据三角函数值及负整数指数幂化简x、y的值是基本,准确化简整式是关键.。

中考题整式的乘除与因式分解_(含答案)

中考题整式的乘除与因式分解_(含答案)

3整式的乘除与因式分解中考题要点一:幕的运算性质 、选择题 1、 (2010义乌中考)28 cm 接近于( A .珠穆朗玛峰的高度 B .三层楼的高度 C .明的身高 D .一纸的厚度2、(2009新疆中考)下列运算正确的是( 3、4、 5、 6、 7、 9、A . aa ?g 4 aa 6B . (x 2)5 x 7C . (2009东营中考)计算 3a 2b 3 4的结果是 (A) 81a 8b 12 ( B ) 12a 6b 7(2010 中考)1.计算(T)2 + ( T)3 = A. -2 B. -11 2 3(2009中考)化简(x ) x 的结果是 A . x 5 B . x 4(2009中考)下列运算正确的是( A . 3a 2— a 2= 3 B . (a 2) 3= a 5 (2009崇左中考)下列运算正确的是( 2 2 4 A . 2x 2 • 3x 2 6x 4 B . 2x 2C 2x 2 3x 2 - x 2D 2x 23'(2009中考) (2009中考) A . a 2• a 3F 列运算中,正确的是(B. a a 23ab 2 3a 2b 0). 12a 6b 7C. 0 ).3x 2 3x 2a 2F 列计算中,结果正确的是 a 6B . 2a • 3a6a10. (2009襄樊中考)下列计算正确的是(A . a 2-a 3a 6 B . a 8 a 4 a 2 a 3. a 6= a 95x 4C . C .C . a 3 11、 (2009 中考)若 2x 3,4y 5,则2x-2y 的值为((2a)2 a 2 (D)81a 8b 12D. 2(2a ) 2= 2a 24a 2 D . (a 3)2 a 6 D .a 6 a 2 a 52a 2a 5a 3368a 63、填空题要点二、整式的运算、选择题3 A.-5B. -2C.3、56 D.-5(2007 中考)计算: (103) (2007 中考) 计算 [( x) 3]解答题(2010 中考) 计算:(3)(2009 中考) 计算:2(2008中考) 2 16、 2 17、18 19、2x 2 32I 111. (2010眉山中考)下列运算中正确的是2、 2A . 3a 2a 5a C . 2a 2 a 3 2a 6(2009中考)下列计算正确的是( A.2x+x=x 3 B.(3x) 2=6x 232(2009中考)计算2xX 的结果是(2 a (2 a b)(2a b) 4a 2 b 2 b)2 4a 2 b 2C.(x — 2)2=x 2- 4D.x 3^x=x 212、 (2009威海中考)计算(2 3) 1(、21)0的结果是13、 (2009中考) 已知 10m 2,0n 3,则 103m 2n 14、 (2008中考) 计算(a 3)215、20、 (2009 中考) 计算: .1621、 (2010 •中考)计算:22、 (2009中考)计算:1)2 31.45 6A . XB . 2xC . 2xD . 2x4、 ( 2009眉山中考)下列运算正确的是().2 X 35224A . (x )xB . 3x 4x 7xC . ( x)9 ( x)3 x 6D . x(x 2 x 1) x 3 x 2 x5、 ( 2009中考)下列运算正确的是 ( ). A . 3a 2a a 5 B . a 2 a 36aC . (a 2 2D . (a.、22 . 2b)(a b) a bb)a b【解析】选C.根据平方差公式得结论(2008中考)下列计算结果正确的是( )A . 2x2 33 4y 2xy 2x yB .3x 2y 5xy 2= 2x 2 y4 C . 28x 2 - 3,y 7x y 4xyD . (3a 2)( 3a 2) 9a 2 4答案:选C7、( 2008中考)下列各式计算正确的是()A . 2a 2 a 3 3a 5B . 3xy 2 xy 3xyC . 2b 2 3 8b 5D . 2x?3x 5 6x 6答案:选D 二、填空题8、( 2010中考)计算:a 3为2 = ___________【解析】a 3为2 =a 3 2=a 答案:a31 29、 (2009黄冈中考)计算: 3x ( -x )=9答案:一-x 5.— 16a 8.310、 ___________________________________________ (2009 中考) 计算(3a )2-a 5 =7答案:9a32, ab 1,化简(a 2)(b 2)的结果是(2a 2)4= ________11、 (2009中考)已知:a b答案:212、 (2008中考)当x 3,y1时,代数式(x y )(x y ) y 的值是 _____________ .答案:913、 (2007中考)利用图形中面积的等量关系可以得到某些数学公式•例如,根据图甲,我们可以得到两数和的平方公式:(a+b ) 2=a 2+2ab+b 2.你根据图乙能得到的数学公式是答案:(a b)2 a 2 2ab b 2 三、解答题14、(2009中考)先化简,再求值:2 21(a b)(a b) (a b)2 2a 2,其中 a 3, b -.2【解析】(a b)(a b) (a b)22a a 2 b 2 a 2 2abb 22a 22ab11 a 3,b 3时,2ab 231 3220082b2008 20092 2 22008 1 2008二 a<b .200715、(2009 中考)若 a, b20082008融,试不用将分数化小数的方法比较a 、b 的大小.【解析】 2007 2009a= 2008 2009(2008 1) (2008 1)2008 20092 22008 1 2008 20091要点三、因式分解、选择题【解析】a 2—ab =a(a —b) 答案:a (a —b )【解析】 选C.选项A 提取公因式不彻底,选项 B 提取公因式后符号处理不正确, D 不是因式分解.【解析】选C.利用完全平方公式因式分解16、(2008中考)先化简,再求值: (a b)(a b) b(b 2),其中 a【解析】原式 a 2 2 2b b 2ba 2 2b当a 1 , b 1时,原式 (1)217、(2008中考)先化简, 再求值:(2 a b)(2a b) b(2ab) 4a 2bb ,其中【解析】原式 4a 2 b 2 2ab b 2 4a 22ab1、 (2010中考)分解因式:a 2 —ab =2、 (2008中考)下列分解因式正确的是(2A . 2x xy x 2x(x y 1)2xy2xy 3y y(xy 2x 3)2C . x(x y) y(x y) (x y)D . X 2x 3 x(x 1)3选项3、 (2010眉山中考)把代数式 mx 2 6mx9m 分解因式,下列结果中正确的是(4、5、2A . m(x 3)B . m(x 3)(x 3)2 2C . m(x 4)D . m(x 3)【解析】:选Dmx 2 6mx 9m =m(x 2— 6x + 9)=m(x — 3)2(2009中考)将整式9 — x 2分解因式的结果是 A . (3 — x)2B . (3 + x)(3 — x)C . (9 — x)2D . (9 + x)(9 — x)【解析】选B.根据平方差公式因式分解(2009中考)把多项式x 2 一 4x+4分解因式,所得结果是(). A . x(x 一 4)+4B.(x 一 2)(x+2) C . (x 一 2)2 D . (z+2)23 2 26、(2009中考)把x 2x y xy分解因式,结果正确的是(2 c 2 2 2A. xxyxyB. xx 2xy y C xxy D xxy【解析】选D.先提取公因式,在利用完全平方公式因式分解7、(2009江中考)在边长为a的正方形中挖去一个边长为b的小正方形(a b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证A. (a b)2 2 a2ab b2B. (a 2 2b) a2ab b2D. (a2b)(a b)a2ab 2 bC.2 a b2(a b)(a b)【解析】选C.图甲中阴影部分的面积为a2—b2,图乙中阴影部分的面积为(a+b)(a—b),所以a2—b2=(a+b)(a 一b),故选C.8、(2008中考)下列多项式中,能用公式法分解因式的是()A.x2—xyB. x2+ xyC. x2—y2D. x2+ y2【解析】选C.选项C可以利用平方差公式因式分解.9、(2008中考)下列式子中是完全平方式的是()A. B .C. D.【解析】选D.完全平方式符合首平方、尾平方、2倍的首尾在中央.二、填空题10、 ______________________________________________ (2010 中考)分解因式:2a2 -4a + 2=【解析】2a2-4a + 2=2 (a2^a +1)=2 (a -1)211、 _____________________________________________ (2009中考)分解因式:x22x=答案:x (x —2)12、(2009中考)因式分解:2a24a ___________答案:2a(a 2)13、 ______________________________________________________ (2009威海中考)分解因式:(x+3)2—(x+3)____________________________________.答案:(x+3)(x+2)14、 ______________________________________ (2009中考)分解因式2x38x= .答案:2x(x+2)(x —2)15、(2009中考)在实数围因式分解x4 4 = ____________ •答案:(x22)( x ,2)(x .、2)三、解答题16、(2009中考)在三个整式x22xy,y22xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解【关键词】整式的运算、因式分解【解析】(x22xy)x22x22xy2x(x y);或(y22xy)x2(x y)2;或(x22xy)(y222xy) x2y(x y)(x y)或(y22xy)(x222xy) y 2 x(y x)(y x)1 2 1 2 1 217、(2009中考)给出三个多项式:一X 2x 1 , - x 4x 1 , - x 2x .请选择你最2 2 2喜欢的两个多项式进行加法运算,并把结果因式分解.【解析】情况一:12 2x2x1 21 x 4x21 =2=x6x =x(x 6)情况二: 1 2 x22x1 12 x22x =x21 =(x1)(x1).情况三: 1 2 x4x1 1 2 x2x = x22x1=(x1)2.2218、(2008中考)分解因式【解析】原式===。

