最新人教版九年级上册数学教案:第25章 概率初步

合集下载

九年级数学上册25概率初步教案新版新人教版

九年级数学上册25概率初步教案新版新人教版

九年级数学上册25概率初步教案新版新人教版25.1 随机事件与概率25.1.1 随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(A)A.cabB.acbC.bcaD.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析.3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=(在一次试验中有 n种可能的结果,其中 A包含 m种)的意义.重点:对概率意义的正确理解.难点:对P(A)=(在一次试验中有 n种可能的结果,其中 A包含 m种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页.归纳:1.当A是必然事件时,P(A)=__1__;当A是不可能事件时,P(A)=__0__;任一事件A的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A发生的可能性大小为____,那么这个常数就叫做事件A的概率,记作__P(A)__.4.在上面的定义中,m,n各代表什么含义?的范围如何?为什么?点拨精讲:(1)刻画事件A发生的可能性大小的数值称为事件A的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是____.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为____.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为____.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1);(2);(3).2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟)1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为,摸到白球的可能性为,>,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=____且__0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=解决一些实际问题.重点:运用P(A)=解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟)自学:阅读教材P133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1);(2);(3).点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A区域(划线部分),A区域外的部分记为B区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A区域还是B区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A.两枚硬币全部正面朝上;B.两枚硬币全部反面朝上;C.一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是(D)A.B.C.D.582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是(D)A.B.C.D.17363.从,,,中随机抽取一个,与是同类二次根式的概率为____.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1);(2);(3).学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率.难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟)自学:阅读教材P136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是____.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是____.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子点数的和是9;(3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法.列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A和B;乙口袋中装有3个相同的小球,分别写有C,D和E;丙口袋中装有2个相同的小球,他们分别写有H 和I.从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少?(2)取出3个小球上全是辅音字母的概率是多少?点拨:A,E,I是元音字母;B,C,D,H是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A和B),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C,D和E),三者出现的可能性相同吗?分不分先后?从A和B分别画出三个分支,在分支下的第二行分别写上C,D和E.第三步可能产生的结果有几个?——是什么?——(H和I),两者出现的可能性相同吗?分不分先后?从C,D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是____.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是____,出现数字之积为偶数的概率是____.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:;.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5.5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=,P(积为偶数)=.1×2=1×.∴这个游戏对双方公平.3学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果.2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3 用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.从中任选一头猪,质量在65 kg以上的概率是__0.1 .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:(2)请估计,当次数很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。

本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。

通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。

二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。

在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。

但概率概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。

三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。

2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。

四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。

2.难点:概率公式的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。

2.合作学习法:分组讨论,培养学生团队合作精神。

3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。

六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。

2.教学工具:多媒体课件,黑板,粉笔。

3.学生活动:提前分组,准备进行合作学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。

2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。

同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。

学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。

教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。

但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。

因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。

三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。

2.掌握概率的基本计算方法,能够计算简单事件的概率。

3.能够运用概率的知识解决实际问题。

四. 教学重难点1.随机事件的定义和分类。

2.概率的计算方法。

3.概率在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。

2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。

3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.分组讨论的准备。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。

