数值分析(22)连续函数的最佳一致逼近.ppt
《数学函数逼近》PPT课件

---------(2)
a0 * 0(x) a1 * 1(x) an * n(x)
使得 * 2 2
m
(S * ( xi ) yi )2
i0
m
min S ( x)
2 2
min
S ( x)
i0
( S ( xi
)
yi
)2
n
其中S(x) a j j (x)为中的任意函数。
j0
---------(3)
EAST CHINA INSTITUTE OF TECHNOLOGY
理学院
n
称满足条件(3)的求函数S *(x) a*j j (x)的方法为 j0
数据拟合的最小二乘法.
n
S *(x) a*j j (x)为最小二乘解. j0 n
S(x) a j j (x)为拟合函数, a j ( j 0,1, , n)为拟合系数. j0 * 2 称为最小二乘解的平方误差. 2
解: 从数据的散点图可以看出
y与x之间具有三角函数关系 cos x y与x之间还具有指数函数关 系ex
y与x之间还具有对数函数关 系ln x 因此假设拟合函数与基函数分别为
设x, y的关系为
y S(x)
其中S(x)来自函数类 如(1)中y(x)来自线性函数类
设函数类 的基函数为 i(x)(i 0,1,,n) 一般要求n m
也称是由i(x)(i 0,1,, n)生成的函数集 ,即
span{0(x),1(x),,n(x)}
n
i0
k 0,1,,n 即
m
m
m
a0 0(xi )k (xi ) a1 1(xi )k (xi ) an n(xi )k (xi )
3.3 连续函数的最佳逼近(1)——数值分析课件PPT

特别地,
若{0 (x),1(x), n (x)} C[a, b]是正交函数系,
即
b
a i (x) j (x)dx
ij
0,i 0, i
j j
它的Gramer行列式Gn是对角矩阵。
(0,0 )
(1,1)
(n ,n )
下面我们讨论在区间[a, b]上函数的逼近问题。
➢函数逼近:用比较简单的函数代替复杂的函数 ➢误差为最小,即距离为最小(不同的度量意义)
f
( x)k
( x)dx
,(k
0,1,
再由内积的性质得:
, n),
n
(k , j )a*j ( f ,k ) ,(k 0,1, , n)。 (13)
j0
这是关于{aj}(j=0,1,…n)的线性方程组,称为
法方程. 简记为 Ga=d. 其展开形式为
(14)
(0,0 )
(1
,
0
)
(n ,0 )
则称 p*(x)是 f (x)在 C[a,b] 中的最佳平方逼近函数。
即给定 f (x) C[a,b],求p*(x) ,
使 min
||
f
(x)
p(x) ||22 ||
f
(x)
p*(x)
||22
.
讨论最佳平方逼近函数 p*(x) 的存在性,唯一性及计算方法。
(1)存在性,唯一性 对p(x) p ,
原问题转化为求
(a0*
,
a1*
,
a
* n
),使
min
ai实 数
I (a0
,
a1 ,,
an
)
I (a0
,
a1 ,an
数值分析(本科)函数逼近

������������ ������ , ������������ ������ , ⋯ , ������������ ������ 是������的一个基,并记
������ = ������������������������ ������������ ������ , ������������ ������ , ⋯ , ������������ ������ 注:该线性空间上的加法和数乘运算,即为通常的函数加法和
������
≔
−������
������ ������������ + ������ ������������ = ������
正交
四、函数逼近之正交多项式
定义:设,������, ������-上有连续函数系������������ ������ , ������������ ������ , ⋯,且满足 ������, = ������ > ������, ������ ������ ≠ ������ ������ = ������
������ ������ ∈������
若考虑 若考虑
∞ ,则称该问题为最佳一致逼近问题 ������ ,则称该问题为最佳平方逼近问题
四、函数逼近之正交多项式
定义:设������ ������ , ������ ������ ∈ ������,������, ������-,则称
������
������, ������ =
则
������ − ������ ������ − ������
∞Байду номын сангаас
= ������������������ −������ − ������ = ������
������≤������≤������ ������ ������
最佳一致和平方逼近