中考数学一轮复习:代数式与整式(含因式分解)过关练测(word版、含答案)

中考数学一轮复习:代数式与整式(含因式分解)过关练测(word版、含答案)

3.代数式与整式(含因式分解)一、选择题1.下列各式中正确的是()A.a3·a2=a6B.3ab-2ab=1C.6a2+13a=2a+1 D.a(a-3)=a2-3a2.下列运算正确的是()A.(-a)³=a³B.(a²)³=a⁵C.a²÷a-²=1D.(-2a³)²=4a⁶3.下列各式计算正确的是()A.4a-a=3B.a⁶÷a²=a³C.(-a³)²=a⁶D.a³·a²=a⁶4.下列运算正确的是()A.a²·a³=a⁶B.a⁸÷a⁴=a²C.a³+a³=2a⁶D.(a³)²=a⁶5.计算(a²)³的结果是()A.a⁵B.a⁶C.a⁸D.a⁹6.下列运算正确的是()A.3a²-a²=3B.(a²)³=a⁵C.a³·a⁶=a⁹D.(2a²)²=4a²7.小明总结了以下结论:①a(b+c)=ab+ac;②a(b-c)=ab-ac;③(b-c)÷a =b÷a-c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0).其中一定成立的个数是()A.1B.2C.3D.48.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a -b)²=a ²-2ab +b ²B.a(a -b)=a ²-abC.(a -b)²=a ²-b ²D.a ²-b ²=(a +b)(a -b)9.下列等式从左到右变形,属于因式分解的是( )A.(a +b)(a -b)=a2-b2B.x2-2x +1=(x -1)2C.2a -1=a ⎝ ⎛⎭⎪⎫2-1a D.x2+6x +8=x(x +6)+810.若(92-1)(112-1)k=8×10×12,则k =( ) A.12 B.10 C.8 D.611.对于任意的有理数a ,b ,如果满足a 2+b 3=a +b2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]=( )A.-2B.-1C.2D.312.从前,古希腊一位庄园主把一块边长为a 米(a >6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定二、填空题13.分解因式:m ²n -n ³= .14.分解因式:3a ²-6a +3= .15.分解因式:2a ³-8a = .16.已知m+n=12,m-n=2,则m²-n²=.17.分解因式:2a²-8=.18.分解因式:mn²-m=.19.分解因式:x³-xy²=.20.分解因式:x²y-y=.21.分解因式:2a²-4a+2=.22.数学讲究记忆方法.如计算(a⁵)²时若忘记了法则,可以借助(a⁵)²=a⁵×a⁵=a⁵+⁵=a¹º,得到正确答案.你计算(a²)⁵-a³×a⁷的结果是.23.现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.24.下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第个图形共有210个小球.三、计算题25.计算:(x-y)²+x(x+2y).26.先因式分解,再计算求值:2x³-8x,其中x=3.27.小红在计算a(1+a)-(a-1)²时,解答过程如下:红的解答从第步开始出错,请写出正确的解答过程.参考答案一、选择题1.D2.D3.C4.D5.B6.C7.C8.D9.B 10.B 11.A 12.C二、填空题13.n(m+n)(m-n)14.3(a-1)²15.2a(a+2)(a-2)16.2417.2(a+2)(a-2)18.m(n+1)(n-1)19.x(x+y)(x-y)20.y(x+1)(x-1)21.2(a-1)²22.(1)a²+b²(2)423.m²-m24.20三、计算题25.解:原式=x²-2xy+y²+x²+2xy=2x²+y².26.解:原式=2x(x²-4)=2x(x+2)(x-2).当x=3时,原式=2×3×(3+2)×(3-2)=30.27.第一步解:(1+a)-(a-1)²=a+a²-(a²-2a+1)=a+a²-a²+2a-1=3a-1.。

专题02 整式与因式分解-三年(2020-2022)中考数学真题分项汇编(四川专用)(解析版)

专题02 整式与因式分解-三年(2020-2022)中考数学真题分项汇编(四川专用)(解析版)