2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。

3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。

4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。

5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。

九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】

九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】

概率初步一、内容及内容解析1.内容用试验估计“豆子落在区域C”“每个同学抽到黑桃”的概率.2.内容解析活动1中“豆子落在区域C”的概率可以用几何概型求得.几何概型是另一种等可能概型,它与古典概型的区别在于试验结果是无限个.只要把半径为6的圆内部所有点作为试验的全部结果,区域C内的所有点作为事件W的结果,则根据公式P(W)=构成事件W的区域面积/试验的全部结果所构成的区域面积,可求得相应事件的概率.因此,“豆子落在区域C的概率”等于半径为2的圆的面积与半径为6的圆的面积的比,但学生没有学过此概率模型.活动2“每个同学抽到黑桃”试验,是想通过频率估计概率的方法,去验证现实生活中常用的抓阄的方法是否公平.其实,把3个人都抽完一次签作为一次试验,通过古典概型可计算每个同学抽到黑桃的概率是相等的,但这里列基本事件对学生来说有点难度.由于这两种试验发生的概率,以学生现有的知识不容易通过计算获得,因此只能通过用频率估计概率.通过这两个数学活动,可以帮助学生进一步理解概率的意义,拓宽对概率的认识,并且进一步体会到频率估计概率方法应用的广泛性以及概率在实际生活中的作用.基于以上分析,确定本课的教学重点是:估计活动1与活动2的概率,体会频率估计概率应用的广泛性以及在实际生活中的作用.二、目标和目标解析1.目标(1)通过试验,获得“豆子落在区域C”“每个同学抽到黑桃”的概率.(2)通过试验,体会频率估计概率应用的广泛性以及在实际生活中的作用.2.目标解析达成目标(1)的标志是:学生分组多次重复试验,统计每次试验落在A,B,C三个区域中豆子数的比,并分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法.学生通过分组进行多次重复试验,统计每次试验抽中的人,最终计算每个人抽中的频率,估计出“每个同学抽到黑桃”的概率.达成目标(2)的标志是:学生初步发现区域面积与概率的关系,并认识到用频率估计概率的方法的应用范围更广,更具有一般性,同时体会到用概率帮助解释如“抓阄是否公平”等生活实际中的疑问.三、教学问题诊断这两个活动都没有原始数据,需要学生自己首先从事收集数据的活动,然后对数据进行处理,最后运用统计知识进行分析数据,这样的活动都具有较强的实践性和综合性.因此,需要教师对如何试验,进行哪些操作给以帮助和指导.对于分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法,学生没有相关的知识与经验,此时需要教师设计问题予以启发.基于以上分析,确定本节课的教学重点是:通过试验获得“豆子落在区域C”“每个同学抽到黑桃”的概率.四、教学过程设计1.完成活动1的试验问题1 在如图所示的图形中随机撒一把豆子,计算落在A,B,C三个区域中豆子数的比.多次重复这个试验,你能否发现上述比与A,B,C三个区域的面积有何关系?师生活动:学生观察思考,教师先指导学生记录试验结果,然后教师组织学生分组进行试验.每组试验20次,并将各组的试验结果统计在一起.然后提问:(1)对照多次试验的结果,落在A,B,C三个区域中豆子数的比是否具有一定的稳定性?(2)上述比与A,B,C三个区域的面积有何关系?(3)这表明落在A,B,C三个区域中豆子数的多少与什么有关?设计意图:让学生亲自动手试验,获得真实数据,并对数据收集、整理、分析,发现落在A,B,C三个区域中豆子数的多少与每个区域的面积大小有关.体会随机事件的随机性与稳定性特征.问题2 如果将“豆子落在区域C”记作事件W,请估计事件W的概率.师生活动:教师提出问题,学生思考.根据频率估计概率,落在区域C中的豆子数与落在A,B,C三个区域中豆子总数之比,可以作为“豆子落在区域C”的概率.设计意图:通过频率估计几何概型试验中的概率,使学生体会频率估计概率是求概率的一般方法.2.完成活动2的试验问题3 3张扑克牌中只有1张黑桃,3为同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?如何得到这个概率?师生活动:教师出示问题,然后组织学生进行讨论,最后发现用列举法求比较困难,于是选择用频率估计概率的方法.教师组织学生分组试验,每组记录好试验的次数,以及每次试验抽中黑桃的人数,每组试验20次,计算20次试验中,每个人抽中黑桃的次数,并计算频率,最后教师将全班同学试验次数,每个人抽中黑桃的次数进行汇总,并计算随着试验次数增加时,每个人抽中黑桃的频率,最后全班共同分析,随着试验次数的增加,每个人的频率稳定在13左右.因此,每个人抽到黑桃的概率跟抽取的顺序无关.设计意图:使学生经历用频率估计概率的过程,感受在大量重复试验中,随着试验次数的增加,频率趋于稳定性.问题4 抓阄是实际生活中常见的一种进行选择的方法,有人说这种方法公平,也有人说这种方法不公平,通过上述摸牌试验,你觉得这种方法公平吗?为什么?师生活动:教师出示问题,学生思考、讨论.设计意图:学生受到摸牌试验的启发,不难发现摸牌与抓阄是同类试验,因此每个人抽中的概率是相同的,因此抓阄是公平的.让学生体会到数学方法可以解释生活中很多现象的原因.3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课中两个试验的概率是通过怎样的方法得到的?(2)你觉得试验在求概率中有何作用?(3)你觉得概率在生活中对你有何帮助?设计意图:通过小结,总结本节课所学内容,体会试验在求概率中的作用,以及概率在生活实际中的作用.4.布置作业就“抓阄公平吗?”采访一下自己的父母或朋友,用你所学的数学知识和他们进行交流.五、目标检测设计1.如图,在正方形ABCD 中随机选取一点,你能设计一个试验,用频率估计概率的方法,求出此点恰在△ABO 内部的概率吗?设计意图:考查学生能否设计试验利用频率估计概率.2.4张扑克牌中只有1张黑桃,4位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?设计意图:考查学生是否了解了这种游戏的公平性.A B D C O。