§2 最佳一致逼近多项式
一、最佳一致逼近多项式的存在性
定理4.9
对任意的 f x C a, b , 在
Hn
中都存在对
* pn x ,使得 f x 的最佳一致逼近多项式,记为
f ( x ) p n* ( x )
m in
p n ( x ) H n
f ( x) pn ( x)
由插值余项定理, n 次插值多项式 Ln x 的余项为
Rn x f x Ln x
n
f
x n 1 n 1!
n 1
其中, n 1 x x xi , 1,1
i 0
其估计式为:
对 X 中每一对元素 x , y , 都有一实数,记为 x, y 与之对应, 且这个对应满足: (1) (2) (3) (4)
x, x 0, x 0 x, x 0; x, y y, x , x, y X ; x, y x, y , x, y X ; R; x y, z x, z y, z , x, y, z X ;
* i * f 使得: ( xi ) pn ( xi ) () f pn
(i=0,1,…,n+1)
其中σ=1或σ=-1
推论4.1
设 f x 是区间 a, b 上的连续函数, * x 是 f x Pn
f 的n次最佳一致逼近多项式, 若
内存在且保号, 则
即
1 xi cos(i ) , i 0,1, 2,..., n 2 n 1
如果插值区间为[a,b],做变换式(4.63)
《函数的数值逼近》PPT课件

精选课件ppt
7
2、插值多项式的存在唯一性
定理 若插值结点 x0,x1,…, xn是(n+1)个互异点,则满足插值条件 P(xk)= yk (k = 0,1,…,n)
精选课件ppt
10
§2 代数多项式插值
一、线性插值与抛物线插值
1. 线性插值(n =1)
设已知区间[ xk , xk+1]端点处的函数值yk= f (xk),yk+1 = f (xk+1),
求线性插值多项式L 1(x ) ,使其满足
L1 ( xk ) yk
L1
(
xk
1
)
yk 1
x 0 xk
y = L1(x)
P(x) = a0 + a1 x + ⋯ + an xn
则称P( x)为n 次插值多项式. 相应的插值法称为多项式插 值法(代数插值法)。
x
y = f (x) •
(xi, yi)
y = P(x) 曲线 P ( x)
近似 f ( x)
0 a=x0 x1 x2 x3
xn=b y
精选课件ppt
6
研究问题:
构造法:
先求 插值基函数l k-1(x), l k (x), l k+1(x) (二次函数), 满足:
lk1(xk1)1, lk1(xk)lk1(xk1)0;
lk(xk)1,
lk(xk1)lk(xk1)0;
(4)
lk1(xk1)1, lk1(xk1)lk1(xk)0,
最佳一致和平方逼近ppt课件

7
三、 Ca,b 上的最佳一致逼近的特征
引理4.1
设 f x 是区间a,b 上的连续函数,Pn* x 是 f x 的n次最佳一致逼近多项式,则 f x Pn* x 必同时
min f
x Pn* x
Pn xHn
f x Pn x
其中,H n代表由全体代数多项式构成的集合。
4
§2 最佳一致逼近多项式
一、最佳一致逼近多项式的存在性
定理4.9
对任意的 f xCa,b, 在 H n 中都存在对 f x 的最佳一致逼近多项式,记为 pn* x ,使得
f (x)
存在正负偏差点。
8
y
Oa
y f x En
y f x
y f x En
bx
9
定理 4.10( Chebyshev定理)
设 f x 是区间 a,b 上的连续函数,则 Pn* x 是 f x 的n次最佳一致逼近多项式的充要条件是: f x Pn* x 在区间a,b 上存在一个至少有 n 2 个交错偏差点组成,
注: 显然, f , Pn 0 , f , Pn 的全体组成一个
集合,记作 f , Pn ,它有下界0。
6
2、偏差点
定义
设 f xCa,b, PxHn, 若在 x x0 上有
P x0 f x0 max P x f x , a xb
则称 x0 是 P x f (x) 的偏差点。
由推论1,f x P1 x 在 a,b 上恰好有3个点构成的交错
组,且区间端点 a, b 属于这个交错点组,设另一个交错点为 x2 ,
数值分析(22)连续函数的最佳一致逼近