专题02 整式与因式分解一.选择题1.(2022·四川广元·中考真题)下列运算正确的是( )A .x 2+x =x 3B .(﹣3x )2=6x 2C .3y •2x 2y =6x 2y 2D .(x ﹣2y )(x +2y )=x 2﹣2y 2【答案】C【解析】【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A 、x 2与x 不是同类项,不能合并,该选项不符合题意;B 、(﹣3x )2=9x 2原计算错误,该选项不符合题意;C 、3y •2x 2y =6x 2y 2正确,该选项符合题意;D 、(x ﹣2y )(x +2y )=x 2﹣4y 2原计算错误,该选项不符合题意;故选:C .【点睛】本题考查的是合并同类项,积的乘方,同底数幂的除法,平方差公式,掌握以上知识是解题的关键.2.(2022·四川眉山·中考真题)下列运算中,正确的是( )A .3515x x x ×=B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ×-=-【答案】D【解析】【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ×=,根据同底数幂的乘法法则可知:358×=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x -=-,根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ×-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.3.(2022·四川成都·中考真题)下列计算正确的是( )A .2m m m +=B .()22m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=-【答案】D【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.4.(2022·四川遂宁·中考真题)下列计算中正确的是( )A .339a a a ×=B .()3328a a -=-C .()31024a a a ¸-=D .()()2224a a a -+--=+【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式逐一判断即可.【详解】A. 33336a a a a +×==,故本选项错误;B. 3333(2)(2)8a a a -=-=-,故本选项符合题意;C. 102310234()a a a a -´¸-=-=-,故本选项错误;D. 222(2)(2)()24a a a a -+--=--=-,故本选项错误;故选:B .【点睛】本题主要考查了同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式,熟记相关运算法则是解答本题的关键.5.(2022·四川南充·中考真题)下列计算结果正确的是( )A .532a a -=B .623a a a ¸=C .632a a a ¸=D .()3236928a b a b =【答案】D【解析】【分析】根据单项式的减法、除法及同底数幂的除法、积的乘方运算依次计算判断即可.【详解】解:A 、5a -3a =2a ,选项错误;B 、6a ÷2a =3,选项错误;C 、633a a a ¸=,选项错误;D 、()3236928a b a b =,选项正确;故选:D .【点睛】题目主要考查单项式的减法、除法及同底数幂的除法、积的乘方运算,熟练掌握各个运算法则是解题关键.6.(2022·四川泸州·中考真题)下列运算正确的是( )A .236a a a ×=B .321a a -=C .()32628a a -=-D .623a a a ¸=【答案】C【解析】【分析】根据整式的加减乘除运算法则逐个判断即可.【详解】解:选项A :235a a a ×=,故选项A 错误;选项B :32a a a -=,故选项B 错误;选项C :()32628a a -=-,故选项C 正确;选项D :624a a a ¸=,故选项D 错误;故选:C .【点睛】本题考查了整式的加减乘除运算法则,属于基础题,熟练掌握运算法则即可求解.7.(2021·四川内江·中考真题)下列计算正确的是( )A .235a a a +=B .3322ab b a ¸=C .248(2)8a a =D .222()a b a b --=-【答案】B【解析】【分析】根据整式的加减运算法则以及乘除运算法则即可求出答案.【详解】解:A 、2a 与3a 不是同类项,故A 不符合题意.B 、原式32a =,故B 符合题意.C 、原式816a =,故C 不符合题意.D 、原式222a ab b =++,故D 不符合题意.故选:B .【点睛】本题考查整式的混合运算,解题的关键是熟练运用整式的加减运算以及乘除运算法则,本题属于基础题型.8.(2021·四川雅安·中考真题)下列运算正确的是( )A .()326x x =B .232x x x-=C .33(2)6x x -=-D .623x x x ¸=【答案】A【解析】【分析】分别根据合并同类项法则,幂的乘法运算法则,同底数幂的除法法则逐一判断即可.【详解】解:A 、()326x x =正确,该选项符合题意;B 、23x 与2x -不是同类项,不能合并,该选项不符合题意;C 、33(2)8x x -=-原计算错误,该选项不符合题意;D 、624x x x ¸=原计算错误,该选项不符合题意;故选:A .【点睛】本题主要考查了同底数幂的运算及合并同类项,熟练掌握幂的运算及合并同类项是解题的关键.9.(2021·四川广元·中考真题)下列运算正确的是( )A .221124a a æö-=-ç÷èøB .()()2339a a a +-=-C .()23161a a -+=--D .()()2222ab a b a b+-=-【答案】B【解析】【分析】分别根据完全平方公式、平方差公式、单项式乘以多项式法则、多项式乘以多项式法则进行计算即可判断求解.【详解】解:A. 221124a a a æö-=-+ç÷èø,原选项计算错误,不合题意;B. ()()2339a a a +-=-,原选项计算正确,符合题意;C. ()23162a a -+=--,原选项计算错误,不合题意;D. ()()22222222a b a b a ab ab b a ab b +-=-+-=--,原选项计算错误,不合题意.故选:B【点睛】本题考查了整式的乘法运算,乘法公式等知识,熟知乘法公式和整式的乘法法则是解题关键.10.(2021·四川成都·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -×=D .()222m n m n +=+【答案】B【解析】【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=¹,故选项A 计算不正确;B. ()()()222232346m n m n m n =×=,故选项B 计算正确;C . ()3344m m m m m m -×=-×=-¹,故选项C 计算不正确;D . ()222222m n m mn n m n +=++¹+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.11.(2020·四川巴中·中考真题)下列四个算式中正确的是( )A .235a a a +=B .()326a a -=C .236a a a ×=D .32a a a¸=【答案】D【解析】【分析】根据幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法逐个判断即可.【详解】解:A .2a 和3a 不能合并,故本选项不符合题意;B .()326a a -=-,故本选项不符合题意;C .235a a a ×=,故本选项不符合题意;D .32a a a ¸=,故本选项符合题意;故选:D .【点睛】本题考查了幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法等知识点,能熟记知识点是解此题的关键.12.(2020·四川·中考真题)下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 6【答案】D【解析】【分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.【详解】A 、a 2•a 3=a 5,故原计算错误;B 、(3a )3 =27a 3,故原计算错误;C 、3a ﹣2a =a ,故原计算错误;D 、(﹣2a 2)3=﹣8a 6,故原计算正确;故选:D .【点睛】本题主要考查了同底数幂的乘法、积的乘方运算、合并同类项、幂的乘方运算,关键是掌握各计算法则.13.(2020·四川眉山·中考真题)下列计算正确的是( )A .222()x y x y +=+B .2233235x y xy x y +=C .()326328a b a b -=-D .523()x x x -¸=【答案】C【解析】根据完全平方公式、同类项的合并以及幂的四则运算法则依次判断即可.【详解】解:A 选项222()2x y x xy y +=++而不是22x y +,故A 选项错误;B 选项22x y 和23xy 不是同类项,不能进行加减运算,故B 选项错误;C 选项()32363632(2)8a b a b a b -=-=-,故C 选项正确;D 选项22355()x x x x x =--¸¸=-而不是3x ,故D 选项错误.故选:C.【点睛】本题主要考查了整式乘法的综合,涉及了完全平方公式、同类项的合并及幂的四则运算,熟练掌握相应的运算法则并灵活应用是解题的关键.14.(2020·四川南充·中考真题)下列运算正确的是( )A .3a+2b=5abB .3a·2a=6a 2C .a 3+a 4=a 7D .(a-b)2=a 2-b 2【答案】B【解析】【分析】根据同类项、同底数幂乘法、完全平方公式逐一进行判断即可.【详解】A .不是同类项,不能合并,此选项错误;B .3a·2a=6a 2,此选项正确;C .不是同类项,不能合并,此选项错误;D .(a-b)2=a 2-2ab+b 2,此选项错误;故选:B .【点睛】本题考查整式的加法和乘法,熟练掌握同类项、同底数幂乘法、完全平方公式的运算法则是解题的关键.15.(2020·四川遂宁·中考真题)下列计算正确的是( )A .7ab ﹣5a =2bB .(a +1a )2=a 2+21a C .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 2【解析】【分析】根据合并同类项、完全平方公式、积的乘方、单项式除单项式分别进行计算,再判断即可.【详解】7ab 与﹣5a 不是同类项,不能合并,因此选项A 不正确;根据完全平方公式可得(a +1a)2=a 2+21a +2,因此选项B 不正确;(﹣3a 2b )2=9a 4b 2,因此选项C 不正确;3a 2b ÷b =3a 2,因此选项D 正确;故选:D .【点睛】本题考查了合并同类项、完全平方公式、积的乘方、单项式除单项式,掌握运算法则是正确计算的前提.16.(2021·四川绵阳·中考真题)整式23xy -的系数是( )A .