运筹学

合集下载

运筹学的起源与发展

运筹学的起源与发展

02
CATALOGUE
运筹学的发展历程
线性规划与非线性规划阶段
线性规划
线性规划是运筹学的一个重要分支,它研究如何在线性约束 条件下,优化线性目标函数。线性规划在生产计划、物流管 理等领域有广泛应用。
非线性规划
非线性规划是相对于线性规划而言的,它研究的是非线性目 标函数和约束条件下的最优化问题。非线性规划在很多实际 问题中都有应用,如投资组合优化、路径规划等。
人工智能与大数据阶段
人工智能
人工智能是研究如何让计算机模拟人类智能的学科。运筹学与人工智能的结合,使得机 器学习、深度学习等技术在运筹学中得到广泛应用,为解决复杂问题提供了新的思路和
方法。
大数据
大数据是指数据量巨大、处理难度高的数据集合。运筹学与大数据的结合,使得数据挖 掘、数据可视化等技术成为运筹学的重要工具,为解决实际问题提供了海量数据支持。
随机规划
随机规划是处理具有不确定性的优化问题的一种方法,其中某些参数或变量是随机的。随机规划可以使用概率模型或统计模 型来描述不确定性,并使用期望值模型或机会约束模型来定义优化问题。随机规划可以使用蒙特卡洛模拟、期望值迭代法等 求解方法进行求解。
随机规划在风险管理、金融衍生品定价、可靠性优化等领域有着广泛的应用,例如投资组合优化、生产计划等。
古代水利工程
古代水利工程如都江堰、郑国渠等的建设,体现了对资源优化配置 和工程管理的运筹思想。
古代商业活动
古代商业活动中,如汉代的丝绸之路,涉及到了物资调配、路线规 划等运筹问题。
近现代的运筹学萌芽
概率论与统计学
17世纪欧洲的科学家开始研究概率论 和统计学,这些学科为运筹学提供了 数学基础。
军事运筹学
对企业决策的支撑