插值逼近的性质
插值逼近的误差
插值逼近的误差取决于插值多项式的阶数和插值点的选择,一般 来说,阶数越高,误差越小。
插值逼近的稳定性
插值逼近的稳定性取决于插值多项式的选择和计算方法,选择合适 的插值多项式和计算方法可以提高稳定性。
插值逼近的应用
插值逼近在数值分析、数学建模、信号处理等领域近
多项式逼近是一种常用的逼近方法,通 过将函数表示为一系列多项式的和,来 逼近原函数。多项式逼近具有精度高、 适用范围广等优点,但计算量大、稳定 性差。
VS
插值法
插值法是一种常用的多项式逼近方法,通 过构造一个多项式来逼近原函数。插值法 具有数学基础扎实、计算稳定等优点,但 需要解决插值节点过多导致计算量大、数 值不稳定性等问题。
最佳一致逼近的误差通常用范数表示,常用的范数有L∞范数、 L2范数和L1范数等。
逼近的数学模型
01
逼近问题通常可以转化为求解一个 泛函极值问题,即寻找一个多项式 p(x),使得它在给定区间[a, b]上与 目标函数f(x)的误差最小。
02
逼近问题的数学模型可以表示为 求解一个极值条件下的优化问题 ,常用的方法有梯度法、牛顿法 、拟牛顿法等。
深入研究逼近定理
进一步探索逼近定理的内在机制,为逼近理论的 发展提供理论支持。
逼近误差分析
对逼近误差进行深入分析,建立更加精确的逼近 误差估计,提高逼近精度。
推广逼近理论
将逼近理论应用于更广泛的领域,如微分方程、 积分方程等,推动相关领域的发展。
逼近在实际问题中的应用拓展
数值计算
利用最佳一致逼近方法进行数值计算,提高计算精度和效率。
CHAPTER
最佳一致逼近的方法
线性逼近的方法
最佳一致逼近