最新人教版九年级上册数学教案:第25章 概率初步

最新人教版九年级上册数学教案:第25章 概率初步

25.1 随机事件与概率25.1.1 随机事件1.通过对生活中各种事件的概率的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断.2.知道事件发生的可能性是有大小的.一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔、水中捞月所描述的事件分别属于什么类型事件呢?二、合作探究探究点:事件的分类【类型一】必然事件的识别(2014·辽宁抚顺)下列事件是必然事件的是( )A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.圆的半径为3,圆外一点到圆心的距离是5,过这点引圆的切线,则切线长为4 D.三角形的内角和是360°解析:由于互为相反数的两个数绝对值也相等,因此绝对值相等的两个数可能不相等,A选项错误;平分的弦若是直径,那么两条直径互相平分,很明显,它们不一定互相垂直,B选项错误;直接利用勾股定理计算可得,C选项正确;三角形内角和等于180°,D选项错误,故选择C.方法总结:一定发生的是必然事件,一定不发生的是不可能事件,可能发生也可能不发生的是随机事件.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件,故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件);若是不确定的,则该事件是不确定事件.【类型二】随机事件的识别下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;四边形内角和总是360°,所以事件④是必然事件,属于确定事件.故答案是:①③.【类型三】不可能事件的识别下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.天上掉馅饼解析:“天上掉馅饼”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型四】判断一个事件的类型下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?(1)从一副扑克牌中任意抽出一张牌,花色是红桃;(2)在一年出生的367名学生中,至少有两个人的生日在同一天;(3)好梦成真;(4)任意买一张电影票,座位号是偶数;(5)太阳从西边升起;(6)当室外温度低于-10℃时,将一碗清水放在室外会结冰.解析:(1)一副扑克牌中,有4种花色,也就是说“抽出一张牌,花色是红桃”可能发生,也可能不发生;(2)一年最多366天,367名学生中,每天出生一个只能出生366个,还有一名同学是哪天出生,哪天至少出生2名同学,所以“一年出生的367名学生中,至少有两个人的生日在同一天”一定发生;(3)“好梦成真”只是人的一种愿望,可能会发生,也可能不发生;(4)电影票的座位号有奇数,也有偶数,即“任意买一张电影票,座位号是偶数”可能发生,也可能不发生;(5)太阳都是从东边升起,绝不会从西边升起,即“太阳从西边升起”一定不发生;(6)水在0℃就开始结冰,低于0℃一定会结冰,即当室外温度低于-10℃时“将一碗清水放在室外会结冰”一定发生.解:(5)是不可能的事件;(2)(6)是必然事件;(1)(3)(4)是不确定事件.三、板书设计教学过程中,结合生活实际,对身边事件发生的情况作出判断,分类,巩固所学概念.第二十五概率初步25.1 随机事件与概率25.1.1 随机事件教学目标:知识技能目标了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.25.1.2 概率1.知道随机事件发生的可能性是有大小的.2.理解、掌握概率的意义及计算.3.会进行简单的概率计算及应用.一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点一:可能性的大小【类型一】可能性大小的意义的理解气象台预报“本市明天降雨可能性是80%”.对此信息,下列说法正确的是( ) A.本市明天将有80%的地区降雨B.本市明天将有80%的时间降雨C.本市明天肯定下雨D.本市明天降水的可能性比较大解析:一个事件的发生的可能性的范围在0~1,80%应该是比较大,所以“本市明天降雨可能性是80%”是指“本市明天降雨的可能性比较大”.故选D.方法总结:某事发生的可能性大小是指其发生的概率大小.【类型二】利用面积关系判断可能性大小在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填A或B或C).解析:先分别算出A,B,C三部分的面积,面积最大的就是豆子落入可能性最大的.S C =π×22=4π,S B=π(42-22)=12π,S A=π(62-42)=20π,由此可见,A的面积最大,则豆子落入可能性最大,故填A .探究点二:概率【类型一】概率的简单计算小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.120 B.15 C.14 D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14,故选择C.方法总结:等可能性事件的概率的计算公式:P (A )=n m,其中m 是总的结果数,n 是该事件成立包含的结果数.【类型二】利用面积求概率(2014·四川绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )A.13B.12C.34D.23解析:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率.三、板书设计教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1.25.1.2 概率教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图. 表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾n图25.1-1听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题 1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.nm四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与。