运筹学重点内容

运筹学重点内容

1.科学决策科学决策是指决策者凭借科学思维,利用科学手段和科学技术所进行的决策。

程序性:在正确的理论指导下,按照一定的程序,正确运用决策技术和方法来选择行为方案。

创造性:决策总是针对需要解决的问题和需要完成的新任务,运用多种思维方法进行的创造性劳动。

择优性:在多个方案的对比中寻求能获取较大效益的行动方案,择优是决策的核心。

指导性:决策结果必须指导实践。

2. 运筹学运筹学是一种科学决策方法。

是依据给定目标和条件从众多方案中选择最优方案的最优化技术。

是一门寻求在给定资源条件下,如何设计和运行一个系统的科学决策方法。

与管理科学关系:管理科学涵盖的领域比运筹学更宽一些。

可以说,运筹学是管理科学最重要的组成部分。

与系统科学、系统分析、工业工程的关系:系统科学、系统分析、工业工程等学科的研究内容比运筹学的研究内容窄一些。

3.运筹学研究的特点科学性:运筹学是在科学方法论的指导下通过一系列规范化步骤进行的;运筹学是广泛利用多种学科的科学技术知识进行的研究。

运筹学研究不仅仅涉及数学,还要涉及经济科学、系统科学、工程物理科学等其它学科。

实践性:运筹学以实际问题为分析对象,通过鉴别问题的性质、系统的目标以及系统内主要变量之间的关系,利用数学方法达到对系统进行最优化的目的。

分析获得的结果要能被实践检验,并被用来指导实际系统的运行。

系统性:运筹学用系统的观点来分析一个组织(或系统),它着眼于整个系统而不是一个局部,通过协调各组成部分之间的关系和利害冲突,使整个系统达到最优状态。

综合性:运筹学研究是一种综合性的研究,它涉及问题的方方面面,应用多学科的知识,因此,要由一个各方面的专家组成的小组来完成。

4.运筹学模型运筹学研究的模型主要是抽象模型:数学模型。

数学模型的基本特点是用一些数学关系(数学方程、逻辑关系等)来描述被研究对象的实际关系(技术关系、物理定律、外部环境等)。

4.1模型特点它们大部分为最优化模型。

一般来说,运筹学模型都有一个目标函数和一系列的约束条件,模型的目标是在满足约束条件的前提下使目标函数最大化或最小化。

运筹学的定义

运筹学的定义

运筹学的定义
运筹学是一门研究决策的学科,它综合了数学、统计学、信息学、经济学、管理学等多个领域的知识和技术,旨在通过科学的方法来解决实际问题。

运筹学在现代社会中拥有广泛的应用,涉及到许多领域,如物流、交通、金融、医疗、能源等。

运筹学的主要目标在于找到最优解决方案。

例如,在物流领域,如何在有限的时间内将货物运输到目的地,同时降低运输成本;在金融领域,如何通过科学的投资策略来最大化收益,同时降低风险。

这些问题都可以通过运筹学的方法来解决。

为了实现这些目标,运筹学应用了许多技术和方法。

其中最常用的是线性规划,即在一组约束条件下最小化或最大化一个线性函数。

除此之外,运筹学还包括非线性规划、整数规划、动态规划、图论、排队论、模拟等等方法。

这些方法都有不同的应用场景,可以根据具体问题的特点选择最合适的方法。

运筹学的应用不仅限于商业领域,也可以用于解决社会问题。

例如,在医疗领域,如何最大化患者的生存率,同时降低医疗成本;在能源领域,如何通过科学的能源规划来提高能源利用效率,降低污染和排放。

这些问题都需要运筹学的方法来提供解决方案。

运筹学是一门非常实用的学科,它可以为我们提供科学的决策方法,解决实际问题。

随着科技的发展和社会的进步,运筹学的应用范围
也将更加广泛。

我们应该深入学习和应用运筹学的知识和方法,为实现更高效、更节约、更可持续的社会发展做出贡献。

运筹学PPT完整版

运筹学PPT完整版
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社

运筹学ppt课件

运筹学ppt课件
– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划

整数规划

动态规划

多目标规划

双层规划
最优计数问题

组 合
网络优化

优 排序问题 化 统筹图

对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹学概述一、运筹学的定义 运筹学(Operational Research...

运筹学概述一、运筹学的定义 运筹学(Operational Research...

运筹学研究的模型主要是抽 象模型——数学模型。数学模型 的基本特点是用一些数学关系 (数学方程、逻辑关系等)来描 述被研究对象的实际关系(技术 关系、物理定律、外部环境等)。
运筹学模型的一个显著 特点是它们大部分为最优化 模型。一般来说,运筹学模 型都有一个目标函数和一系 列的约束条件,模型的目标 是在满足约束条件的前提下 使目标函数最大化或最小化。
3、系统性
运筹学用系统的观点来分析 一个组织或系统),它着眼于整 个系统而不是一个局部,通过协调 各组成部分之间的关系和利害冲突, 使整个系统达到最优状态。
4、综合性
运筹学研究是一种综合性的 研究,它涉及问题的方方面面,应 用多学科的知识,因此,要由一个 各方面的专家组成的小组来完成。
三、运筹学模型
都江堰水利工程
丁谓的皇宫修复工程 北宋年间,丁谓负责修复火毁的开 封皇宫。他的施工方案是:先将工程 皇宫前的一条大街挖成一条大沟,将 大沟与汴水相通。使用挖出的土就地 制砖,令与汴水相连形成的河道承担 繁重的运输任务;修复工程完成后, 实施大沟排水,并将原废墟物回填, 修复成原来的大街。丁谓将取材、生 产、运输及废墟物的处理用“一沟三 用”巧妙地解决了。
二、运筹学研究的特点
1、科学性 (1)它是在科学方法论的指导下通 过一系列规范化步骤进行的;
(2)它是广泛利用多种学科的科学 技术知识进行的研究。运筹学研究不 仅仅涉及数学,还要涉及经济科学、 系统科学、工程物理科学等其他学科。
2、实践性
运筹学以实际问题为分析对象, 通过鉴别问题的性质、系统的目标 以及系统内主要变量之间的关系, 利用数学方法达到对系统进行最优 化的目的。更为重要的是分析获得 的结果要能被实践检验,并被用来 指导实际系统的运行。