-3B .3C .3x -D .3x 【答案】A【解析】【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.17.(2021·四川乐山·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8n m (元)B .8n m (元)C .8m n (元)D .8m n(元)【答案】A【解析】【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∴1千克商品售价为n m,∴8千克商品的售价为8n m (元);故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.18.(2020·四川达州·中考真题)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m ,下列代数式表示正方体上小球总数,则表达错误的是( )A .12(1)m -B .48(2)m m +-C .12(2)8m -+D .1216m -【答案】A【解析】【分析】先根据规律求出小球的总个数,再将选项逐项化简求值即可解题.【详解】解:由题可知求小球的总数的方法会按照不同的计数方法而规律不同,比如可以按照一共有12条棱,去掉首尾衔接处的小球,则每条棱上剩下12(m-2)个小球,加上衔接处的8个小球,则小球的个数为12(2)81216m m -+=-,选项B 中48(2)m m +-1216m =-,故B,C,D 均正确,故本题选A.【点睛】本题考查了图形的规律,合并同类项,需要学生具有较强的逻辑抽象能力,能够不重不漏的表示出小球的总数是解题关键.19.(2022·四川遂宁·中考真题)已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A .2022-B .0C .2022D .4044【答案】B【解析】【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.20.(2021·四川自贡·中考真题)已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-【答案】B【解析】【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---´-.故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.21.(2020·四川眉山·中考真题)已知221224a b a b +=--,则132a b -的值为( )A .4B .2C .2-D .4-【答案】A【解析】【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b æö-++++=-++=ç÷èø,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解.【详解】∵221224a b a b +=--∴()22221121111042a a b b a b æö-++++=-++=ç÷èø即2(1)0a -=,21(1)02b +=∴求得:1a =,2b =-∴把a 和b 代入132a b -得:131(2)42´-´-=故选:A【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.22.(2021·四川泸州·中考真题)已知1020a =,10050b =,则1322a b ++的值是( )A .2B .52C .3D .92【答案】C【解析】【分析】根据同底数幂的乘法31010010a b ×=,可求23a b +=再整体代入即可.解: ∵1020a =,10050b =,∴2310100102050100010a b a b +×==´==,∴23a b +=,∴()()1311233332222a b a b ++=++=+=.故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.23.(2020·四川乐山·中考真题)已知34m =,2432m n -=.若9n x =,则x 的值为( )A .8B .4C .D 【答案】C【解析】【分析】逆用同底数幂的乘除法及幂的乘方法则.由()224=339m n m n -¸即可解答.【详解】∵()()()222-224-233=3=39=m n m n m n m n -¸,依题意得:242x æö=ç÷èø,0x>.∴4x=∴x 故选:C .【点睛】此题主要考查了同底数幂的乘除法,以及幂的乘方运算,关键是会逆用同底数幂的乘除法进行变形.二.填空题24.(2022·四川达州·中考真题)计算:23a a +=______.【答案】5a【解析】直接运用合并同类项法则进行计算即可得到答案.【详解】解: 23a a+(23)a=+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.25.(2022·四川乐山·中考真题)已知221062m n m n ++=-,则m n -=______.【答案】4【解析】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解.【详解】解:Q 221062m n m n ++=-,2210620m n m n +-+\+=,即()()22310m n -++=,3,1m n \==-,()314m n \-=--=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.26.(2021·四川内江·中考真题)若实数x 满足210x x --=,则3222021x x -+=__.【答案】2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=Q x x ,21x x \=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.27.(2021·四川绵阳·中考真题)若x y -=34xy =-,则22x y -=_____.【答案】0【解析】【分析】先求出22x y +,再求22x y -的平方,然后再开方即可求出22x y -.【详解】解:\x y -=2()3x y \-=,2223x xy y \-+=,∵34xy =-,\22332x y ++=,\2232x y +=,22222222()()4x y x y x y \-=+-9940416=-´=,220x y \-=,故答案为:0.【点睛】本题考查了完全平方公式的应用,等式的灵活变形是本题的关键.28.(2021·四川德阳·中考真题)已知a +b =2,a ﹣b =3.则a 2﹣b 2的值为 ___.【答案】6【解析】【分析】根据平方差公式即可求出答案.【详解】解:当a +b =2,a -b =3时,a 2-b 2=(a +b )(a -b )=2×3=6.故选:6.【点睛】29.(2021·四川达州·中考真题)已知a ,b 满足等式2690a a ++=,则20212020a b =___________.【答案】-3【解析】【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a ++=,变形得()230a +=,∴130,03a b +=-=,∴13,3a b =-=,∴()()()()20202020202020212020202120201113=33=33=3333a b æöæöæö=-´-´-´-´-´-ç÷ç÷ç÷èøèøèø.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.30.(2021·四川广安·中考真题)若x 、y 满足2223x y x y -=-ìí+=î,则代数式224x y -的值为______.【答案】-6【解析】【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.31.(2021·四川阿坝·中考真题)若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为___.【答案】5【解析】【详解】试题分析:先求出m 2﹣2m 的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m 2﹣2m ﹣1=0得m 2﹣2m=1,所以,2m 2﹣4m+3=2(m 2﹣2m )+3=2×1+3=5.故答案为5.考点:代数式求值.32.(2020·四川成都·中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________.【答案】49【解析】【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.【详解】解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换.33.(2022·四川广元·中考真题)分解因式:a 3﹣4a =_____.【答案】()()22a a a +-【解析】【分析】根据提公因式及平方差公式进行因式分解即可.【详解】解:原式=()()()2422a a a a a -=+-;故答案为:()()22a a a +-.【点睛】本题主要考查提公因式和公式法进行因式分解,熟练掌握因式分解是解题的关键.34.(2022·四川眉山·中考真题)分解因式:228x x -=________.【答案】2(4)x x -【解析】【分析】直接提取公因式即可得出答案.【详解】228x x -=2(4)x x -故答案为:2(4)x x -【点睛】本题考查提公因式法分解因式,解题的关键是找准公因式.35.(2022·四川德阳·中考真题)分解因式:2ax a -=______.【答案】a (x +1)(x -1)【解析】【分析】先提公因式a ,再运用平方差公式分解即可.【详解】解:ax 2-a=a (x 2-1)=a (x +1)(x -1)故答案为:a (x +1)(x -1).【点睛】本题考查提公因式法与公式法综合运用,熟练掌握分解因式的提公因式法与公式法两种方法是解题的关键.36.(2022·四川自贡·中考真题)分解因式:2m m +=___________.【答案】(1)m m +【解析】【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.37.(2022·四川凉山·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1)【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).38.(2020·四川眉山·中考真题)分解因式3244m m m -+=________.【答案】()22m m -【解析】【分析】先提取公因式m ,再对余下的多项式利用完全平方公式继续分解.【详解】解:m 3-4m 2+4m=m (m 2-4m +4)=m (m -2)2.故答案为:m (m -2)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.39.