新人教版初中数学九年级上册第25章 概率初步《25.1.2概率》教案

新人教版初中数学九年级上册第25章 概率初步《25.1.2概率》教案

第二十五章概率初步25.1随机事件与概率25.1.2概率1.明天下雨的概率为95%,那么 下列说法错误的是( ) (A) 明天下雨的可能性较大(B) (B) 明天不下雨的可能性较小 (C) 明天有可能是晴天 (D) 明天不可能是晴天2、1袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ; P(摸到黄球)= 。

3、有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4.现将它们的背面朝上,从中任意摸到一张卡片,则:P (摸到1号卡片)= ; P (摸到2号卡片)= ; P (摸到奇数号卡片)= ; P (摸到偶数号卡片) =4、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取1只,是二等品的概率为____。

5、一副扑克牌,从中任意抽出一张,求下列结果的概率: ① P(抽到红桃5)=____②P(抽到大王或小王)=____ ③P(抽到A)=____ ④P(抽到方块)=6、如图,能自由转动的转盘中, A 、B 、C 、D 四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B 的概率是_____,指向C 或D 的概率是_____。

7.四张形状、大小、质地相同的卡片上分别画上圆、平行四边形、等边三角形、正方形,然后反扣在桌面上,洗匀后随机抽取一张,抽到轴对称图形的概率是( ), 抽到中心对称图形的概率是( )。

8、在分别写出1至20张小卡片中,随机抽出一张卡片,试求以下事件的概率.⑴该卡片上的数字是2的倍数,也是5的倍数 ⑵该卡片上的数字是4的倍数,但不是3的倍数 ⑶该卡片上的数不能写成一个整数的平方⑷该卡片上的数字除去1和自身外,至少还有3个约数.达标测评是为了加深对所学知识的理解运用,在问题的选择上以基础为主、疑难点突出,增加开放型、探究型问题,使学生思维得到拓展、能力得以提升.深化理解运用新知师生互动课堂小结 1.课堂总结:(1)你在本节课的学习中有哪些收获?有哪些进步? (2)学习本节课后,还存在哪些困惑? 2.布置作业:教材第134页习题25.1第3题.巩固、梳理所学知识.对学生进行鼓励,并进行思想教育.总结反思【知识网络】提纲挈领,重点突出【教学反思】 ①[授课流程反思]在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验.②[讲授效果反思]引导学生注意:(1)概率从数量上刻画了一个事件发生的可能性的大小.(2)计算有关面积问题的概率,首先应分析哪些事件的发生与哪部分面积有关,再根据面积的计算方法求有关的比值. ③[师生互动反思]从课堂表现和教学效果分析,学生通过举例说明,理解问题的解答过程,积极性高,理解透彻,能圆满完成课题学习任务. ④[习题反思]好题题号__________________________________________ 错题题号__________________________________________反思教学过程和教师表现,进一步提升操作流程和自身素质.。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概  率教案

25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大小. 抽取的可能性大小相等,所以我们可以用15出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().mp A=n事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=13.出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)= 23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.;(1)指向红色有3种等可能的结果,P(指向红色)=37(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5;7(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是38;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=110.7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。