运筹学综述[全文]

运筹学综述[全文]

运筹学综述运筹学的简介一:什么是运筹学?运筹学是Operations Research的英文单词缩写。

运筹学界的元老说运筹学是执行部门对所控制的业务做出决策提供数量上的依据的科学或利用所有应用科学执行部门对其所属业务作出决策提供数量上依据的一门科学;世界上最早的运筹学协会说运筹学是运用科学方法来解决工业、商业、政府、国防等部门里有关人力、机器、物资、金钱等大型系统的指挥或管理中所出现的复杂问题的一门学科,其目的是“帮助管理者以科学方法确定其方针和行动”。

二:运筹学的三个来源1、军事二战期间例一:在第二次世界大战期间,鲍德西雷达站的研究——“布莱克特马戏团”的出色工作,Bawdsey雷达站—Blackett杂技班专门就改进空防系统进行研究。

成员组成:心理学家3,数学家2,数学物理学家2,天文物理学家1,普通物理学家1,陆军军官1,测量员1。

研究的问题是设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力协调等获得成功,大大提高了英国本土的防空能力,不久以后在对抗德国对英伦三岛的狂轰滥炸中发挥了极大的作用,堪称运筹学的发祥与典范,展示了运筹学的本色与特色。

二战期间例二:大西洋反潜战——Morse小组的重要工作。

1942年麻省Morse教授应美国大西洋舰队反潜战官员Baker舰长的请求担任反潜战运筹组的计划与监督工作,其最出色的工作之一是协助英国打破了德国对英吉利海峡的海上封锁,研究所提出的两条重要建议是:将反潜攻击由反潜舰艇投掷水雷改为飞机投掷深水炸弹,起爆深度由100米改为25米左右,即当德方潜艇刚下潜时攻击效果最佳;运送物资的船队及护航舰艇的编队由小规模、多批次改为大规模、少批次,从而减少了损失率丘吉尔采纳Morse的建议,从而打破德国封锁;重创德国潜艇部队;Morse同时获得英国及美国战时最高勋章二战期间例三:英国战斗机中队援法决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学结课报告
院系信息工程与自动化学院
专业系统工程
姓名徐宏武
学号 2013204095 教师王晓东(教授)
二O一三年十二月二十五日
运筹学在控制过程中的运用
一对运筹学这门课简单的认识
古人作战讲“夫运筹帷幄之中,决胜千里之外”运筹学也就是这个道理。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。