(2020·四川攀枝花·中考真题)因式分解:2a ab -=_______.【答案】(1)(1)a b b +-【解析】【分析】先提取公因式a ,再对余下的多项式利用平方差公式继续分解.【详解】()()22(1)11=a b a a a b b b -=+--故答案为:(1)(1)a b b +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,这是解题关键.40.(2020·四川内江·中考真题)分解因式:4212b b --=_____________【答案】()()()2322b b b ++-【解析】【分析】先根据十字相乘法,再利用平方差公式即可因式分解.【详解】4212b b --=()()()()()22234322b b b b b +-=++-故答案为:()()()2322b b b ++-.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.41.(2020·四川绵阳·中考真题)若多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【解析】【分析】直接利用多项式的次数确定方法得出答案.【详解】解:Q 多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,20n \-=,1||3m n +-=,2n \=,||2m n -=,2m n \-=或2n m -=,4m \=或0m =,0mn \=或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.42.(2020·四川泸州·中考真题)若13a x y -与4312x y 是同类项,则a 的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a 的值.【详解】解:∵13a x y -与4312x y 是同类项,∴a-1=4,∴a=5,故答案为:5.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.43.(2022·四川德阳·中考真题)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45【解析】【分析】根据题意找到图形规律,即可求解.【详解】根据图形,规律如下表:三角形3正方形4五边形5六边形6L M 边形m11111L121+21+211+2111+2111L1+21(3)1m üï-ýïþM 31+2+31+2+31+21+2+31+21+21+2+31+21+21+2L1+2+312(3)12m +üï-ýï+þM41+2+3+41+2+3+41+2+31+2+3+41+2+31+2+31+2+3+41+2+31+2+31+2+3L1+2+3+4123(3)123m ++üï-ýï++þM M M M M M MMn 12n+++L 12n+++L 12(1)n +++-L 12n+++L 12(1)n +++-L 12(1)n +++-L 12n+++L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L L12n+++L 12(1)(3)12(1)n m n +++-üï-ýï+++-þL M L 由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=-L L ,整理得:1)(1)(3)2(2n n n n m S --+=+,则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==,故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.44.(2022·四川乐山·中考真题)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.【答案】5【解析】【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=13c,c=35d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=13 c,∴d=2b+c=53c,则c=35d,∴4d+65d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.45.(2022·四川遂宁·中考真题)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【解析】【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.46.(2021·四川凉山·中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n个图形需要___________根火柴棍.【答案】2n+1【解析】【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n 个图形共需要3+2×(n -1)=2n +1根火柴棍,故答案为:2n +1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.47.(2021·四川遂宁·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【解析】【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+L +n =()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+L +n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .48.(2020·四川·中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.【答案】65【解析】【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)...,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2´+=990,1+2+3+…+45=45(451)2´+=1035,∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.三.解答题49.(2021·四川南充·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-.【答案】1210x -,-22【解析】【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.【详解】解:原式=2241(4129)x x x ---+=22414129x x x --+-=1210x -,当x =-1时,原式=()12110´--=-22.【点睛】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键.50.(2021·四川凉山·中考真题)已知112,1x y x y-=-=,求22x y xy -的值.【答案】-4【解析】【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可.【详解】解:∵2x y -=,∴1121y x x y xy xy ---===,∴2xy =-,∴()()22224xy x x y xy y ==---´=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.51.(2020·四川攀枝花·中考真题)已知3x =,将下面代数式先化简,再求值.2(1)(2)(2)(3)(1)x x x x x -++-+--【答案】236x x -;9【解析】【分析】先利用完全平方公式和平方差公式以及多项式乘法法则展开,再合并同类项,最后将x=3代入即可.【详解】解:2(1)(2)(2)(3)(1)x x x x x -++-+--=22212433x x x x x x +-+-+--+=236x x -将x=3代入,原式=9【点睛】本题考查了整式的混合运算—化简求值,解题时要掌握完全平方公式和平方差公式以及多项式乘法法则.52.(2020·四川内江·中考真题)我们知道,任意一个正整数x 都可以进行这样的分解:x m n =´(m ,n 是正整数,且m n £),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ´是x 的最佳分解.并规定:()mf x n=.例如:18可以分解成118´,29´或36´,因为1819263->->-,所以36´是18的最佳分解,所以()311862f ==.(1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b £££,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:①()22357_____________f ´´´=;②()32357_____________f ´´´=;③()42357_____________f ´´´=;④()52357_____________f ´´´=.【答案】(1)23;1;(2)t 为39,28,17;()f t 的最大值47;(3)20142014,,,21152115【解析】【分析】(1)6=1×6=2×3,由已知可求()6f =23;9=1×9=3×3,由已知可求()9f =1;(2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,得到b−a =6,可求t 的值,故可得到()f t 的最大值;(3)根据()mf x n=的定义即可依次求解.【详解】(1)6=1×6=2×3,∵6−1>3−2,∴()6f =23;9=1×9=3×3,∵9−1>3−3,∴()9f =1,故答案为:23;1;(2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,∴b−a =6,∵1≤a≤b≤9,∴b =9,a =3或b =8,a =2或b =7,a =1,∴t 为39,28,17;∵39=1×39=3×13,∴()39f =313;28=1×28=2×14=4×7,∴()28f =47;17=1×17,∴()11717f =;∴()f t 的最大值47.(3)①∵22357´´´=20×21∴()220235721f ´´´=;②32357´´´=28×30∴()3281423573015f ´´´==;③∵42357´´´=40×42∴()4402023574221f ´´´==;④∵52357´´´=56×60∴()5561423576015f ´´´==,故答案为:20142014,,, 21152115.【点睛】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.。