构造C[0,1]上W=&(1,x,…,x9)到f(x)=e x上的最佳逼近学院:数学与计算机科学学院班级:2011级数学与应用数学姓名:学号:指导教师:日期:2012.06.20构造C[0,1]上W=&(1,x ,…,x 9)到f(x)=e x上的最佳逼近(西北民族大学数学与应用数学专业,兰州 730124)指导教师摘要: 本文通过对最佳逼近的研究,着重分析其构造方法,从而使得对知识的掌握更加连贯及牢固。
通过对它的研究,我们对其有了更深的了解。
关键词:最佳逼近,正射影,傅里叶系数最佳平方逼近一般而言,在[a , b ]上对给定的函数求它的一致逼近函数比较困难,下面我们介绍在[a , b ]上较易计算的另一种逼近方法――最佳平方逼近。
一、预备知识1.函数系的线性关系定义1 若函数)(,),(),(10x x x n ϕϕϕ ,在区间[a , b ]上连续,如果关系式0)()()()(221100=++++x a x a x a x a n n ϕϕϕϕ 当且仅当0210=====n a a a a 时才成立,则称函数)(,),(),(10x x x n ϕϕϕ 在[a , b ]上是线性无关的,否则称线性相关。
如果函数系{ϕk (x )}(k = 0, 1, 2, …)中的任何有限个函数线性无关,则称函数系{ϕk (x )}为线性无关函数系,例如{1, x , …, x n , …}就是在区间[a , b ]上的线性无关函数系。
设)(,),(),(10x x x n ϕϕϕ 是[a , b ]上线性无关的连续函数a 0, a 1, …, a n 是任意实数,则)()()()(1100x a x a x a x S n n ϕϕϕ+++=的全体是C [a , b ]的一个子集,记为},,,{Span 10n ϕϕϕ =Φ并称)(,),(),(10x x x n ϕϕϕ 是生成集合的一个基底。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故
e1 e0
b
e 1 1.7183
10
由 f '( x1 ) e x1 e 1
求出 x1 ln(e 1) 0.5413
e0 e0.5413
0.5413
a
1.7183
0.[0,1]上的最佳一致逼近多项式为
P( x) 0.8940 1.7183 x
22
定理2(Chebyshev定理) 设f ( x) C[a, b], Pn ( x) H,则Pn( x)是f ( x)的
最佳一致逼近的充分必要条件是f ( x) Pn ( x)在[a, b] 上至少有n 2交错点组成的交错点组。
对n 1, f ( x) P1( x)有n 2 3个交错点。
a0
f (a) f ( x1 ) 2
f
(b)
f (a)
a
x1
ba
2
这样就得到f ( x)的线性最佳一致逼近多项式为
P1( x) a0 a1 x
数值分析
数值分析
例:选取常数a, b,使max | ex (a bx) | 达到最小。 0 x1
解:设P( x) a bx为f ( x) e x在[0,1]上的最佳一致 逼近多项式。
数值分析
数值分析
定义 设函数f ( x) C[a, b], 称点集
{ xk }kn0 { x0, x1, xn } 是f ( x)在[a, b]的交错点组,当且仅当满足
f ( xk ) (1)k
f (x)
(k 0,1, 2
, n)
其中 取1或 1。
例 f ( x) sin x 在[0, 2]的交错点组{1 , 3}。
x[ 1,1]
T n( x)
max
x[ 1,1]
Pn( x)
数值分析
连续函数的最佳一致逼近
一、赋范线性空间中的最佳一致逼近
(契比雪夫意义下的逼近)
若 f ( x) C[a, b] ( C[a, b] || || )
取n 1个线性无关函数 0( x),1( x), ...,n( x) C[a, b] 张成空间 Span{0( x),1( x), ...,n( x)} C[a, b]
对 f ( x) C[a,b] 但 f ( x) , 构造逼近函数s( x)
n
s( x) c j j ( x)
j0
用
s(x) f (x)
使
||
f
( x)
s( x) ||
min
则称s( x)为f ( x)在中的最佳一致逼近函数。
例:选取常数a,b,使max | ex (a bx) | 达到最小。
数值分析
数值分析
Qn ( x)应 满 以 下 条 件 (1)Qn ( x)是n次 多 项 式 , 在[1,1]上 有n 1个 交 错 点 ; (2)首项 系数 为1;
(3)对“0”的偏 差最 小;
Chebyshev多项式 Tn( x) cos(narccos x)
当取xk
cos
k
n
,k
0,1,
n。Tn( x)在[1,1]上
轮流取最大 1和最小值 1。
k
Tn ( xk ) cos n n
cos k
1k ,k 0,1,
n
数值分析
数值分析
定理3 在区间[1,1]上,在首项系数为1的一切
n次多项式Pn ( x)中T n ( x) 21nTn ( x)对 "0"的偏差最小.
即
max
0 x1
数值分析
数值分析
一、赋范线性空间中的最佳一致逼近
一 般 取 H span{1, x, x2 , xn }
构造
Pn ( x) H
Pn ( x) f ( x) H
这 里Pn ( x)实 际 上 是 一 个 插 值 节 点待 求 的
Lagrange插 值 多 项 式 。
定理1 若 f ( x) C[a, b],则必存在一个多项式 Pn( x) H是f ( x)在[a, b]上的最佳一致逼近 多项式。
定义 设f ( x) C[a, b], Pn( x) H , 若在点xk上有
f ( xk ) Pn ( xk )
max
x[a ,b]
f ( x) Pn( x)
u0
称点xk是Pn ( x)的偏差点。 若f ( xk ) Pn ( xk ) u, 称xk为正偏差点; 若f ( xk ) Pn ( xk ) u, 称xk为负偏差点.
数值分析
数值分析
P1(x)=a0+a1x
f(x)
a x1
b
综合以上,可解出
f (a) (a0 a1a) f (b) (a0 a1b)
f '( x1 ) a1
f (a) (a0 a1a) ( f ( x1 ) (a0 a1 x1 ))
a1
f (b) f (a) , ba
再由f '( x1 ) a1解出x1
数值分析
数值分析
最佳一致逼近多项式的计算
下面给出n 1时最佳一致逼近多项式的求法:
设f ( x) C 2[a, b],且f ''( x)不变号。构造P1( x) a0 a1x 为f ( x)在[a,b]上的最佳一致逼近多项式。
由Chebyshev定理,对n 1,f ( x) P1( x)有n 2 3个 交错点,且a,b为交错点.设另一个交错点是x1,且a x1 b。 由交错点的定义知 f (a) (a0 a1a) f (b) (a0 a1b)
又由于在[a,b]上f ''(x)不变号,故f '(x)在[a,b]上单调。
又因为(f (x) P1( x))' f '(x) a1也是单调的。所以f (x) P1(x) 在(a,b)内只能有一个偏差点x1。于是
P1'( x1) f '( x1) a1 f '( x1) 0,即f '( x1) a1。
数值分析
数值分析
二、最小零偏差多项式问题
在区间[1,1]上求函数f ( x) xn的n 1次最佳一致
逼近多项式。 设Qn1( x)就 是 函 数f ( x) xn在[1,1]的n 1次
最佳一致逼近多项式。
n1
Qn ( x) xn Qn1( x) xn ak xk k0
在 区 间[1,1]上 应 有n 1个 交 错 点 , 并 轮 流 达 到 其最大值和最小值。 把Qn( x)看 成 是 首1多 项 式 与 零 的 误 差 函 数, 称Qn ( x)为 最 小 零 偏 差 多 项 式 。