从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。


上了十几次运筹学课,觉得这门课真的内容很丰富,涉及数学,决策学等等很多方面。

在有限的学习时间里,老师给我们讲了很多实用性的东西,线性函数等等。

对于一个数学基础不太好的我来说,在短时间内把运筹学学好几乎是不可能的。

对这门学科理解可能也不够到位。

但是,学习一门学科,掌握它的精髓和要义或许更重要。

学习过运筹学后,更应该能够熟练的掌握和运用运筹学的精髓,用运筹学的思维思考问题,从而使生活和学习中遇到的各种问题得到更好的解决。

应该就是把各种事件、因素、条件等等量化,分析运用运筹学的方法得出最优解,再转化为实际问题。

当然,转化的方法和技巧很系统,也很高深复杂。

理论性的东西也有很多,必须承认,是我的能力和水平所达不到的。

在现代社会中,运筹学的运用也是非常广泛的,经济方面,涉及资源开发,资产收益,甚至经济发展的策略和方向。

在社会和个人生活中,与人交往,人生的规划中,甚至国家政策方针的制定中,都有运筹学的踪迹。

学习了运筹学,不应该说接触了运筹学以后,才知道他的用处如此之多。

二运筹学在生产过程优化调度中的应用
运筹学方法在生产过程调度问题研究中已得到广泛应用。

以下将对生产过程调度问题优化方法研究中常用的分枝定界、动态规划、拉格朗日松弛等运筹学方法行介绍。

1) 分枝定界
分枝定界法(Branch and bound, B&B) 是在上世纪60 年代由英国伦敦政治经济学院Land 等提出的一种主要用于求解离散优化问题的最优化方法。

英国学者Lomnicki首先将分枝定界方法应用于三机器Flow shop 调度问题中,此后,分枝定界方法被逐。

步应用于单机、并行机、Jobshop、柔性制造系统等典型生产过程调度问题及面向钢铁、微电子、石化等特定行业的生产过程调度问题中。

面向生产过程调度问题的分枝定界方法的研究主要集中在分枝方法和上下界确定方法上。

近年来,一些学者还将模糊集理论、遗传算法等其他方法与分枝定界法相结合,提出了基于模糊推理的分枝定界算法、基于遗传算法的分枝定界方法等,并将其用于生产过程调度问题的求解,以提高搜索效率和调度解的性能。

2) 动态规划
动态规划(Dynamic programming, DP) 是由美国南加州大学Bellman 等于1952 年提出的求解多阶段决策过程优化问题的一种最优化方法,其在单机、并行机、Flow shop和Job shop 等典型生产过程调度问题及面向钢铁、微电子等特定行业的生产过程调度问题中均得到了较多应用。

面向生产过程调度问题的动态规划方法研究主要涉及步长改进方法和状态变量维数化简方法等。

一些学者还将模糊集、随机过程理论和进化计算等与动态规划方法相结合,形成模糊动态规划、随机动态规划和基于进化计算的动态规划等方法。

以提高动态规划方法的优化效果或对不确定生产过程调度问题的适应性。

3) 拉格朗日松弛法
拉格朗日松弛法(Lagrangian relaxation, LR)是一种求解约束优化问题的近似优化方法。

美国康涅狄格大学陆宝森等最早将该方法应用于解生产过程调度问题中。

之后,该方法在求解单机、并行机、Flow shop、Job shop、柔性制造系统等典型生产过程调度问题及面向钢铁、微
电子等特定行业的生产过程调度问题中均得到广泛应用。

面向生产过程调度问题的拉格朗日松弛方法研究主要集中在对拉格朗日乘子的更新方法上。

目前较常用的方法是采用次梯度方法更新拉格朗日乘子.近年来,启发式方法、神经网络等也被用于拉格朗日松弛算法的乘子更新过程。

运筹学方法是求解生产过程调度问题的经典方法,但由于绝大多数生产过程调度问题都是NP 难题,随着调度问题规模的增大,上述方法一般会产生指数爆炸现象,因而上述方法主要用于求解较小规模的生产过程调度问题,或与分解、软计算等方法相结合,用于求解较为复杂的生产过程调度问题。

三小结
将来社会的发展不可估计,但无论什么时候,都需要作出决策和判断,都需要研究最好的解决问题的方法,运筹学一定会得到更多的运用,也一定会有更高更远的发展。

可惜我学习的运筹学知识很有限,只能在以后的生活中,找机会更加深入和认真的学习了。

但也可以这么说,运筹学就在我们身边,在我们的学习、生活中,何不积极运用并且不断去理解和感悟呢。

学习这门课最大的收获就是,生活是需要规划和技巧的,我们要生活的更好,就应该未雨绸缪,积极寻求好的方法,做好应对一切的准备!。

相关文档
最新文档