2020年中考数学二轮专题——代数式求值及因式分解 (名校资料——含详解答案)

2020年中考数学二轮专题——代数式求值及因式分解  (名校资料——含详解答案)

2020年中考数学二轮专题——代数式求值及因式分解基础过关1. “比a 的2倍大1的数”用式子可以表示为( ) A. 2(a +1) B. 2(a -1) C. 2a -1D. 2a +12. (2019海南)当m =-1时,代数式2m +3的值是( ) A. -1B. 0C. 1D. 23. 下列各式由左边到右边的变形中,是因式分解的是( ) A. x 2y +xy 2=xy (x +y ) B. x 2-4x +4=x (x -4)+4 C. y +1=y (1+1y)D. (x -1)(x -2)=x 2-3x +24. (2019贺州)把多项式4a 2-1分解因式,结果正确的是( ) A. (4a +1)(4a -1)B. (2a +1)(2a -1)C. (2a -1)2D. (2a +1)25. (2019云南)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,…,第n 个单项式是( ) A. (-1)n -1x 2n -1 B. (-1)n x 2n -1 C. (-1)n -1x 2n +1D. (-1)n x 2n +16. (2019泰州)若2a -3b =-1,则代数式4a 2-6ab +3b 的值为( ) A. -1B. 1C. 2D. 37. (2019 株洲)下列各选项中因式分解正确的是( ) A. x 2-1=(x -1)2 B. a 3-2a 2+a =a 2(a -2) C. -2y 2+4y =-2y (y +2) D. m 2n -2mn +n =n (m -1)28. (2018河北)用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按如图的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( )第8题图A. 4 cmB. 8 cmC. (a +4) cmD. (a +8) cm9. (2019荆门)欣欣服装店某天用相同的价格a (a >0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A. 盈利B. 亏损C. 不盈不亏D. 与售价a 有关10. (2019南充)原价为a 元的书包,现按8折出售,则售价为________元.11. (2019咸宁)若整式x 2+my 2(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是________(写出一个即可).12. (2019锦江区二诊)分解因式:4ax 2-ay 2=______. 13. (2019湘潭)若a +b =5,a -b =3,则a 2-b 2=________.14. 已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为________. 15. (2019潍坊)若2x =3,2y =5,则2x +y =________. 16. (2019 兰州)因式分解:a 3+2a 2+a =________.17. (2019湘西州)下面是一个简单的数值运算程序,当输入x 的值为16时,则输出的数值为____.(用科学计算器计算或笔算)第17题图18. (2019南京)分解因式(a -b )2+4ab 的结果是________.19. (2019高新区二诊)已知m +n =mn ,则(m -1)(n -1)=________. 20. (2019双流区一诊)若a 6=b 5=c4≠0,且a +b -2c =3,则a =________.满分冲关1. (2019武侯区二诊)已知x =13-5,y =13+5,则代数式x 2-2xy +y 2的值是________.2. (2019新都区5月监测)已知(2019-a )2+(a -2017)2=7,则代数式(2019-a )(a -2017)的值是________.3. 当x =a 与x =b (a ≠b )时,代数式x 2-2x +3的值相等,则x =a +b 时,代数式x 2-2x +3的值为________.参考答案基础过关1. D2. C3. A4. B5. C 【解析】单项式的系数符号规律为:处在奇数位置上的单项式的系数符号为正,处在偶数位置上的单项式的系数符号为负,故第n 个数的符号为(-1)n -1;x 的指数规律为:3=2×1+1,5=2×2+1,7=2×3+1,…,∴第n 个单项式的x 的指数为2n +1, ∴第n 个单项式为(-1)n -1x 2n +1.6. B 【解析】∵2a -3b =-1,∴4a 2-6ab +3b =2a (2a -3b )+3b =-2a +3b =1.7. D 【解析】逐项分析如下:8. B 【解析】∵原正方形周长为a ,则边长为a 4,∴新正方形为a 4+2,∴新正方形周长为4(a4+2)=a+8,则这根铁丝需要增加8 cm .9. B 【解析】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,依题意,得x (1+20%)=a ,y (1-20%)=a ,∴x (1+20%)=y (1-20%),化简,得3x =2y ,由x (1+20%)=a 得x =5a6,∴该服装店卖出这两件服装的盈利情况为0.2x -0.2y =0.2x -0.3x =-0.1x =-0.1×5a 6=-a 12,即亏损了a12元.10. 0.8a 【解析】8折出售即为原价的0.8,∴售价为0.8a . 11. -1(答案不唯一)12. a (2x +y )(2x -y ) 【解析】原式=a (4x 2-y 2)=a (2x +y )(2x -y ). 13. 15 【解析】∵a +b =5,a -b =3,∴a 2-b 2=(a +b )(a -b )=5×3=15. 14. 315. 15 【解析】2x +y =2x ·2y =3×5=15.16. a (a +1)2 【解析】原式=a (a 2+2a +1)=a (a +1)2. 17. 3 【解析】根据运算程序可知,若输入的是x ,则输出的是x 2+1,∴当x =16时,输出的数值是162+1=3.18. (a +b )2 【解析】原式=a 2-2ab +b 2+4ab =a 2+2ab +b 2=(a +b )2.19. 1 【解析】原式=mn -m -n +1=mn -(m +n )+1,把m +n =mn 代入原式,得=mn -mn +1=1.20. 6 【解析】∵a 6=b 5=c4≠0,且a +b -2c =3,∴设a =6x ,则b =5x ,c =4x ,则6x +5x -8x =3,解得x =1,∴a =6.满分冲关1. 20 【解析】∵x =13-5,y =13+5,∴x -y =13-5-(13+5)=-25,∴x 2-2xy +y 2=(x -y )2=(-25)2=20.2. -32 【解析】设2019-a =x ,则a -2017=2-x ,有x 2+(x -2)2=7,解得x 1=1+102,x 2=1-102,∴(2019-a )(a -2017)=12×[(2019-a )+(a -2017)]2-[(2019-a )2+(a -2017)2]=-32.3. 3 【解析】根据题意得:a 2-2a +3=b 2-2b +3,∴(a -b )(a +b -2)=0,∵a ≠b ,∴a +b -2=0,则a +b =2,∴当x =a +b =2时,x 2-2x +3=22-2×2+3=3.。

初中中考数学专题02 代数式与整式及因式分解(原卷版)

初中中考数学专题02 代数式与整式及因式分解(原卷版)

2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题02 代数式与整式及因式分解一、选择题1.(2024四川广安) 代数式3x -的意义可以是( ) A. 3-与x 的和B. 3-与x 的差C. 3-与x 的积D. 3-与x 的商2. (2024贵州省)计算23a a +的结果正确的是( ) A. 5aB. 6aC. 25aD. 26a3. (2024云南省)分解因式:39a a -=( ) A. ()()33a a a -+B. ()29a a +C. ()()33a a -+D. ()29a a -4. (2024甘肃临夏)下列各式运算结果为5a 的是( ) A. 23a a +B. 23a aC. ()32aD. 102a a ÷5. (2024河南省)计算3···a a a a ⎛⎫⎪ ⎪⎝⎭个的结果是( )A. 5aB. 6aC. 3a a +D. 3a a6. (2024湖北省)223x x ⋅的值是( ) A. 25xB. 35xC. 26xD. 36x7. (2024深圳)下列运算正确的是( ) A. ()523m m -=- B. 23m n m m n ⋅= C. 33mn m n -=D. ()2211m m -=-8. (2024福建省)下列运算正确的是( ) A. 339a a a ⋅=B. 422a a a ÷=C. ()235a a = D. 2222a a -=9. (2024广西)如果3a b +=,1ab =,那么32232a b a b ab ++的值为( ) A. 0B. 1C. 4D. 910. (2024河北省)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯个相加个相乘,则a 与b 的关系正确的是( ) A. 38a b +=B. 38a b =C. 83a b +=D. 38a b =+11. (2024河北省)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为41001025a +二、填空题1. (2024江苏苏州)若2a b =+,则()2b a -=______.2. (2024四川广安)若2230x x --=,则2241x x -+=______.3. (2024四川乐山)已知3a b -=,10ab =,则22a b +=______.4. (2024四川德阳)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为______.5. (2024上海市)计算:()324x =___________.6. (2024上海市)计算()()a b b a +-=______.7.(2024福建省)因式分解:x 2+x =_____.8. (2024甘肃临夏)因式分解:214x -=______. 9. (2024甘肃威武)因式分解:228x -=________. 10. (2024内蒙古赤峰)因式分解:233am a -=______. 11. (2024北京市)分解因式:325x x -=___________. 12. (2024黑龙江绥化)分解因式:2228mx my -=______. 13. (2024四川广元)分解因式:2(1)4a a +-=_________. 14. (2024江苏盐城)分解因式:x 2+2x +1=_______ 15. (2024江苏扬州)分解因式:2242a a -+=_____.16.(2024山东威海) 因式分解:()()241x x +++=________. 17. (2024四川达州)分解因式:3x 2﹣18x+27=________.18. (2024四川凉山)已知2212a b -=,且2a b -=-,则a b +=______.19.(2024四川内江) 一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m =________; 三、解答题1. (2024贵州省)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和.2. (2024吉林省)先化简,再求值:()()2111a a a +-++,其中a =3. (2024陕西省)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -. 4. (2024四川南充)先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-. 5.(2024内蒙古赤峰)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值. 6. (2024甘肃威武)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b.7. (2024福建省)已知实数,,,,a b c m n 满足3,b cm n mn a a+==. (1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由. 8. (2024黑龙江齐齐哈尔)分解因式:3228a ab -。