本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。

通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。

但是,对于概率这一抽象的概念,学生可能难以理解和接受。

因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。

三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。

2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。

四. 教学重难点1.重点:概率的定义,概率的计算方法。

2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。

2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。

3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。

六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。

2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。

如:抛一枚硬币,正面朝上的概率是1/2。

同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.1 随机事件与概率25.1.1 随机事件1.通过对生活中各种事件的概率的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断.2.知道事件发生的可能性是有大小的.一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔、水中捞月所描述的事件分别属于什么类型事件呢?二、合作探究探究点:事件的分类【类型一】必然事件的识别(2014·辽宁抚顺)下列事件是必然事件的是( )A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.圆的半径为3,圆外一点到圆心的距离是5,过这点引圆的切线,则切线长为4 D.三角形的内角和是360°解析:由于互为相反数的两个数绝对值也相等,因此绝对值相等的两个数可能不相等,A选项错误;平分的弦若是直径,那么两条直径互相平分,很明显,它们不一定互相垂直,B选项错误;直接利用勾股定理计算可得,C选项正确;三角形内角和等于180°,D选项错误,故选择C.方法总结:一定发生的是必然事件,一定不发生的是不可能事件,可能发生也可能不发生的是随机事件.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件,故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件);若是不确定的,则该事件是不确定事件.【类型二】随机事件的识别下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;四边形内角和总是360°,所以事件④是必然事件,属于确定事件.故答案是:①③.【类型三】不可能事件的识别下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.天上掉馅饼解析:“天上掉馅饼”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型四】判断一个事件的类型下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?(1)从一副扑克牌中任意抽出一张牌,花色是红桃;(2)在一年出生的367名学生中,至少有两个人的生日在同一天;(3)好梦成真;(4)任意买一张电影票,座位号是偶数;(5)太阳从西边升起;(6)当室外温度低于-10℃时,将一碗清水放在室外会结冰.解析:(1)一副扑克牌中,有4种花色,也就是说“抽出一张牌,花色是红桃”可能发生,也可能不发生;(2)一年最多366天,367名学生中,每天出生一个只能出生366个,还有一名同学是哪天出生,哪天至少出生2名同学,所以“一年出生的367名学生中,至少有两个人的生日在同一天”一定发生;(3)“好梦成真”只是人的一种愿望,可能会发生,也可能不发生;(4)电影票的座位号有奇数,也有偶数,即“任意买一张电影票,座位号是偶数”可能发生,也可能不发生;(5)太阳都是从东边升起,绝不会从西边升起,即“太阳从西边升起”一定不发生;(6)水在0℃就开始结冰,低于0℃一定会结冰,即当室外温度低于-10℃时“将一碗清水放在室外会结冰”一定发生.解:(5)是不可能的事件;(2)(6)是必然事件;(1)(3)(4)是不确定事件.三、板书设计教学过程中,结合生活实际,对身边事件发生的情况作出判断,分类,巩固所学概念.第二十五概率初步25.1 随机事件与概率25.1.1 随机事件教学目标:知识技能目标了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.25.1.2 概率1.知道随机事件发生的可能性是有大小的.2.理解、掌握概率的意义及计算.3.会进行简单的概率计算及应用.一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点一:可能性的大小【类型一】可能性大小的意义的理解气象台预报“本市明天降雨可能性是80%”.对此信息,下列说法正确的是( ) A.本市明天将有80%的地区降雨B.本市明天将有80%的时间降雨C.本市明天肯定下雨D.本市明天降水的可能性比较大解析:一个事件的发生的可能性的范围在0~1,80%应该是比较大,所以“本市明天降雨可能性是80%”是指“本市明天降雨的可能性比较大”.故选D.方法总结:某事发生的可能性大小是指其发生的概率大小.【类型二】利用面积关系判断可能性大小在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填A或B或C).解析:先分别算出A,B,C三部分的面积,面积最大的就是豆子落入可能性最大的.S C =π×22=4π,S B=π(42-22)=12π,S A=π(62-42)=20π,由此可见,A的面积最大,则豆子落入可能性最大,故填A .探究点二:概率【类型一】概率的简单计算小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.120 B.15 C.14 D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14,故选择C.方法总结:等可能性事件的概率的计算公式:P (A )=n m,其中m 是总的结果数,n 是该事件成立包含的结果数.【类型二】利用面积求概率(2014·四川绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )A.13B.12C.34D.23解析:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率.三、板书设计教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1.25.1.2 概率教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图. 表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾n图25.1-1听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题 1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.nm四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与。

相关文档
最新文档