2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)

2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)

专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.3.(2022·陕西)计算:()A.B.C.D.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a35.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.6.(2022·江西)下列计算正确的是()A. B. C. D.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积8.(2022·浙江温州)化简的结果是()A.B.C.D.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.1210.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.913.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.14.(2022·四川成都)下列计算正确的是()A. B. C. D.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.4117.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题20.(2022·江苏苏州)已知,,则______.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.22.(2022·四川乐山)已知,则______.23.(2022·湖南邵阳)已知,则_________.24.(2022·天津)计算的结果等于___________.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.28.(2022·山东滨州)若,,则的值为_______.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.31.(2022·浙江嘉兴)分解因式:m2-1=_____.32.(2022·湖南怀化)因式分解:_____.33.(2022·浙江绍兴)分解因式:= ______.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,24 68 10 1214 16 18 20……则第27行的第21个数是______.三.解答题39.(2022·江苏苏州)已知,求的值.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?41.(2022·湖南衡阳)先化简,再求值:,其中,.42.(2022·浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形. (1)用关于a的代数式表示图2中小正方形的边长.(2)当时,该小正方形的面积是多少?43.(2022·安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.44.(2022·浙江丽水)先化简,再求值:,其中.45.(2022·重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”.例如:,∵,∴2543是“勾股和数”;又如:,∵,,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,.当,均是整数时,求出所有满足条件的.46.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵,∴247是13的“和倍数”.又如:∵,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且.在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A.47.(2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.【答案】A【分析】根据有理数的加法法则计算即可.【详解】解:.故选:A.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.【答案】C【分析】由合并同类项可判断A,由同底数幂的乘法可判断B,由积的乘方运算可判断C,由幂的乘方运算可判断D,从而可得答案.【详解】解:,故A不符合题意;,故B不符合题意;,故C符合题意;,故D不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.3.(2022·陕西)计算:()A.B.C.D.【答案】C【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:.故选:C.【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是()A. B. C. D.【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意.故选:B.【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积【答案】C【分析】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH是正方形,设正方形纸片边长为x,正方形EFGH边长为y,则长方形的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2S△AEH+2S△DHG==2xy,所以根据题意,已知条件为xy的值,A.正方形纸片的面积=x2,根据条件无法求出,不符合题意;B.四边形EFGH的面积=y2,根据条件无法求出,不符合题意;C.的面积=,根据条件可以求出,符合题意;D.的面积=,根据条件无法求出,不符合题意;故选 C.【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简的结果是()A.B.C.D.【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:,故选:D.【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.10.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A.【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【分析】根据第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,∴则第⑥个图案中菱形的个数为:,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.,不是同类项,不能合并在一起,故选项A不合题意;B.,符合题意;C.,不是同类项,不能合并在一起,故选项C不合题意;D.,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是()A. B. C. D.【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意;B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意;D.,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.【详解】A. ,故A不正确;B. ,故B正确;C. ,故C不正确;D. ,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵∴①说法正确∵又∵无论如何添加括号,无法使得的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是、、、;当括号中有三个字母,共有3种情况,分别是、、;当括号中有四个字母,共有1种情况,∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.20.(2022·江苏苏州)已知,,则______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵,,∴,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.【答案】5【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=c,∴d=2b+c=c,则c=d,∴4d+d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知,则______.【答案】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解.【详解】解:,,即,,,故答案为:.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知,则_________.【答案】2【分析】将变形为即可计算出答案.【详解】∵∴故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算的结果等于___________.【答案】【分析】根据同底数幂的乘法即可求得答案.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量与震级的关系为(其中为大于0的常数)可得到,当震级为8级的地震所释放的能量为:,当震级为6级的地震所释放的能量为:,,震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=;n=2时,“○”的个数是,n=3时,“○”的个数是,n=4时,“○”的个数是,……∴第n个“○”的个数是,由图形中的“○”的个数和“.”个数差为2022①,②解①得:无解解②得:故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.28.(2022·山东滨州)若,,则的值为_______.【答案】90【分析】将变形得到,再把,代入进行计算求解.【详解】解:∵,,∴.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.【答案】4【分析】根据完全平方公式的运算即可.【详解】∵,∵+=4=16,∴=4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m2-1=_____.【答案】【分析】利用平方差公式进行因式分解即可.【详解】解:m2-1=故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.32.(2022·湖南怀化)因式分解:_____.【答案】【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:,故答案为:【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:= ______.【答案】【分析】利用提公因式法即可分解.【详解】,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.【答案】(x-1)2【详解】由完全平方公式可得:故答案为.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.【答案】1【分析】根据一元二次方程解的定义把代入到进行求解即可.【详解】∵关于x的一元二次方程的一个解是,∴,∴,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.【答案】【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解 一、选择题 1.下列各式中,不含因式a+1的是( ) A. 2a2+2a B. a2+2a+1 C. a2﹣1 D. 2.下列因式分解错误的是( ) A. 2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B. x2+2x+1=(x+1)2 C. x2y﹣xy2=xy(x﹣y) D. x2﹣y2=(x+y)(x﹣y) 3.下列因式分解中,正确的个数为( ) ①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y) A. 3个 B. 2个 C. 1个 D. 0个 4.若x=1, ,则x2+4xy+4y2的值是( ) A. 2 B. 4 C. D. 5.化简:(a+1)2-(a-1)2=( ) A. 2 B. 4 C. 4a D. 2a2+2 6.下列因式分解正确的是( ) A. (x-3)2-y2=x2-6x+9-y2 B. a2-9b2=(a+9b)(a-9b) C. 4x6-1=(2x3+1)(2x3-1) D. -x2-y2=(x-y)(x+y) 7.若代数式x2+ax可以分解因式,则常数a不可以取( ) A. ﹣1 B. 0 C. 1 D. 2 8.下列各多项式中,不能用平方差公式分解的是( ). A. a2b2-1 B. 4-0.25a2 C. -a2-b2 D. -x2+1 9.分解因式x2y﹣y3结果正确的是( ). A. y(x+y)2 B. y(x-y)2 C. y(x2-y2) D. y(x+y)(x-y) 10.边长为a、b的长方形周长为12,面积为10,则 的值为( ) A. 120 B. 60 C. 80 D. 40 11.如果2x2+mx﹣2可因式分解为(2x+1)(x﹣2),那么m的值是( ) A. ﹣1 B. 1 C. ﹣3 D. 3 12.下列各式从左边到右边的变形是因式分解的是( )

A. B. C. D. 二、填空题 13.分解因式:x2﹣16=________. 14.两个多项式①a2+2ab+b2 , ②a2﹣b2的公因式是________ 15.分解因式:x2﹣2x+1=________. 16.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=________ 17.把多项式x3 -25x分解因式的结果是________. 18.若x2﹣9=(x﹣3)(x+a),则a=________ 19.把多项式 分解因式的结果是________. 20.已知 , 则代数式 的值是________ 21.当a=3,a﹣b=1时,代数式a2﹣ab的值是________. 22.若a2﹣2a﹣4=0,则5+4a﹣2a2=________. 三、解答题

23.把下列各式分解因式: (1)x2(a-1)+y2(1-a); (2)18(m+n)2-8(m-n)2; (3)x2-y2-z2+2yz.

24.计算 (1)已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值 (2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?

25.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的( ) A. 提取公因式 B. 平方差公式 C. 两数和的完全平方公式 D. 两数差的完全平方公式 (2)该同学因式分解的结果是否彻底________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.

26.对于多项式x3-5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3-5x2+x+10的值为0,由此可以断定多项式x3-5x2+x+10中有因式x-2(注:把x=a代入多项式,能使多项式的值为0,则多项式中一定含有因式(x-a),于是我们可以把多项式写成:x3-5x2+x+10=(x-2)(x2+mx+n),分别求出m,n后再代入x3-5x2+x+10=(x-2)(x2+mx+n)中,就可以把多项式x3-5x2+x+10因式分解). (1)求式子中m,n的值; (2)以上这种因式分解的方法叫“试根法”,用“试根法”分解因式x3+5x2+8x+4. 答案解析 一、选择题 1.【答案】D 【解析】 :A、∵2a2+2a=2a(a+1),故本选项不符合题意; B、a2+2a+1=(a+1)2 , 故本选项不符合题意; C、a2﹣1=(a+1)(a﹣1),故本选项不符合题意; D、 = ,故本选项符合题意. 故答案为:D. 【分析】根据因式分解的定义:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式;把各个选项因式分解,找出不含因式a+1的选项. 2.【答案】A 【解析】 A、原式=(x﹣2)(2x﹣1),符合题意; B、原式=(x+1)2 , 不符合题意; C、原式=xy(x﹣y),不符合题意; D、原式=(x+y)(x﹣y),不符合题意, 故答案为:A. 【分析】根据因式分解的定义,将一个多项式化为几个整式的积的恒等变形就是因式分解,然后利用整式的乘法将变形的右边利用整式的乘法法则得出结果,和左边进行比较即可得出答案。 3.【答案】C 【解析 :①x3+2xy+x=x(x2+2y+1),故原题错误; ②x2+4x+4=(x+2)2;正确; ③﹣x2+y2=(x+y)(y﹣x),故原题错误; 故正确的有1个. 故答案为:C. 【分析】第一个中的第一项的指数是3,第三项不是y的平方,所以不符合完全平方式的条件;第三个应该是(x+y)(y-x). 4.【答案】B 【解析】 :原式=(x+2y)2=(1+2× )2=4.故答案为:B【分析】根据完全平方公式a22ab+b2=(ab)2 , 分解因式x2+4xy+4y2=(x+2y)2 , 把x、y的值代入,求出代数式的值.

5.【答案】C 【解析】 : (a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a. 选C【分析】根据平方差公式a2-b2=(a+b)(a-b),分解即可. 6.【答案】C 【解析】 :A、(x-3)2-y2=x2-6x+9-y2 , 不是两数积的形式的形式,不符合因式分解特点,故此选项不符合题意; B、原式应该为:a2-9b2=(a+3b)(a-3b);故此选项不符合题意; C、4x6-1=(2x3+1)(2x3-1),故此选项符合题意; D、原式应该为:2xy-x2-y2=-(x-y)2 , 故此选项不符合题意;故答案为:C 【分析】根据因式分解的定义把一个多项式化为几个整式的积的形式,再根据平方差公式a2-b2=(a+b)(a-b)分解即可. 7.【答案】B 【解析】 :∵代数式x2+ax可以分解因式, ∴常数a不可以取0. 故答案为:B. 【分析】根据因式分解的定义,就是将一个多项式分解为几个整式的积的形式,从而可知x2+ax能分解因式的话,必须是多项式,故a≠0,从而得出答案。 8.【答案】C 【解析】 :A、a2b2-1=(ab)2-12 , 可以利用平方差公式分解因式,故A不符合题意; B、4-0.25a2=22-(0.5a)2 , 可以利用平方差公式分解因式,故B不符合题意; C、-a2-b2=-(a2+b2),不能分解因式,故C符合题意; D、-x2+1=-(x2-1),可以利用平方差公式分解因式,故D不符合题意; 故答案为:C【分析】平方差公式的特点:多项式含有两项,两项的符号相反,两项的绝对值都能写出平方形式,对各选项逐一判断即可。 9.【答案】D 【解析】 :x2y﹣y3=y(x2-y2)=y(x+y)(x-y) 故答案为:D 【分析】观察此多项式的特点,有公因式y,因此先提取公因式,再利用平方差公式分解因式。 10.【答案】B 【解析】 :∵边长为a、b的长方形周长为12,面积为10, ∴2(a+b)=12,ab=10 ∴a+b=6 ∴a2b+ab2 =ab(a+b)=10×6=60 【分析】根据已知求出a+b、ab的值,再将a2b+ab2 分解因式,然后整体代入求值即可。 11.【答案】C 【解析】 :∵2x2+mx﹣2=(2x+1)(x﹣2)=2x2﹣3x﹣2, ∴m=﹣3. 故答案为:C. 【分析】根据多项式的乘法运算,把(2x+1)(x﹣2)展开,再根据对应项的系数相等进行求解即可. 12.【答案】D 【解析】 A、是一个二元一次方程组,故A不符合题意; B、是单项式乘法的逆用,故B不符合题意; C是多项式乘以多项式的乘法运算,故C不符合题意; D是将一个多项式变形为两个整式的积,故D符合题意 【分析】根据因式分解的定义,把一个多项式分解为几个整式的积的形式,即可得出结论。 二、填空题

13.【答案】(x+4)(x-4) 【解析】 :x2﹣16=(x+4)(x﹣4).【分析】16=42 , 利用平方差公式分解可得. 14.【答案】a+b. 【解析】 :①a2+2ab+b2=(a+b)2; ②a2﹣b2=(a+b)(a﹣b); 故多项式①a2+2ab+b2 , ②a2﹣b2的公因式是a+b. 故答案为:a+b. 【分析】利用完全平方公式和平方差公式化简和展开得到(a+b)2和(a+b)(a﹣b),答案就很显然了. 15.【答案】(x﹣1)2 【解析】 :x2﹣2x+1=(x﹣1)2 . 【分析】利用完全平方公式分别即可。 16.【答案】15 【解析】 :分解因式x2+ax+b,甲看错了b,但a是正确的, 他分解结果为(x+2)(x+4)=x2+6x+8, ∴a=6,

相关文档
最新文档